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FEDHCA2: Towards Hetero-Client Federated Multi-Task Learning 001

Supplementary Material 002

A. Proof of Theorem 1 003

Theorem 1 Given a multi-task model with a shared encoder and task-specific decoders, and a federated learning system 004
consisting of clients with independent encoders and decoders, gradient descent in the shared encoder of MTL is equivalent to 005

averaging parameter aggregation in FL, adding an extra term∇θ(0)⟨ĝ(p)i , ĝ
(q)
j ⟩ that maximizes the inner product of gradients 006

ĝ
(p)
i and ĝ

(q)
j between all pairs of tasks i and j in each iteration p and q. 007

Overview The goal is to establish the relationship between the parameter updates in MTL with a shared encoder and FL with 008
independent encoders. We aim to show that the gradient descent updates in MTL is similar to the parameter aggregation in 009
FL, but MTL inherently reduces gradient conflicts among tasks, an effect not directly achieved by FL. 010

011
Analysis Consider the following scenario, a multi-task model handles N tasks with a standard multi-decoder architecture 012

consisting of a shared encoder and N task-specific decoders, trained on a multi-task dataset D = {(xn,yn)}|D|
n=1, where xn 013

is the input sample and yn =
⋃N

t=1 yn,t contains the ground-truth labels for all N tasks. Meanwhile, a Federated Learning 014
system also handles N tasks with N clients, where client Ci addressing the i-th task with independent encoder and decoder. 015

The local dataset for client Ci is separated from the multi-task dataset Di = {(xn,yn,i)}|D|
n=1. Assume all models are 016

initialized by θ(0) and trained for M iterations before aggregation in FL. Here M equals the number of iterations in a single 017
epoch multiplies the number of local epochs set by the FL system. 018

Firstly, we could define following annotations to facilitate analysis. In the following proof, we mainly focus on the 019
optimization of encoders in MTL and FL, thus abbreviating the parameters of encoder θE as θ for simplicity. In MTL, the 020
encoder is always shared by all tasks in each mini-batch, we define the loss function for the i-th task at the m-th iteration and 021
its corresponding gradient as follows: 022

L(m)
i (θ(m−1)) = Li(θ

(m−1);B(m)
i ), (1) 023

g
(m)
i = ∇θ(m−1)L(m)

i , (2) 024

where θ(m−1) is the encoder parameters in the (m− 1)-th iteration, B(m)
i is the mini-batch sampled from D for task i. 025

While in FL, each client possesses its specific model, for the same mini-batch B(m)
i we have the loss function and gradient: 026

L(m)
i (θ

(m−1)
i ) = Li(θ

(m−1)
i ;B(m)

i ), (3) 027

g
(m)
i = ∇

θ
(m−1)
i

L(m)
i , (4) 028

where θ
(m−1)
i is the encoder parameters of client Ci in the (m− 1)-th iteration. 029

Since the MTL model θ and all FL clients’ models θi are initialized from the same point θ(0), we define 030

ĝ
(m)
i = ∇θ(0)L(m)

i (θ(0);B(m)
i ), (5) 031

Ĥ
(m)
i = ∇2

θ(0)L(m)
i (θ(0);B(m)

i ), (6) 032

to represent the derivative and Hessian Matrix of L(m)
i of the initial parameters respectively, and are exactly the same for 033

MTL and FL. 034
Then we delve deeper into the training procedure of MTL. Since the encoder is shared by all tasks, it is updated by the 035

gradient descents computed from the losses of all tasks, which is formulated as: 036

θ(m) = θ(m−1) − η

N∑
i=1

g
(m)
i , (7) 037
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where η denotes the learning rate.038

To have an insightful view of gradient descent in MTL, we can perform a Taylor expansion on g
(m)
i assuming η is039

sufficiently small, yielding:040

g
(m)
i = ∇θ(m−1)L(m)

i (8)041

= ∇θ(0)L(m)
i +∇2

θ(0)L(m)
i (θ(m−1) − θ(0)) +O(η2) (9)042

= ĝ
(m)
i + Ĥ

(m)
i (θ(m−1) − θ(0)) +O(η2) (10)043

= ĝ
(m)
i + Ĥ

(m)
i

m−1∑
k=1

(θ(k) − θ(k−1)) +O(η2) (11)044

= ĝ
(m)
i − ηĤ

(m)
i

m−1∑
k=1

N∑
j=1

g
(k)
j +O(η2). (Use Eq. (7)) (12)045

After M iterations, we can calculate the overall change of encoder parameters by combining Eq. (7) and Eq. (12):046

∆θMTL = θ(M) − θ(0) (13)047

= −η
M∑

m=1

N∑
i=1

g
(m)
i (14)048

= −η
M∑

m=1

N∑
i=1

ĝ
(m)
i − ηĤ

(m)
i

m−1∑
k=1

N∑
j=1

g
(k)
j

+O(η3) (15)049

= −η
M∑

m=1

N∑
i=1

ĝ
(m)
i + η2

M∑
m=1

N∑
i=1

Ĥ
(m)
i

m−1∑
k=1

N∑
j=1

g
(k)
j

+O(η3). (16)050

Similarly, we consider the training procedure of client Ci in FL, where the encoder θi is updated independently by the051
gradients computed from the loss of it own task, which is formulated as:052

θ
(m)
i = θ

(m−1)
i − ηg

(m)
i . (17)053

Conducting Taylor expansion on g
(m)
i yields:054

g
(m)
i = ∇

θ
(m−1)
i

L(m)
i (18)055

= ∇θ(0)L(m)
i +∇2

θ(0)L(m)
i (θ

(m−1)
i − θ(0)) +O(η2) (19)056

= ĝ
(m)
i + Ĥ

(m)
i (θ

(m−1)
i − θ(0)) +O(η2) (20)057

= ĝ
(m)
i + Ĥ

(m)
i

m−1∑
k=1

(θ
(k)
i − θ

(k−1)
i ) +O(η2) (21)058

= ĝ
(m)
i − ηĤ

(m)
i

m−1∑
k=1

g
(k)
i +O(η2). (Use Eq. (17)) (22)059

After M iterations, we can calculate the overall change of the client encoder parameters by combining Eq. (17) and060
Eq. (22):061

∆θi = θ
(M)
i − θ(0) (23)062

= −η
M∑

m=1

g
(m)
i (24)063
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= −η
M∑

m=1

(
ĝ
(m)
i − ηĤ

(m)
i

m−1∑
k=1

g
(k)
i

)
+O(η3) (25) 064

= −η
M∑

m=1

ĝ
(m)
i + η2

M∑
m=1

(
Ĥ

(m)
i

m−1∑
k=1

g
(k)
i

)
+O(η3). (26) 065

FL server typically aggregates client models by performing a weighted sum of client model parameters, such as Fe- 066
dAvg [14]. The aggregation is formulated as: 067

θ̃ =
1

N

N∑
i=1

θi, (27) 068

here we simplify it with identical weights for all clients. 069
Consider its change from the initial weights: 070

∆θ̃FL =
1

N

N∑
i=1

∆θi (28) 071

=
1

N

N∑
i=1

(
−η

M∑
m=1

ĝ
(m)
i + η2

M∑
m=1

(
Ĥ

(m)
i

m−1∑
k=1

g
(k)
i

))
+O(η3) (Use Eq. (26)) (29) 072

=
1

N

(
−η

M∑
m=1

N∑
i=1

ĝ
(m)
i + η2

M∑
m=1

N∑
i=1

(
Ĥ

(m)
i

m−1∑
k=1

g
(k)
i

))
+O(η3). (30) 073

If we regard the optimizer as capable of automatically scaling the learning rate η, we can neglect the coefficient 1/N in 074

Eq. (30). Hence, we could find that the first term−η
∑M

m=1

∑N
i=1 ĝ

(m)
i exists in the parameter update of both MTL (Eq. (16)) 075

and FL (Eq. (30)), showcasing their similarity in optimization of multiple tasks. Furthermore, we can calculate the difference 076
between them: 077

∆θMTL −∆θ̃FL ≈ η2
M∑

m=1

N∑
i=1

Ĥ
(m)
i

m−1∑
k=1

N∑
j=1

g
(k)
j − Ĥ

(m)
i

m−1∑
k=1

g
(k)
i

 (31) 078

= η2
M∑

m=1

N∑
i=1

Ĥ
(m)
i

m−1∑
k=1

N∑
j=1,j ̸=i

g
(k)
j

 (32) 079

= η2
M∑

m=1

m−1∑
k=1

N∑
i=1

N∑
j=1,j ̸=i

Ĥ
(m)
i g

(k)
j . (33) 080

From Eq. (12) we know the approximation that g(m)
i = ĝ

(m)
i +O(η), thus there is 081

∆θMTL −∆θ̃FL = η2
M∑

m=1

m−1∑
k=1

N∑
i=1

N∑
j=1,j ̸=i

Ĥ
(m)
i ĝ

(k)
j . (34) 082

Since the sequence of mini-batches is randomly shuffled in every local epoch, the ordering of iterations within a local 083
epoch is actually randomized. Consequently, we can compute the expectation of Eq. (34) as follows: 084

E[∆θMTL −∆θ̃FL] = η2E

 M∑
m=1

m−1∑
k=1

N∑
i=1

N∑
j=1,j ̸=i

Ĥ
(m)
i ĝ

(k)
j

 (35) 085

=
η2

2

M∑
p=1

M∑
q=1,q ̸=p

N∑
i=1

N∑
j=1,j ̸=i

Ĥ
(p)
i ĝ

(q)
j (36) 086
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=
η2

2

M∑
p=1

M∑
q=p+1

N∑
i=1

N∑
j=i+1

(
Ĥ

(p)
i ĝ

(q)
j + Ĥ

(p)
j ĝ

(q)
i + Ĥ

(q)
i ĝ

(p)
j + Ĥ

(q)
j ĝ

(p)
i

)
, (37)087

where the restriction k < m is relaxed under the expectation, note that the indexes are changed in Eq. (37) for re-organizing088
the terms in summation. From the definition that Ĥi = ∇θ(0) ĝi, we can take a closer look at the inner term:089

Ĥ
(p)
i ĝ

(q)
j + Ĥ

(q)
j ĝ

(p)
i = (∇θ(0) ĝ

(p)
i )ĝ

(q)
j + (∇θ(0) ĝ

(q)
j )ĝ

(p)
i (38)090

= ∇θ(0)⟨ĝ(p)i , ĝ
(q)
j ⟩, (39)091

where ⟨ĝ(p)i , ĝ
(q)
j ⟩ is the inner product of gradient of task i and j at initial weight, computed with mini-batch B(p)i and B(q)j .092

Similarly, we have093

Ĥ
(q)
i ĝ

(p)
j + Ĥ

(p)
j ĝ

(q)
i = (∇θ(0) ĝ

(q)
i )ĝ

(p)
j + (∇θ(0) ĝ

(p)
j )ĝ

(q)
i (40)094

= ∇θ(0)⟨ĝ(q)i , ĝ
(p)
j ⟩. (41)095

Then we can bring Eq. (39) and Eq. (41) back to Eq. (37):096

E[∆θMTL −∆θ̃FL] =
η2

2

M∑
p=1

M∑
q=p+1

N∑
i=1

N∑
j=i+1

(
∇θ(0)⟨ĝ(p)i , ĝ

(q)
j ⟩+∇θ(0)⟨ĝ(q)i , ĝ

(p)
j ⟩
)

(42)097

=
η2

2

M∑
p=1

M∑
q=1,q ̸=p

N∑
i=1

N∑
j=i+1

(
∇θ(0)⟨ĝ(p)i , ĝ

(q)
j ⟩
)
. (43)098

This can be viewed as the summation of gradients of the inner products in Eq. (39) between all N(N − 1)/2 pairs of tasks099
and all M(M − 1) pairs of mini-batches.100

To understand the effect of Eq. (43) in the optimization process of MTL, we can have a quick review at the gradient101
descent algorithm:102

θ ← θ − η∇θL(θ), (44)103

which can minimize the loss L(θ):104

∆θ = −η∇θL(θ)⇔ minL(θ). (45)105

Then the term ∇θ(0)⟨ĝ(p)i , ĝ
(q)
j ⟩ in parameter update of MTL is equivalent to maximizing the inner product:106

∇θ(0)⟨ĝ(p)i , ĝ
(q)
j ⟩ ⇔ max⟨ĝ(p)i , ĝ

(q)
j ⟩, (46)107

since its coefficient η2/2 in Eq. (43) is positive.108

From existing works in multi-object and multi-task optimization [7, 11, 19, 22], we know that the inner product ⟨ĝ(p)i , ĝ
(q)
j ⟩109

is a measurement of accordance between gradients ĝ(p)i and ĝ
(q)
j , and maximizing this inner product in parameter update is110

equal to reducing the conflict of gradients. This complete the proof.111
Therefore, the parameter sharing mechanism in MTL can implicitly help mitigate the conflict of gradients across different112

tasks, yet the parameter aggregation in FL could be limited in this function.113
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B. Algorithm Pseudo-codes114

We provide detailed illustrations of the proposed Hyper115
Conflict-Averse Aggregation scheme from Section 3.3 and116
Hyper Cross Attention Aggregation scheme from Section117
3.4 in Algorithm 1 and Algorithm 2, respectively.118

Algorithm 1 Hyper Conflict-Averse Aggregation

Input: Previous round encoder parameters θE,(r−1) =

{θE,(r−1)
1 , . . . , θ

E,(r−1)
N }, current round encoder up-

dates ∆θE,(r) = {∆θ
E,(r)
1 , . . . ,∆θ

E,(r)
N }, a hyper-

parameter c ∈ [0, 1), Hyper Aggregation Weights for
encoders α = {α1, . . . , αN}

Output: Personalized encoder parameters θE,(r)

1: Define ∆θ̄E = 1
N

∑N
i=1 ∆θ

E,(r)
i , ϕ = c2∥∆θ̄E∥2

2: Solve for w∗ and λ∗

min
w

F (w) = U⊤
w∆θ̄E +

√
ϕ∥Uw∥ (47)

where Uw =
1

N

N∑
i=1

wi∆θEi (48)

3: Compute aggregated update

Ũ = ∆θ̄E + Uw∗/λ∗ = ∆θ̄E +

√
ϕ

∥Uw∥
Uw

4: for i ∈ {1, . . . , N} do
5: Compute personalized update with Hyper Aggrega-

tion Weights

θ
E,(r)
i = θ

E,(r−1)
i +∆θ

E,(r)
i + αiŨ

6: end for

Algorithm 2 Hyper Cross Attention Aggregation

Input: Previous round decoder parameters θD,(r−1) =

{θD,(r−1)
1 , . . . , θ

D,(r−1)
K }, current round decoder up-

dates ∆θD,(r) = {∆θ
D,(r)
1 , . . . ,∆θ

D,(r)
K }, Hyper Ag-

gregation Weights for decoders β = {β1, . . . ,βK}
Output: Personalized decoder parameters θ(r)

1: for each layer l in decoder do
2: Vl = [∆θ

D,(r)
1,l , . . . ,∆θ

D,(r)
K,l ]⊤

3: for i ∈ {1, . . . ,K} do
4: Compute Cross Attention

Ãi,l = Softmax(∆θ
D,(r)
i,l V ⊤

l /
√
d)Vl

5: Compute personalized update with Hyper Ag-
gregation Weights

θ
D,(r)
i,l = θ

D,(r−1)
i,l +∆θ

D,(r)
i,l + βi,lÃi,l

6: end for
7: end for

C. Additional Implementation Details 119

Data augmentation. Our methodology follows the es- 120
tablished data augmentation procedures in previous studies 121
[4, 12, 21]. To augment the training images, we use random 122
scaling with factors ranging from 0.5 to 2.0, random crop- 123
ping to the specified input resolutions (which are 512× 512 124
for the PASCAL-Context dataset [15] and 448 × 576 for 125
the NYUD-v2 dataset [20], in accordance with Swin Trans- 126
former’s requirements), random horizontal flipping, and 127
random color jittering. Surface normal labels are corrected 128
for horizontal flipping, and depth labels are corrected for 129
scaling. Additionally, we perform image normalization dur- 130
ing both the training and evaluation phases. 131
Loss functions and weights. In alignment with established 132
practices in the field [4, 12, 21], our approach employs dis- 133
tinct loss functions for each specific task. For semantic 134
segmentation and human parts segmentation, we utilize the 135
cross-entropy loss. For saliency detection we use the bal- 136
anced cross-entropy loss. We adopt the L1 loss for surface 137
normal estimation and depth estimation. For edge detection, 138
we use the weighted binary cross-entropy loss, assigning a 139
weight of 0.95 to positive pixels and 0.05 to negative ones. 140
For the losses in multi-task clients, we employ a weighted 141
sum of the individual losses to ensure task balancing. The 142
respective loss weights for SemSeg, Parts, Normals, Sal, 143
Edge, and Depth tasks are set at 1, 2, 10, 5, 50, and 1. 144
Implementation. Our models are optimized using the 145
AdamW optimizer [10] with an initial learning rate of 1e-4 146
and a weight decay rate of 1e-4. Additionally, we employ a 147
cosine decay learning rate scheduler [9] complemented by 148
a 5-epoch warm-up phase. The Hyper Aggregation Weights 149
are clamped between 0 to 1, and are initially set to 0.01 and 150
updated via the SGD optimizer, which operates at a learning 151
rate of 1e-2, a weight decay rate of 1e-4, and a momentum 152
of 0.9. The process of fine-tuning these hyper-parameters is 153
demonstrated in subsequent sections, specifically in Tab. 4, 154
Tab. 5, and Tab. 6. For the Hyper Conflict-Averse Aggrega- 155
tion hyper-parameter c, we explore a range of values includ- 156
ing {0.2, 0.4, 0.6, 0.8}, with the results of this exploration 157
presented in Tab. 7 and Tab. 8. 158

To evaluate the performance of our method, we compare 159
with representative works including two traditional FL ap- 160
proaches FedAvg [14] and FedProx [5], four pFL methods 161
FedPer [1], Ditto [6], FedAMP [3], FedBABU [16] and two 162
FMTL methods FedSTA [17] and MaT-FL [2]. These meth- 163
ods are adapted for HC-FMTL setting, with adjustments 164
made to the algorithm implementations to fit this novel set- 165
ting while striving to retain as much of the original algo- 166
rithms’ integrity as possible. For both FedAvg and FedProx, 167
we apply their aggregation mechanisms to the encoders and 168
decoders separately. The update strategies of FedAMP and 169
Ditto are similarly extended to both encoders and decoders. 170
In the case of FedPer, FedBABU, FedSTA and MaT-FL, ag- 171
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�a� �b� �c�

�d� �e� �f�

�g� �h� �i�

Figure 1. Evaluation results during training, using PASCAL-
Context for five single-task clients and NYUD-v2 for one multi-
task client. (a) Edge from PASCAL-Context (hereinafter called P)
on single-task client. (b) Normals from P on single-task client. (c)
Sal from P on single-task client. (d) SemSeg from P on single-task
client. (e) Parts from P on single-task client. (f) Normals from
NYUD-v2 (hereinafter called N) on multi-task client. (g) SemSeg
from N on multi-task client. (h) Depth from N on multi-task client.
(i) Edge from N on multi-task client.

gregation is confined to the encoders.172

Regarding hyperparameters, we adhere to the default173
configurations as specified in the original publications or174
source code of these methods. Specifically, for FedProx,175
the hyperparameter µ is set to 0.01. For Ditto, the regular-176
ization parameter λ is set to 0.1. Within FedAMP, the hy-177
perparameters λ, αk, and σ are uniformly assigned a value178
of 1. For MaT-FL, the number of clusters K is set to 2.179

Metric evaluation. To evaluate edge detection results, we180
use the SEISM package [18] and set the maximum allowed181
mis-localization of the optimal dataset F-measure (odsF)182
[13] to 0.0075 and 0.011 for PASCAL-Context and NYUD-183
v2, respectively.184

D. Additional Experimental Results185

Evaluation results on all tasks. As the supplementary of186
Fig. 4 in our paper, Fig. 1 shows that FEDHCA2 converges187
faster to a better result on most tasks of PASCAL-Context188
and NYUD-v2, compared to local training baseline, Fe-189
dAvg and MaT-FL.190

Impact of the number of clients. To assess the effective-191
ness of FEDHCA2 across varying client counts, we con-192
duct tests by scaling the number of clients per task by fac-193
tors of 2 and 4, with the datasets evenly split. In our paper,194
we demonstrate the consistent superior performance and the195
overall growth trend of our method in Fig. 5. Here, the de-196
tailed results of Fig. 5 are illustrated in Tab. 1.197

�a�

mutual

specific

�b�

Figure 2. Hyper Aggregation Weights α for encoders of the
client models, using NYUD-v2 for four single-task clients and
PASCAL-Context for one multi-task client. (a) Weights of four
single-task clients. (b) Weights of the multi-task client which dif-
fers in two stages.
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Figure 3. Learned Hyper Aggregation Weights β across decoders
for different tasks, spanning layers from L1 to L6, using NYUD-
v2 for four single-task clients and PASCAL-Context for one multi-
task client.

Impact of different FMTL scenarios. To further verify 198
the necessity of introducing our new setting as we do in the 199
paper, we conduct experiments comparing two scenarios: 200
1) each client handles a single task, and 2) HC-FMTL en- 201
compasses both single-task and multi-task clients. These 202
experiments are carried out on the PASCAL-Context, as a 203
supplementary of the NYUD-v2 used and illustrated in Tab. 204
4 in the paper. As Tab. 2 illustrates, similar results are ob- 205
tained that while FEDHCA2 improves upon the local base- 206
line in the single-task client scenario, integrating the multi- 207
task client results in a greater enhancement. 208

Impact of different backbones. We also conduct a se- 209
ries of experiments using Swin-T, Swin-S, and Swin-B [8] 210
as backbones within the HC-FMTL benchmark setting to 211
evaluate the consistent performance of FEDHCA2. The 212
results, detailed in Tab. 3, confirm our expectations: as 213
the complexity of the backbone increases from Swin-T to 214
Swin-B, we observe a corresponding improvement in per- 215
formance across all tasks, further validating the effective- 216
ness of FEDHCA2. 217

Interaction between tasks. We investigate the dynamic 218
learning process of Hyper Aggregation Weights for both en- 219
coders and decoders, aiming to understand their role in fa- 220
cilitating personalized aggregation for different clients. In 221
Fig. 6 and Fig. 7 in our paper, we show the evolution 222
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of weights α for encoders and the last learned weights β223
across decoders on the first benchmark setting described in224
Sec. 4.1. Here, similar results are obtained on the second225
benchmark setting as depicted in Fig. 2 and Fig. 3.226
Hyper-parameter tuning. Additional experiments are car-227
ried out to assess the impact of different initialization val-228
ues for Hyper Aggregation Weights α and β. As depicted229
in Tab. 4 and Tab. 5, we explore a range from 0.01 to 1,230
across two HC-FMTL benchmark settings. Optimal results231
on task metrics within PASCAL-Context are achieved when232
the initialization value is set to 0.1, which also yield the best233
average per-task performance drop across both settings. We234
also investigate the effect of the learning rate for Hyper Ag-235
gregation Weights, as illustrated in Tab. 6. When the learn-236
ing rate varies from 0.005 to 0.1, FEDHCA2 achieves the237
best overall performance at a learning rate of 0.01. More-238
over, as indicated in Tab. 7 and Tab. 8, we experiment239
with various values of the hyper-parameter c in the Hyper240
Conflict-Averse Aggregation across the two benchmark set-241
tings, scaling from 0.2 to 0.8. In both instances, setting c to242
0.4 results in the best results.243

E. Qualitative results244

To intuitively compare the proposed FEDHCA2 with exist-245
ing methods, we visualize the task predictions of local train-246
ing, FedAvg, MaT-FL and our model with an example from247
the PASCAL-Context dataset in Fig. 4 and an example from248
the NYUD-v2 dataset in Fig. 5. All methods are trained on249
the first benchmark scenario. Our model obviously gen-250
erates better details with less error, especially in semantic251
segmentation and human parts segmentation in PASCAL-252
Context and semantic segmentation in NYUD-v2. Our re-253
sults also more closely resemble the ground truths in other254
tasks.255
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Table 1. Comparison to representative methods with the number of clients scaling to 2 and 4 times, using PASCAL-Context for five single-
task clients and NYUD-v2 for one multi-task client. ‘∆m’ is calculated w.r.t. corresponding local baseline of 1C, 2C and 4C.

Scale Method
PASCAL-Context (ST) NYUD-v2 (MT)

∆m% ↑SemSeg Parts Sal Normal Edge SemSeg Depth Normals Edge
mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑ mIoU↑ RMSE↓ mErr↓ odsF↑

1C

Local 51.69 49.94 80.91 15.76 71.95 41.86 0.6487 20.59 76.46 0.00
FedAvg [14] 39.98 37.33 77.56 18.27 69.17 38.94 0.7858 21.62 75.77 -11.76
FedProx [5] 44.42 38.10 77.26 18.03 69.39 39.19 0.8068 21.52 76.03 -10.68
FedPer [1] 54.51 46.56 78.85 16.95 71.00 44.02 0.6467 21.19 76.61 -1.11

FedAMP [3] 55.98 52.05 80.79 15.74 72.02 41.67 0.6428 20.54 76.40 1.47
MaT-FL [2] 57.45 48.63 79.26 17.26 71.23 40.99 0.6352 20.65 76.59 -0.46
FEDHCA2 57.55 52.30 80.71 15.60 72.08 41.47 0.6281 20.53 76.50 2.18

2C

Local 42.21 47.22 78.64 16.62 70.66 36.77 0.7300 21.96 76.06 0.00
FedAvg [14] 14.99 29.69 76.68 18.34 69.07 33.01 0.7081 22.15 75.49 -13.95
FedProx [5] 14.93 30.01 77.03 18.36 68.90 32.47 0.7837 22.14 75.43 -15.20
FedPer [1] 33.68 42.32 77.72 17.34 70.11 40.99 0.6694 21.93 76.02 -1.89

FedAMP [3] 45.83 46.78 78.31 16.62 70.62 36.45 0.7093 22.00 75.53 0.91
MaT-FL [2] 35.23 43.23 78.14 18.11 70.40 39.91 0.6607 20.85 76.16 -1.30
FEDHCA2 45.80 49.52 79.73 15.98 71.61 39.66 0.6603 20.92 76.21 4.70

4C

Local 21.85 34.84 76.59 17.57 69.17 31.49 0.7433 23.55 74.53 0.00
FedAvg [14] 9.32 17.22 75.76 18.99 68.42 21.89 0.7725 23.37 74.86 -16.82
FedProx [5] 7.76 13.93 74.38 20.64 68.04 14.78 0.8147 25.35 75.87 -24.04
FedPer [1] 15.38 31.21 76.00 18.21 76.00 34.27 0.6877 23.35 75.20 -2.96

FedAMP [3] 25.48 38.38 76.44 17.65 69.22 31.98 0.7908 23.56 74.45 2.36
MaT-FL [2] 20.10 31.74 76.68 19.06 69.48 33.77 0.7547 22.87 74.74 -1.77
FEDHCA2 22.36 36.54 79.10 16.49 70.72 36.20 0.6510 21.30 75.62 6.36

Table 2. Comparison between different settings. ‘ST+Local’ and ‘ST+Ours’ denote the setting with five single-task clients on PASCAL-
Context, trained with local baseline and FEDHCA2, respectively. ‘ST+MT+Ours’ denotes the setting in Tab. 1 trained with our framework.
‘∆m’ is calculated w.r.t. ‘ST+Local’ baseline.

Method
PASCAL-Context (ST)

∆m% ↑SemSeg Parts Sal Normal Edge
mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

ST+Local 51.69 49.94 80.91 15.76 71.95 0.00
ST+Ours 57.76 51.38 80.75 15.66 72.08 3.05

ST+MT+Ours 57.55 52.30 80.71 15.60 72.08 3.40

Table 3. Comparison between different backbones on the first benchmark scenario.

Method
PASCAL-Context (ST) NYUD-v2 (MT)

SemSeg Parts Sal Normal Edge SemSeg Depth Normals Edge
mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑ mIoU↑ RMSE↓ mErr↓ odsF↑

Swin-T 57.55 52.30 80.71 15.60 72.08 41.47 0.6281 20.53 76.50
Swin-S 62.09 56.42 81.35 15.70 73.20 44.80 0.6247 20.44 76.94
Swin-B 65.30 60.73 81.76 15.53 74.65 47.26 0.6055 19.85 77.58

Table 4. Comparison between different initialized values of Hyper Aggregation Weights α and β on the first benchmark scenario.

Init
PASCAL-Context (ST) NYUD-v2 (MT)

∆m% ↑SemSeg Parts Sal Normal Edge SemSeg Depth Normals Edge
mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑ mIoU↑ RMSE↓ mErr↓ odsF↑

0.01 57.03 51.65 80.69 15.64 72.02 41.21 0.6339 20.62 76.54 1.67
0.1 57.55 52.30 80.71 15.60 72.08 41.47 0.6281 20.53 76.50 2.18
0.5 57.15 52.59 80.66 15.55 72.14 40.93 0.6348 20.57 76.45 1.91
1 58.68 51.91 80.79 15.52 72.04 40.96 0.6396 20.61 76.52 2.02
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Table 5. Comparison between different initialized values of Hyper Aggregation Weights α and β on the second benchmark scenario.

Init
NYUD-v2 (ST) PASCAL-Context (MT)

∆m% ↑SemSeg Depth Normals Edge SemSeg Parts Sal Normals Edge
mIoU↑ RMSE↓ mErr↓ odsF↑ mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

0.01 34.84 0.7126 23.24 74.98 66.21 55.17 83.29 14.08 71.95 0.62
0.1 34.95 0.7018 23.19 75.03 65.81 55.01 83.18 14.08 71.97 0.75
0.5 34.85 0.7120 23.15 75.12 65.62 55.02 83.33 14.09 71.99 0.57
1 34.74 0.7113 23.15 74.99 65.45 55.01 83.37 14.02 71.95 0.55

Table 6. Comparison between different learning rates of Hyper Aggregation Weights α and β on the first benchmark scenario.

lr
PASCAL-Context (ST) NYUD-v2 (MT)

∆m% ↑SemSeg Parts Sal Normal Edge SemSeg Depth Normals Edge
mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑ mIoU↑ RMSE↓ mErr↓ odsF↑

0.005 58.18 52.06 80.73 15.63 72.08 41.03 0.6337 20.61 76.61 2.00
0.01 57.55 52.30 80.71 15.60 72.08 41.47 0.6281 20.53 76.50 2.18
0.05 57.26 52.46 80.64 15.64 72.09 41.05 0.6338 20.64 76.48 1.84
0.1 57.90 52.13 80.60 15.62 72.10 40.54 0.6332 20.55 76.52 1.85

Table 7. Comparison between different values of hyper-parameter c in Hyper Conflict-Averse Aggregation on the first benchmark scenario.

c
PASCAL-Context (ST) NYUD-v2 (MT)

∆m% ↑SemSeg Parts Sal Normal Edge SemSeg Depth Normals Edge
mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑ mIoU↑ RMSE↓ mErr↓ odsF↑

0.2 57.12 52.15 80.60 15.63 72.12 41.77 0.6300 20.63 76.53 2.02
0.4 57.55 52.30 80.71 15.60 72.08 41.47 0.6281 20.53 76.50 2.18
0.6 57.60 51.94 80.64 15.62 72.10 40.87 0.6337 20.66 76.46 1.76
0.8 57.18 52.07 80.56 15.65 72.05 40.94 0.6353 20.61 76.54 1.69

Table 8. Comparison between different values of hyper-parameter c in Hyper Conflict-Averse Aggregation on the second benchmark
scenario.

c
NYUD-v2 (ST) PASCAL-Context (MT)

∆m% ↑SemSeg Depth Normals Edge SemSeg Parts Sal Normals Edge
mIoU↑ RMSE↓ mErr↓ odsF↑ mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

0.2 34.47 0.7135 23.20 75.07 65.63 55.09 83.36 14.08 71.97 0.42
0.4 34.95 0.7018 23.19 75.03 65.81 55.01 83.18 14.08 71.97 0.75
0.6 34.48 0.7135 23.22 74.96 66.02 55.05 83.35 14.09 72.01 0.45
0.8 34.56 0.7105 23.25 75.17 65.83 54.89 83.32 14.06 71.94 0.48
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Figure 4. Qualitative results compared with representative methods on PASCAL-Context dataset.
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Figure 5. Qualitative results compared with representative methods on NYUD-v2 dataset.
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