
Supplementary Material
FACT: Frame-Action Cross-Attention Temporal Modeling for

Efficient Action Segmentation

Zijia Lu
Northeastern Univeristy
lu.zij@northeastern.edu

Ehsan Elhamifar
Northeastern University

e.elhamifar@northeastern.edu

In the supplementary material, we provide more details
of our FACT framework, including choice of dataset (Sec-
tion 1), temporal downsampling and upsampling in cross-
attentions (Section 2), temporal smooth loss (Section 3),
dicussion of matching loss (Section 4) and one-to-many
matching algorithm (Section 5). Moreover, we also report
more implementation details (Section 6), ablation study (Sec-
tion 7) and qualitative results (Section 8).

1. Choice of Datasets.

We have evaluated FACT on four datasets. Beside the bench-
mark datasets, Breakfast and GTEA, we especially choose
two challenging new datasets, EgoProceL and EPIC-Kitchen.
They feature long, complex videos, thus can validate FACT’s
ability for long temporal modeling. While 50Salads[10]
and Assembly101[9] are also action segmentation datasets,
they lack the desired properties compared to EgoProceL and
EPIC-Kitchen.

Specifically, EgoProceL has videos from diverse tasks
(cooking, assembling PC, assembling toys and more). Yet,
50Salads and Assembly101 only focus on making salads
and assembling toys, respectively. On the other hand, EPIC-
Kitchen has the longest average video lengths and the largest
number of action classes (3796 actions), which greatly ex-
ceed those of 50Salads and Assembly101. Therefore, these
properties of EgoProceL and EPIC-Kitchen lead to challeng-
ing, sophisticated temporal relations in videos, thus are the
best suitable datasets for evaluating model performance on
temporal modeling.

2. Temporal Downsampling and Upsampling

When the number of video frames is large, computing cross-
attention can be costly. Therefore, we optionally apply tem-
poral downsampling on frame features before cross-attention
and upsampling after it to improve efficiency, as visualized
in Figure 1. In the following, we use Fptq to denote the t-th
row of a frame feature.

Av
era

ge

Downsample

Average

Frames Features

Frame Branch
(Convolution)

Update Block

Cross-Attention
(Frame-to-Action)

…

Action Tokens

Action Branch

Cross-Attention
(Action-to-Frame)

Upsample

Downsample

Upsample

Co
pyCopy

Figure 1. Visualization of Update Block with Temporal Downsam-
pling and Upsampling.

Downsample. For a update block b, we first downsample the
input of (frame-to-action) cross-attention, which is the input
frame features Fb´1. We do not downsample it by a fixed
ratio, as it removes the features of short segments. Instead,
we partition the video into segments based on the predicted
framewise labels, y1 “ argmaxpPf

b´1q, and compute one
feature for each segment via average-pooling (see top-left of
Figure 1). Specifically, suppose the n-th predicted segment
in y1 has a temporal interval T 1

n. We have

F̌b´1pnq “ average-poolingptFb´1ptq|t P T 1
nuq, (1)

where F̌b´1 is the downsampled feature. Additionally, we
found it is beneficial to refine the features via temporal mod-
ule, F̌1

b´1 “ GRUpF̌b´1q. Finally, F̌1
b´1 is the downsam-

1

pled input to the frame-to-action cross-attention.
Upsample. To upsample the output from (action-to-frame)
cross-attention F1

b, we make copies of the features in it (see
top-right of Figure 1). We have

F̂bptq “ F1
bpnq for t P T 1

n, (2)

where, for each frame t in the predicted segment n, its feature
is a copy of F1

bpnq. Since F̂b loses the fine-grained details of
each frame, we fuse it with Fb´1 by a fully-connected layer,
F̂1

b “ FCpF̂b,Fb´1q. Lastly, F̂1
b is the upsampled output of

action-to-frame cross-attention.

3. Temporal Smoothing Loss
Here we present the complete formula of our temporal
smoothing loss defined in Eq(13) of the paper. Following
[3], we define Lsmooth as

Lsmooth “ w
ÿ

b

hpPf
b q ` hpΛa

b q ` hpΛf
b q

“
w

TA

ÿ

b

ÿ

t,a

ψ
´

Pf
b pt, aq,Pf

b pt´ 1, aq

¯

`
w

TM

ÿ

b

ÿ

m,t

ψ pΛa
b pt,mq,Λa

b pt´ 1,mqq

`
w

TM

ÿ

b

ÿ

m,t

ψ
´

Λf
b pt,mq,Λf

b pt´ 1,mq

¯

,

(3)

where ψpx, yq “ maxpσ, | log x´log y|q2 and σ is a smooth-
ness threshold. Thus, Lsmooth incurs penalty if the difference
between predictions of two consecutive frames is too large.

4. Discussion on Matching Loss
Our matching loss finds and enforces the optimal matching
between action tokens and action segments to learn action
branch and cross-attentions. Alternatively, one can learn
them via cross-entropy loss on the framewise prediction
of action branch, P1 “ Λ̄f

B ¨ P̄a
B , as defined in Section

3.1 of paper. Yet, such method lacks explicit regulation of
segment-token matching. It can lead to one token encoding
the frames of one segment and also a portion of the frames
from another segment. Thus, it fails to ensure each segment
is uniquely represented by a token to learn its fine-grained
details, while our matching loss achieves so by using the
optimal segment-token matching as token labels.

5. One-to-Many Segment-Token Matching
Recall that, our matching loss allows one-to-many segment-
token matching, which assigns multiple segments to one
token while ensures the assigned segments have the same
action class. There is no existing algorithm to compute
the optimal assignment. Hungarian algorithm addresses
one-to-one matching. Nearest-neighbor matching, which

assigns one segment to the token with the maximal matching
similarity, can match segments from different classes to the
same token. While this problem is NP-hard, we propose
a two-step algorithm as an efficient approximation of the
optimal solution. If a better matching algorithm becomes
available, it will not conflict with the conclusion of our paper,
as we can seamlessly leverage it in our method.

Our algorithm first performs a matching between the ac-
tion tokens and action classes, then applies nearest-neighbor
assignment among the matched tokens of a class and the
segments of the class, hence ensuring the assigned segments
of a token are from the same class. Specifically, in step one,
we define the matching similarity between a token m and a
class a as

ŝpm, aq “
1

|Da|

ÿ

nPDa

spm,nq, (4)

where Da is the set of segments of class a. Thus, it equals
to the averaged matching similarity between the token and
the segments of the class a. We utilize ŝpm, aq to match
the tokens to action classes. Since the number of tokens is
set to be larger than the number of action classes in a video,
we ensure each class matches to at least one token while
allowing some classes to match with multiple tokens. Thus,
we first use Hungarian algorithm to assign one token to each
class, then match the remaining unassigned tokens to classes
via nearest-neighbor matching. Finally, in step two, for each
class, we associate its segments to its matched tokens by
nearest-neighbor matching.

Notice the complexity of our one-to-many algorithm is
mainly determined by the Hungarian algorithm in step one,
thus is similar to that of one-to-one algorithm. Meanwhile,
the algorithm is only performed at training time to compute
our losses and not required at inference.

6. Implementation Details
We train FACT on one NVIDIA Quadro RTX 6000 with
Adam Optimizer and a learning rate of 0.0001. On Breakfast,
experiments finish in 20 hours. For prediction generation, we
set w “ 0.5 on EgoProceL and w “ 0.75 on other datasets.
For temporal smoothing loss, we set σ “ 4.

In Table 1, we list the network configuration for each
dataset. For example, on Breakfast, we use 1 input block
with 3 update blocks and apply temporal down/up-sampling
in the 3, 4-th blocks (last two update blocks) when tran-
scripts are not available and only in the 4-th block when
transcripts are available. Each GRU and FC in temporal
down/up-sampling contain one layer. We use 4 blocks on
most datasets except GTEA, as it is a small-scale dataset
and using fewer blocks reduces overfitting. In principle, we
maintain a simple network structure and do not extensively
tune the hyperparameters.

Number of
Input Block

Number of
Update Block

Down/Up-sample Blocks
(without transcript)

Down/Up-sample Blocks
(with transcript)

Breakfast 1 3 {3, 4} {4}
GTEA 1 2 {3} {3}
EgoProceL 1 3 {2, 3, 4} {4}
EPIC-Kitchen 1 3 {2, 3, 4} {3, 4}

Table 1. FACT network configurations for the four datasets.

On Breakfast and GTEA, we report the averaged perfor-
mance over the released four train-test splits that are consis-
tent to all prior works [1, 3, 4, 6, 11]. On EgoProceL, since
the dataset does not release any train-test split, we gener-
ate one train-test split with 80% video for training and 20%
for testing. EgoProceL contains videos from CMU-MMAC
dataset [5] where some videos are recorded from the back of
the subjects and their actions are not visible. We removed
those videos and will release the train-test split with our code
and model weights. On EPIC-Kitchen, we use its released
one train-test split. For Breakfast, GTEA and EgoProceL,
we use I3D[2] to extract framewise features to be consistent
with prior works. For EPIC-Kitchen, we use the framewise
features released by the dataset.

To replicate UVAST on EgoProceL and EPIC-Kitchen,
we use Viterbi decoding with length model [1, 7, 8] as its
alignment algorithm, as it shows the best overall perfor-
mance in its paper and our experiments. To extend prior
works to incorporate transcripts, we also utilize Viterbi de-
coding with length model as the alignment algorithm.

7. Ablation Study
7.1. Performance of Different Update Blocks

In our main experiments, we generate predictions from the
last update block. In Table 2 and 3, we also evaluate the
predictions of earlier update blocks on Breakfast and Ego-
ProceL, respectively. While the predictions from the first
update block have a high Acc, their F1 and Edit are low,
showing the predictions have over-segmentation issue, i.e.,
containing many short false segments. As the frame and
token features are refined with more blocks, more accurate
action locations are learned, leading to the stead increase in
F1 and Edit. We observed adding more update blocks will
not further increase performance.

7.2. Effect of Temporal Down/Upsampling

In Table 4, we compare the effect of the Temporal Downsam-
pling and Upsampling (TDU) on EgoProceL. Comparing
row 1 and 3 shows including TDU increases F1@50 by 1.6%,
as it decreases the length of frame features in cross-attention
and improves both computation efficiency and learning dif-
ficulty. Meanwhile, comparing row 2 and 3 shows includ-
ing GRU helps learning action ordering and increases Edit

Block F1@{10,25,50} Edit Acc
First 72.0 69.0 59.5 69.5 74.1

Second 74.9 72.2 62.9 71.5 74.9
Last 81.7 77.0 66.5 79.6 76.5

Table 2. Performance of different update blocks on Breakfast.

Block F1@{10,25,50} Edit Acc AccB
First 64.6 61.7 51.0 68.6 74.0 86.8

Second 67.8 64.6 53.3 70.0 75.9 87.1
Last 73.0 69.8 60.8 75.7 77.6 88.0

Table 3. Performance of different update blocks on EgoProceL.

TDU GRU F1@{10,25,50} Edit Acc AccB
✗ ✗ 71.3 69.0 59.2 74.2 78.5 87.8
✓ ✗ 72.0 68.5 60.2 74.2 78.2 88.1
✓ ✓ 73.0 69.8 60.8 75.7 77.6 88.0

Table 4. Effect of Temporal Downsampling and Upsampling
(TDU).

F1@{10,25,50} Edit Acc
FACT 89.9 85.6 73.7 93.5 84.5

FACT + Viterbi 93.1 88.5 76.1 - 85.1

Table 5. Action Segmentation with Transcript and Viterbi decoding.

scores.

7.3. Incorporating Viterbi decoding in FACT.

For action segmentation with transcript, we extend prior
works with Viterbi decoding, which finds the optimal align-
ment between their framewise predictions and video tran-
scripts. In contrast, FACT efficiently computes the align-
ments with cross-attention. In Table 5, we show the results
of also applying Viterbi decoding to FACT on Breakfast. Yet,
the performance gap with and without Viterbi decoding is not
large, showing our cross-attention yields accurate alignments
thus removing the need of costly Viterbi decoding.

8. Qualitative Results
In Figure 2, 3, 4, 5, we visualize the segmentation results
of FACT with UVAST, LTContext, DiffAct on each of our
evaluation datasets. On GTEA, LTContext is not included
as it does not release trained model for the dataset. On
EPIC-Kitchen, since UVAST and DiffAct cannot converge

well, we replace them with ASFormer. While videos in
EPIC-Kitchen are long and contain many action segments,
we visualize for clips of the videos instead of whole videos
to avoid cluttering. It can be observed that FACT better
recognizes both the action classes and temporal locations of
action segments.

References
[1] Nadine Behrmann, S. Alireza Golestaneh, Zico Kolter, Juer-

gen Gall, and Mehdi Noroozi. Unified fully and timestamp
supervised temporal action segmentation via sequence to se-
quence translation. In ECCV, 2022. 3

[2] J. Carreira and A. Zisserman. Quo vadis, action recognition?
a new model and the kinetics dataset. In IEEE Conference on
Computer Vision and Pattern Recognition, 2017. 3

[3] Yazan Abu Farha and Jurgen Gall. Ms-tcn: Multi-stage tem-
poral convolutional network for action segmentation. In Pro-
ceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 3575–3584, 2019. 2, 3

[4] Yuchi Ishikawa, Seito Kasai, Yoshimitsu Aoki, and Hirokatsu
Kataoka. Alleviating over-segmentation errors by detecting
action boundaries. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision (WACV),
pages 2322–2331, 2021. 3

[5] Fernando De la Torre, Jessica K. Hodgins, Adam W. Bargteil,
Xavier Martin, J. Robert Macey, Alex Tusell Collado, and Pep
Beltran. Guide to the carnegie mellon university multimodal
activity (cmu-mmac) database. In Robotics Institute, 2008. 3

[6] Shi-Jie Li, Yazan AbuFarha, Yun Liu, Ming-Ming Cheng,
and Juergen Gall. Ms-tcn++: Multi-stage temporal convolu-
tional network for action segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, pages 1–1, 2020.
3

[7] Z. Lu and E. Elhamifar. Weakly-supervised action segmenta-
tion and alignment via transcript-aware union-of-subspaces
learning. International Conference on Computer Vision, 2021.
3

[8] A. Richard, H. Kuehne, A. Iqbal, and J. Gall. Neuralnetwork-
viterbi: A framework for weakly supervised video learning.
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2018. 3

[9] Fadime Sener, Dibyadip Chatterjee, Daniel Shelepov, Kun
He, Dipika Singhania, Robert Wang, and Angela Yao. As-
sembly101: A large-scale multi-view video dataset for under-
standing procedural activities. IEEE Conference on Computer
Vision and Pattern Recognition, 2022. 1

[10] Sebastian Stein and Stephen J. McKenna. Combining em-
bedded accelerometers with computer vision for recognizing
food preparation activities. In Proceedings of the 2013 ACM
International Joint Conference on Pervasive and Ubiquitous
Computing, 2013. 1

[11] Fangqiu Yi, Hongyu Wen, and Tingting Jiang. Asformer:
Transformer for action segmentation. In The British Machine
Vision Conference (BMVC), 2021. 3

ground-truth
UVAST

LTContext
DiffAct

FACT

background
take bowl
pour oil

crack egg
add saltnpepper

fry egg
take plate

put egg to plate
butter pan

ground-truth
UVAST

LTContext
DiffAct

FACT

background
pour cereals

pour milk stir cereals take bowl

Figure 2. Visualization of Segmentation results on Breakfast

ground-truth
UVAST
DiffAct

FACT

background
take

open
pour

close
scoop

put
spread

ground-truth
UVAST
DiffAct

FACT

background
take

open
pour

close
scoop

stir
put

Figure 3. Visualization of Segmentation results on GTEA

ground-truth
UVAST

LTContext
DiffAct

FACT

background
keep bread on the plate

press the bread slices together
apply jam

apply peanut butter

ground-truth
UVAST

LTContext
DiffAct

FACT

background
add brownie mix
break egg

add oil
add water
spray oil on the tray

pour the mixture in the tray
mix all the contents
mix eggs

Figure 4. Visualization of Segmentation results on EgoProceL

ground-truth
ASFormer
LTContext

FACT

background
wash bin
take plate
put tray

smell sauce
put board
wash board
unwrap yoghurt

put plate
scoop oregano
wash tray
insert tray

measure salt
take tray
wash plate

ground-truth
ASFormer
LTContext

FACT

background
unlock processor
open drawer
peel potato
turn button

mix potato
unlock blender
scrub maker
water sponge
let-go sponge

peel onion
choose mat
mix pan
uncover cooker

scrub cup
take spice
cut onion
search spice

Figure 5. Visualization of Segmentation results on EPCI-Kitchen

	. Choice of Datasets.
	. Temporal Downsampling and Upsampling
	. Temporal Smoothing Loss
	. Discussion on Matching Loss
	. One-to-Many Segment-Token Matching
	. Implementation Details
	. Ablation Study
	. Performance of Different Update Blocks
	. Effect of Temporal Down/Upsampling
	. Incorporating Viterbi decoding in FACT.

	. Qualitative Results

