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Section 1 clarifies the details of our practical and sophis-
ticated video processing workflows. And Section 2 pro-
vides the analysis of the six feature distributions in our KVQ
database. Section 3 includes the details about the test setup
and data cleaning process. Section 4 compasses the details
about region selection in the Quality-aware Region Selec-
tion (QRS) module and implementation details of our pro-
posed KSVQE. In section 5, subsection 5.1, subsection 5.2
and subsection 5.3 provide more ablation studies for the
QRS, Content-adaptive Modulation (CaM) and Distortion-
aware modulation (DaM), respectively.

1. Details of Our Video Processing Workflows
In contrast to previous UGC databases [6, 19], which pri-
marily focus on simulated compression artifacts, our pro-
posed KVQ database is significantly different since its pro-
cessing workflows are consistent with the practical applied
workflows in the typical short-form video platform. Our
processing workflow is composed of three cascaded parts,
including video enhancement module ϕe(·), pre-processing
module ϕp(·), and transcoding module ϕt(·).

Video Enhancement Module ϕe(·) is composed of three
commonly used enhancement algorithms in short-form
video platforms: De-Blur, De-Noise, and De-Artifact al-
gorithm, where De-Blur aims to enhance the texture de-
tails of videos, and De-Noise is utilized to remove the
structure/non-structure noises that are harmful to human
perception. The De-Artifact algorithm is exploited to re-
duce other-form degradations, such as block artifacts.

Video Pre-processing Algorithms ϕp(·) aims to reduce
the high-frequency components that do not affect the hu-
man perception (e.g., the non-ROI region) or the high-
frequency distortions, such as noises. In this way, it
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can reduce the compression and transmission costs while
preserving/improving the subjective quality of short-form
videos. We select two pre-processing algorithms: global
level pre-processing and region-of-interest (ROI) level pre-
processing. The former aims to remove high-frequency in-
formation related to global-level impairment, while the lat-
ter focuses on eliminating high-frequency information as-
sociated with local-level impairment.

Video Transcoding Algorithms ϕt(·) The quantization
parameters (QP) are the crucial parameters used to adjust
the compression ratios, where higher QP corresponds to a
higher compression ratio and lower visual quality. How-
ever, it is costly and labor-intensive to compress each video
traversing each QP value (i.e., from 0-51). To mitigate
this and ensure the diversity of QP values, we divided the
commonly-used QP range (i.e., 16-47) into six intervals, en-
compassing 16-23, 24-31, 32-35, 36-39, 40-43, and 44-47,
and then randomly select one QP from each interval for the
compression of each video.

To demonstrate the effects of different processing work-
flows, we provide some examples for our three typical pro-
cessing workflows in Fig. 2 of our manuscript, i.e., ϕt(·),
ϕt(ϕe(·)) and ϕt(ϕp(ϕe(·)))), Concretely, the example for
ϕt(·) is shown in Fig. 1. The example for ϕt(ϕe(·)) is shown
in Fig. 2, and the example for ϕt(ϕp(ϕe(·))) is shown in
Fig. 3. The distorted patches are indicated by red boxes.
Therefore, the KVQ dataset we established not only encom-
passes rich content within short video scenes but also spans
more intricate video processing workflows, as illustrated in
the comparisons across various UGC datasets in Table 1.

2. Feature Analysis
In summary, our KVQ database exhibits diverse feature
characteristics across six video quality-related features,
namely sharpness, blocky, blurriness, colorfulness, com-
plexity, and noise. The distribution analysis, illustrated



Table 1. Comparison of various dimensions among different UGC datasets.

UGC database Video Sources Num Ref/Dis Distortion Type Subjective Form

CVD2014 [9] Captured -/234 authentic MOS
LIVE-VQC [11] Captured -/585 authentic MOS

KoNViD-1k [3] Flicker -/1200 authentic (UGC) MOS
YouTube-UGC [15] YouTube -/1380 authentic (UGC) MOS

Youku-V1K [16] Youku -/1072 authentic (UGC) MOS
LSVQ [17] IA,Flicker -/39075 authentic (UGC) MOS

UGC-VIDEO [6] TikTok 50/550 authentic+compression MOS
TaoLive [19] Taobao 418/3762 authentic+compression MOS

KVQ Short-form video platform 600/3600 authentic+enhancement+pre-processing+compression MOS+Rank

Table 2. Annotation criteria for subjective labeling scores from 1 to 5.

Score Annotation criteria

1 Bad The Visual information within video content becomes challenging or impossible to distinguish.

2 Poor The primary video content remains distinguishable but exhibits pronounced noise, block artifacts, and blur-
riness, along with substantial jitter and lag.

3 Fair The primary video content is reasonably clear, but it includes noticeable distortions such as conspicuous
noise, visual blurring, minor localized glare, or distinct edge sharpening. Additionally, the video exhibits a
markedly blurry background texture.

4 Good The videos feature a clear primary subject, free from substantial noise or visual blurring, and devoid of
apparent distortions such as jitter or glare. However, they exhibit limited overall textural complexity.

5 Excellent The primary video object is characterized by exceptional clarity, devoid of noise, block artifacts, blurriness,
jitter, glare, or lag. It presents a high-quality spectacle distinguished by lucid textural elements.

QP30 QP33

QP37 QP42 QP46

QP19

Figure 1. Examples of transcoding.

in Fig. 4, highlights that the majority of features span a
wide range, showcasing the feature diversity inherent in our
database. Notably, blocky features and colorfulness fea-
tures are more skewed towards the right, indicating a sub-
stantial presence of computer graphics, portraits, rich spe-
cial effects, and common compression distortions, partic-
ularly on short-form video platforms. While complexity
distribution and noise distribution skew towards lower val-
ues, the other features maintain closer adherence to middle
values, with less pronounced spikes, providing an approxi-
mated overview of the distinctive feature characteristics on
the typical short-form video platform.

3. More Detail About Human Study

3.1. Test Setup

The subjective experimentation involves a group of 15 ob-
servers, each tasked with assessing 4,200 videos. Uniform
MAC devices are employed by the observers to ensure stan-
dardized screen brightness and video resolution support.
During the scoring process, a consistent stimulus evalua-
tion method is utilized, allowing for repeated viewing of
the same video, ultimately leading to the evaluation of all
videos. Continuous scales with intermediate numerical la-
bels (ranging from 1 to 5 with a step size of 0.5) are em-
ployed for scoring.

Given the distinctive characteristics of the KVQ
database, we establish the following instructions:
• Scoring of special effects is lenient, disregarding the im-

pact of special effects on perceptual quality, such as vari-
ations in lighting and shadows.

• In cases where a video is composed of multiple segments
of merged content and significant quality differences, the
total video score is computed based on the proportional
duration of each segment.

• For videos containing text, the evaluation takes into ac-
count both text and background distortions, simultane-
ously determining whether the primary focus of the video
is on text or background to derive the final quality score.
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Figure 2. Examples of enhancement→transcode.

• For three-stage videos, only the content of the middle re-
gion is considered, with no regard for the influence of un-
related content in the upper and lower regions.
The guidelines for scoring, outlining the rules for assign-

ing scores ranging from 1 to 5, are given in Table 2.

3.2. Data Clean

Fig. 5 depicts the pipeline of the data cleaning. First, it
is necessary to ascertain the reliability of each observer’s
scores. After scoring overall videos in KVQ database, the
correlation metrics (i.e., SROCC, and PLCC) between an
observer’s scores and the average scores of other observers
are computed. If the correlation falls below 0.7, retraining
will be conducted for these observers.

Secondly, in accordance with ITU-R BT 500.13, further
data processing is performed to screen observers for each
video. Specifically, for each video, we compute the kurtosis
of the scores to assess whether the ratings exhibit a normal
distribution. Subsequently, based on the distribution of rat-
ings, we calculate the quality score range for each video as
2 times the standard deviation from ratings or

√
20 times

the standard deviation of the ratings. Based on this, We can
determine the number of videos rated out of this range by
each observer. For the i-th observer:

For all j in J :
If uij ≥ uj + α ∗ Sj , then Pi = Pi + 1.
If uij ≤ uj + α ∗ Sj , then Qi = Qi + 1.

If
∣∣∣Pi−Qi

Pi+Qi

∣∣∣ < 0.3 and Pi+Qi

J > 0.05, the annotation
made by the i-th observer will be rejected.
Here, Pi denotes the number of videos that an observer has
rated above the range, Qi represents the number rated be-
low the range, and J signifies the total number of videos
rated by the observer, α can be 2 or

√
20, S represents the

standard deviation of each video. Following this step, we
ascertain that all observers are reliable.

Thirdly, for each video in the KVQ dataset, it is impera-
tive to establish a corresponding confidence interval for all
ratings. This interval relies on the standard deviation and
mean quality score of each video. We opt for a 95% confi-
dence interval, derived from:

Sj =

√√√√ N∑
i=1

(uij − uj)2

(N − 1)
(1)

which yields the standard deviation. Subsequently, we
calculate the range of the 95% confidence interval as:

(uj − δj , uj + δj) (2)

with δj = 1.96
Sj√
N

, where uj signifies the average rating for
the jth video, N is the number of observers that participate
in the labeling of the jth video, Sj represents the standard
deviation of the jth video. The ratings falling outside the
95% confidence interval range are then removed.

4. Details of Our Framework KSVQE
4.1. QRS Details

Spatial Region Selection The process involves selecting
the most important fragments based on a quality-aware se-
mantic importance score I ∈ RN , which contains two key
points: i) how to make the selection operation differen-
tiable, ii) how to preserve the spatial dependency within
selected fragments. To preserve the problem of spatial de-
pendency, following work [13], we select the most quality-
aware fragments through an aggregate-then-select strategy
to simulate the Top-k selection of fragments with a cor-
rect spatial dependency. The aggregation operation involves
splitting the reshaped score map I ∈ R

√
N×

√
N into a list of

non-overlapping smaller score maps. Then average pooling
is applied to each of these smaller score maps and obtains
the patch importance vector Îr. After the importance score
aggregation operation, we apply the TopK operator to ob-
tain the most quality-aware patches X̂ . We denote the TopK
operator [2] as :

inds = TopK(Îr) (3)
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Figure 3. Examples of enhancement→pre-processing→transcode.

Figure 4. The feature distributions on the KVQ dataset.

However, the inds from the TopK operation are non-
differentiable.

Inspired by the perturbed maximum method [1], the dif-
ferentiable TopK can be realized through the solution for
inputs with perturbation. The differentiable TopK operation

scoring training PLCC and SROCC is over 0.7 for 

one observer and the others

screen the observer i
reject 

observer i 

establish a corresponding 

confidence interval for each video 

remove 

the score  

mos 

no yes

yes

not in the 

interval

no

if:                            and 

500 video pairs 

Figure 5. The overall data clean workflow. First, we ensure that
the annotator achieves a correlation of 0.7, and then we screen the
annotator via ITU-R BT 500.13 to confirm reliability. Finally, for
each video, we set a corresponding confidence interval, scores that
are outside this range will be removed.

shares a fundamental similarity with the Gumbel Softmax
operation [4, 5, 8]. Specially, we sample uniform Gaussian
noise Z and add it to input Îr, then we can obtain the per-
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Figure 6. The video examples of quality score ranged from 1 to 5.

turbed maximizer:

Yinds,σ = argmax
Yinds∈C

⟨Yinds, Îr + σZ⟩ (4)

Where Yinds is the one-hot vector of indices inds , σ is a
hyper-parameter to control the level of added noise. And we
fix the σ = 0.5 in our all experiments. And C is the convex
polytope constrain set. For backward, the gradient can be
passed from variable parameter Z to optimization variable
Îr.

4.2. Implementation Details

The semantic adapter f and the distortion adapter fd each
consist of several fully-connected (FC) layers with dimen-
sional variations of ’768-192-768’ and ’128-32-768’, re-
spectively. The Multi-Head Cross Attention for both se-
mantic modulation and distortion modulation has a head
number of 8 and a dimension of 768. The Multi-Head Self
Attention in distortion modulation has a head number of 8
and a dimension of 768. The modulation parameter genera-
tor lss and lso for semantic modulation are the convolutions
with the kernel size of 1 × 1 and dimension variation of
“768-1”. And the modulation parameter generator lds and
ldo for distortion modulation are the FC layer with the di-
mension variation of “768-768”.

For Nt key frames in the input of the CLIP visual en-
coder, we partition the videos into segments and select a sin-
gle frame from each segment to encapsulate the comprehen-
sive semantic information of that segment. Subsequently,
utilizing the acquired quality-aware importance vector and
visual tokens for modulation guidance, we extend the tem-
poral dimension of Nt to T .

In the training process, we utilize AdamW optimizer [7]
with a learning rate of 3 × e−5 and a weight decay of 0.05
for optimization. And batchsize set as 8.

5. More Experiment Results

5.1. QRS

More Variants About QRS In order to investigate the
optimal original number of fragments for region selection in
QRS, we compare multiple numbers of original fragments
in Table 3. Notably, we observe that extracting 7 × 7 frag-
ments from 9 × 9 input fragments for the 3D Swin Trans-
former yielded the most optimal performance. In the con-
text of region selection, selecting an excessive number of
original fragments results in the retention of excessive re-
dundant information. Conversely, opting for too few num-
bers of original fragments leads to the absence of crucial,
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Figure 7. The visualization of original fragments of 7× 7, 9× 9 and the selected fragments of 7× 7.

Table 3. Ablation study for the number of fragments in QRS.

Region Selection KVQ KoNViD-1k YouTube-UGC
SROCC PLCC SROCC PLCC SROCC PLCC

8× 8 → 7× 7 0.841 0.841 0.918 0.917 0.887 0.903
9× 9 → 7× 7 0.847 0.853 0.917 0.920 0.894 0.906

10× 10 → 7× 7 0.847 0.848 0.911 0.914 0.892 0.907

quality-aware visual information. The selection of 9× 9 for
original fragments strikes a balance, demonstrating superior
performance by capturing essential visual features without
succumbing to information redundancy or loss of signifi-
cance.

Visualization About QRS Also, we visualize the se-
lected fragments and original fragments in Fig. 7. And
we can see that for the first row of three-stage video, our
Quality Region Selection (QRS) method excels in extract-
ing concentrated regions within the central regions. In
videos characterized by extensive monochromatic back-
grounds (i.e., the second row), QRS is capable of capturing

visually enriched regions for the face and text. Additionally,
when dealing with videos incorporating much text (i.e., the
third row), QRS focuses mainly on the text area rather than
the background, which is consistent with human attention.

5.2. CaM

The effectiveness of adapter-style training To verify the
effectiveness of our adapter on cls token, we conduct an
experiment by removing it and comparing the results with
those obtained using the full modules for content under-
standing, as illustrated in Table 4. The results show that
adding adapter-style training can bring a performance gain
of 0.007/0.004 on SROCC and PLCC on the KVQ database.
It illustrates that the feature adaptation to quality-aware
space is necessary to incorporate content understanding and
extract the quality-aware semantics to provide guidance.

5.3. DaM

More Variants About DaM Also, we analyze the effec-
tiveness of our distortion adapter on DaM in Table 6. We
can see that adapter-style training demonstrates an improve-



Table 4. Ablation study for adapter-style training in CaM.

Content Adapter KVQ KoNViD-1k YouTube-UGC
SROCC PLCC SROCC PLCC SROCC PLCC

QRS+CaM (w.o. adapter) 0.841 0.850 0.913 0.914 0.882 0.893
QRS+CaM 0.848 0.854 0.918 0.922 0.895 0.901

Table 5. Ablation study for multiple variants of selection in DaM.

DaM KVQ KoNViD-1k YouTube-UGC
SROCC PLCC SROCC PLCC SROCC PLCC

CA+CM 0.832 0.834 0.911 0.912 0.888 0.899
CASA+CM (DaM) 0.839 0.843 0.915 0.914 0.893 0.910

Table 6. Ablation study for adapter-style training in DaM.

Distortion Adapter KVQ
SROCC PLCC

DaM (w.o. adapter) 0.831 0.831
DaM 0.839 0.843

ment in the performance of 0.008/0.012 in terms of SROCC
and PLCC on KVQ database. It reveals the significance of
adapting knowledge from CONTRIQUE to distortion dis-
tribution in KVQ database.

For more variants for distortion modulation in DaM,
we remove the multi-head self-attention as the variant
“CA+CM” and compare it with our DaM (i.e., CASA+CM)
in Table 5. The results show that DaM benefits from the
influence exerted by self-attention for temporal distortion
extraction, resulting in a gain of 0.007/0.009 in terms of
SROCC and PLCC on KVQ database.

5.4. The Combination of Content-Distortion Under-
standing

We also investigate another method to incorporate content
prior and distortion prior into the original feature. We com-
pared our proposed modulation method with the simplest
fusion approach, concatenation, and the results are pre-
sented in Table 7. The results indicate that our modulation
method is more effective in explicitly modeling the under-
standing of content and distortion.

5.5. The selection of content extractor and distor-
tion extractor.

To verify the effectiveness of enhanced CLIP (with adapter-
style training) for quality-ware content mining, we replace
CLIP with CLIPIQA+ [14] and LIQE [18] in Table 8. From
the results, our KSVQE with enhanced CLIP can obtain the
optimal correlation performance on KVQ, which shows the

Table 7. Ablation study for multiple variants of combination.

DaM KVQ KoNViD-1k YouTube-UGC
SROCC PLCC SROCC PLCC SROCC PLCC

QRS+concat 0.853 0.856 0.912 0.914 0.891 0.894
QRS+CaM+DaM 0.867 0.869 0.922 0.921 0.900 0.912

Table 8. Different selection for content extractor in KSVQE, in
which “XXX/XXX” represent “SROCC/PLCC”.

Model KVQ KoNViD YT-UGC

CLIPIQA+ 0.862/0.856 0.916/0.915 0.888/0.899
LIQE 0.848/0.854 0.920/0.917 0.892/0.896

KSVQE 0.867/0.869 0.922/0.921 0.900/0.912

Table 9. Different selection for distortion extractor in KSVQE, in
which “XXX/XXX” represent “SROCC/PLCC”.

Model KVQ KoNViD YT-UGC

ReIQA 0.858/0.851 0.921/0.921 0.892/0.891
GraphIQA 0.849/0.850 0.916/0.915 0.888/0.881

KSVQE 0.867/.869 0.922/0.921 0.900/0.912

ability of the enhanced CLIP to capture quality-aware con-
tent. The visualization results can be seen in Appendix. As
for the effectiveness of CONTRIQUE for distortion identi-
fication in KVQ, we choose GraphIQA [12] or ReIQA [10]
to substitute CONTRIQUE in KSVQE, which is shown in
Table 9. From these results, we can see that CONTRIQUE
with distortion-aware contrastive learning can be adapted
well to distortion space in KVQ.
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