
Appendix

A. Preliminaries

Latent diffusion model. Our method is implemented using Stable Diffusion (SD), also known as Latent Diffusion Models
(LDM) [16]. This approach conducts the diffusion process within the latent space of an autoencoder. LDM is comprised of two
principal components: a vector quantization autoencoder [2, 20] and a diffusion model [1, 7, 9, 16, 18, 19]. The autoencoder
undergoes pretraining to transform images into spatial latent codes via an encoder z = E(x), and it can reconstruct the images
from these latent codes using a decoder x ≈ D(E(x)). The diffusion model, on the other hand, is trained to generate latent
codes that exist within the autoencoder’s latent space. The training objective for the diffusion model is defined as follows
[7, 16]:

  \mathcal {L}_\text {LDM} = \mathbb {E}_{\bfz \sim \mathcal {E}(\bfx ),\mathbf {c},\boldsymbol {\epsilon } \sim \mathcal {N}(0,1), t} \left [ \left \| \boldsymbol {\epsilon } - \boldsymbol {\epsilon }_{\boldsymbol {\theta }}(\bfz _t, t, \mathbf {c}) \right \|^2_2 \right ], \label {eq:appendix_ldm}  


  


 (10)

where zt is the noisy latent, t is the timestep, ϵ is a standard Gaussian noise sample, ϵθ is the denoising network, and c is
the conditioning embeddings, which can be encoded from text prompts, class labels, segmentation masks, among others [16].
During the inference process, Gaussian noise is sampled as a starting point zT and successively denoised to produce a new
latent code z0 through the well-trained denoising network ϵθ. Ultimately, this latent code is transformed into an image via
the pretrained decoder x0 ≈ D(z0).

Cross-attention in text-to-image diffusion models. In text-to-image diffusion models, cross-attention mechanisms serve
as the pivotal interface for the interplay between image and text modalities. Initially, a text prompt undergoes tokenization,
converting it into a series of unique token embeddings. These embeddings are then processed by a text encoder (e.g., CLIP
[14] or T5 [15]), resulting in a final set of embeddings, denoted as P = [e1 e2 · · · ey], wherein each token’s embedding
ei is enriched with information from the entire token sequence. These enhanced embeddings are subsequently introduced
into the cross-attention modules, where they act as navigational beacons for the image synthesis process. At certain layer
l and timestep t, the text embeddings are mapped using projection matrices, Wk and Wv , to obtain the ‘Keys’ kt,l and
‘Values’ vt,l, respectively. Concurrently, the image’s features, ft,l, undergo the projection Wq to form the ‘Queries’ qt,l. The
cross-attention mechanism computes the attention map as [16, 21]:

  \bfA _{t,l} = \text {softmax}\left ( \frac {\bfq _{t,l} \cdot \bfk _{t,l}\tran }{\sqrt {d}} \right ), \label {eq:appendix_attn} 


 




 (11)

where d is the scaling factor to normalize the dot product. The module then synthesizes image features by aggregating
‘Values’ with the attention weights, ot,l = At,l · vt,l. This process ensures that the generated images are intricately aligned
with the input text, completing the text-to-image generation with high fidelity.

B. Closed-Form Solution Proof

In this section, we present a detailed derivation of the closed-form solution as written in Eq. (2). Our goal is to determine a
refined matrix, denoted as W′

k ∈ Rd1×d2 , which encourages the model to refrain from embedding residual information of
the target phrase into other words, while preserving the prior knowledge. The loss function is defined in Eq. (1), which is:

  \mathcal {L}\left ( \bfW ^{\prime }_k \right ) = \sum \limits _{i=1}^n \left \| \bfW _k^{\prime } \cdot \bfe ^f_i - \bfW _k \cdot \bfe _i^g \right \|_2^2 + \lambda _1 \sum \limits _{i=n+1}^{n+m} \left \| \bfW _k^{\prime } \cdot \bfe ^p_i - \bfW _k \cdot \bfe _i^p \right \|_2^2,






    









     





where λ1 ∈ R+ is a hyperparameter, efi ∈ Rd2 is the embedding of a word co-existing with the target phrase, egi ∈ Rd2

is the embedding of that word when the target phrase is replaced with its super-category or a generic one, epi ∈ Rd2 is the
embedding for preserving the prior, Wk ∈ Rd1×d2 is the pretrained weights, and n,m are the number of embeddings for
mapping and preserving, respectively.



To seek the optimal W′
k, we differentiate the loss function with respect to it and set the derivative equal to zero:

  &\frac {\partial {\mathcal {L}\left ( \bfW ^{\prime }_k \right )}}{\partial \bfW ^{\prime }_k} = 2\sum \limits _{i=1}^n \left ( \bfW _k^{\prime } \cdot \bfe ^f_i - \bfW _k \cdot \bfe _i^g \right )(\bfe ^f_i)\tran + 2\lambda _1 \sum \limits _{i=n+1}^{n+m} \left ( \bfW _k^{\prime } \cdot \bfe ^p_i - \bfW _k \cdot \bfe _i^p \right ) (\bfe ^p_i)\tran = 0 \\ &\sum \limits _{i=1}^n \bfW _k^{\prime } \cdot \bfe ^f_i \cdot (\bfe ^f_i)\tran - \sum \limits _{i=1}^n \bfW _k \cdot \bfe ^g_i \cdot (\bfe ^f_i)\tran + \lambda _1 \sum \limits _{i=n+1}^{n+m} \bfW _k^{\prime } \cdot \bfe ^p_i \cdot (\bfe ^p_i)\tran - \lambda _1 \sum \limits _{i=n+1}^{n+m} \bfW _k \cdot \bfe ^p_i \cdot (\bfe ^p_i)\tran = 0 \\ &\sum \limits _{i=1}^n \bfW _k^{\prime } \cdot \bfe ^f_i \cdot (\bfe ^f_i)\tran + \lambda _1 \sum \limits _{i=n+1}^{n+m} \bfW _k^{\prime } \cdot \bfe ^p_i \cdot (\bfe ^p_i)\tran = \sum \limits _{i=1}^n \bfW _k \cdot \bfe ^g_i \cdot (\bfe ^f_i)\tran + \lambda _1 \sum \limits _{i=n+1}^{n+m} \bfW _k \cdot \bfe ^p_i \cdot (\bfe ^p_i)\tran \\ &\bfW _k^{\prime } \left ( \sum \limits _{i=1}^n \bfe ^f_i \cdot (\bfe ^f_i)\tran + \lambda _1 \sum \limits _{i=n+1}^{n+m} \bfe ^p_i \cdot (\bfe ^p_i)\tran \right ) = \sum \limits _{i=1}^n \bfW _k \cdot \bfe ^g_i \cdot (\bfe ^f_i)\tran + \lambda _1 \sum \limits _{i=n+1}^{n+m} \bfW _k \cdot \bfe ^p_i \cdot (\bfe ^p_i)\tran \\ &\bfW _k^{\prime } = \left (\sum \limits _{i=1}^n \bfW _k \cdot \bfe ^g_i \cdot (\bfe ^f_i)\tran + \lambda _1 \sum \limits _{i=n+1}^{n+m} \bfW _k \cdot \bfe ^p_i \cdot (\bfe ^p_i)\tran \right ) \cdot \left ( \sum \limits _{i=1}^n \bfe ^f_i \cdot (\bfe ^f_i)\tran + \lambda _1 \sum \limits _{i=n+1}^{n+m} \bfe ^p_i \cdot (\bfe ^p_i)\tran \right )^{-1}.
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To ensure the validity of the final step, it is crucial that the symmetric real matrix
(∑n

i=1 e
f
i · (efi )T + λ1

∑n+m
i=n+1 e

p
i · (e

p
i )

T
)

is full rank. For any non-zero vector x ∈ Rd2 , we examine the following quadratic form:

  \bfx \tran \cdot \left ( \sum _{i=1}^n \bfe ^f_i \cdot (\bfe ^f_i)\tran + \lambda _1 \sum _{i=n+1}^{n+m} \bfe ^p_i \cdot (\bfe ^p_i)\tran \right ) \cdot \bfx &= \sum _{i=1}^{n} \left ( \bfx \tran \bfe ^f_i \right ) \cdot \left ( \bfx \tran \bfe ^f_i \right )\tran + \lambda _1 \sum _{i=n+1}^{n+m} \left ( \bfx \tran \bfe ^p_i \right ) \cdot \left ( \bfx \tran \bfe ^p_i \right )\tran \\ &= \sum _{i=1}^{n} \left \| \bfx \tran \bfe ^f_i \right \|^2_2 + \lambda _1 \sum _{i=n+1}^{n+m} \left \| \bfx \tran \bfe ^p_i \right \|^2_2 \ge 0.
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The prior preserving embeddings epi are computed by default using the MS-COCO dataset [12]. Due to the extensive number
of terms involved in the summation, it is highly improbable for all terms

∥∥xTepi ∥∥22 in the sum to equal zero. Hence, in

general cases, the matrix
(∑n

i=1 e
f
i · (efi )T + λ1

∑n+m
i=n+1 e

p
i · (e

p
i )

T
)

is positive definite and thus invertible. The derivation
is applicable to W′

v as well.
In addition to retaining general prior knowledge, akin to UCE [4], our framework extends support to allow users to

highlight and preserve domain-specific concepts. This functionality is absent in most preceding frameworks. For instance,
when two concepts share a strong correlation, removing one could potentially impair the generation quality of the other,
which might be intended for preservation. Both general and domain-specific prior knowledge can be incorporated into the
second term of Eq. (1). We set a weighting factor λ3 to calibrate the significance attributed to each type of knowledge. Thus,
Eq. (2) can be reformulated as follows:

  \label {eq:close-form-fuse} \begin {split} \bfW _k^{\prime } = & \left (\sum \limits _{i=1}^n \bfW _k \cdot \bfe ^g_i \cdot (\bfe ^f_i)\tran + \lambda _1 \sum \limits _{i=n+1}^{n+m^\prime } \bfW _k \cdot \bfe ^p_i \cdot (\bfe ^p_i)\tran + \lambda _3 \sum \limits _{i=n+m^\prime }^{n+m} \bfW _k \cdot \bfe ^p_i \cdot (\bfe ^p_i)\tran \right ) \\ \cdot & \left ( \sum \limits _{i=1}^n \bfe ^f_i \cdot (\bfe ^f_i)\tran + \lambda _1 \sum \limits _{i=n+1}^{n+m^\prime } \bfe ^p_i \cdot (\bfe ^p_i)\tran + \lambda _3 \sum \limits _{i=n+m^\prime }^{n+m} \bfe ^p_i \cdot (\bfe ^p_i)\tran \right )^{-1}, \end {split} 
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where we have m′ terms of general knowledge and m−m′ terms of domain-specific knowledge.

C. Implementation Details
All results from the original SD v1.4 and SD v2.1 are obtained without the application of negative prompts.

C.1. Experimental Setup Details

Object erasure. To assess the generality of erasure, we prepare three synonyms for each of the ten object classes in the
CIFAR-10 dataset [10]. These synonyms are listed in Table 5. Since the object classes lack proper super-categories, we



Table 5. The synonyms and mapping concepts for the ten object classes in the CIFAR-10 dataset.

Object Classes Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

Synonyms

Aircraft Car Avian Feline Hart Canine Amphibian Equine Vessel Lorry

Plane Vehicle Fowl Kitty Stag Pooch Anuran Steed Boat Rig

Jet Motorcar Winged
Creature

Housecat Doe Hound Tadpole Mount Watercraft Hauler

Mapping Concepts
(Randomly Sampled) Ground Sky Street Forest Street Sky Forest Forest Ground Sky

allocate generic concepts (e.g., sky or ground) to them, as also presented in Table 5. To evaluate the erasure capability of
different methods, we use each finetuned model to generate 200, 600, and 1,800 images for three categories: the erased object
(efficacy), its three synonyms (generality), and nine remaining objects (specificity). For the erased object, the prompt is ‘a
photo of the {erased class name}’. For the three synonyms of the erased object, we use the prompt ‘a photo of the {synonym
of erased class name}’. Lastly, for each of the nine remaining unaltered objects, the prompt is ‘a photo of the {unaltered
class name}’.

Celebrity erasure. For assessing the task of multiple celebrity erasure, we establish a dataset consisting of 200 celebrities.
Their portraits generated by SD v1.4 are recognizable with exceptional accuracy by the GIPHY Celebrity Detector (GCD) [5].
This dataset is divided into two groups: an erasure group with 100 celebrities and a retention group with 100 other celebrities.
The full list for both groups is presented in Table 6. For evaluating the task of celebrity erasure, we use five text prompts
to generate images. These prompts are as follows: ‘a portrait of {celebrity name}’, ‘a sketch of {celebrity name}’, ‘an oil
painting of {celebrity name}’, ‘{celebrity name} in an official photo’, and ‘an image capturing {celebrity name} at a public
event’. The detailed breakdown of the number of images generated for each experiment is presented in Table 7.

Explicit content erasure. We adopt the same setting used in SA [6] to erase ‘nudity’, ‘naked’, ‘erotic’, and ‘sextual’ from
SD v1.4. The mapping concept is set as ‘a person wearing clothes’.

Artistic style erasure. We utilize the Image Synthesis Style Studies Database [8], which compiles a list of artists whose
styles can be replicated by SD v1.4. From this database, we sample 200 artists and split them into two groups: an erasure
group of 100 artists and a retention group with 100 other artists. The full list for both groups is presented in Table 8. To assess
efficacy and specificity, we apply the same five prompts and seeds as in [4] for both the erased and retained artists group.
These prompts include ‘Image in the style of {artist name}’, ‘Art inspired by {artist name}’, ‘Painting in the style of {artist
name}’, ‘A reproduction of art by {artist name}’ and ‘A famous artwork by {artist name}’. For each of 100 artists, we use
each prompt to generate five images, resulting in 25 images per artist. Thus, this yields 2500 images for each group.

C.2. Training Configurations

Implementation of previous works. In our series of four experiments, we focus on comparing our proposed method with
existing methods, including ESD-u1 [3], ESD-x [3], FMN2 [22], SLD-M3 [17], UCE4 [4], AC5 [11], and SA6 [6]. Notably,
SA [6] demands extensive resources, requiring 4 RTX A6000s and over 12 hours of training for concept erasure. Conse-
quently, we have not replicated their findings due to these extensive requirements. Instead, we align our explicit content
erasure task with SA’s settings [6], and we employ their reported experimental results for our comparative analysis. Beyond
SA [6], we implement each existing method following their recommended configurations for various erasure types (such as
objects, style, or nudity). It is important to note that several methods (e.g., FMN [22] and AC [11]) are not tailored for erasing
multiple concepts. In our preliminary tests, we observe that without altering the algorithm or further tuning the suggested
parameters, training for multiple concepts—either sequentially or in parallel—yielded comparably mediocre results, marked
by either inadequate specificity or generality. Consequently, we opt for a parallel training manner for them when erasing
multiple concepts to save resources.

1https://github.com/rohitgandikota/erasing
2https://github.com/SHI-Labs/Forget-Me-Not
3https://github.com/ml-research/safe-latent-diffusion
4https://github.com/rohitgandikota/unified-concept-editing
5https://github.com/nupurkmr9/concept-ablation
6https://github.com/clear-nus/selective-amnesia

https://github.com/rohitgandikota/erasing
https://github.com/SHI-Labs/Forget-Me-Not
https://github.com/ml-research/safe-latent-diffusion
https://github.com/rohitgandikota/unified-concept-editing
https://github.com/nupurkmr9/concept-ablation
https://github.com/clear-nus/selective-amnesia


Table 6. The Evaluation Setup for Celebrity Erasure: Our celebrity dataset contains an erasure group with 100 celebrities and a retention
group with another 100 celebrities. Portraits of these celebrities can be effectively generated using SD v1.4. The generated portraits are
accurately recognizable by the GIPHY Celebrity Detector (GCD) with an accuracy exceeding 99%. To perform erasure experiments
involving 1, 5, 10, and 100 celebrities, a corresponding number of celebrities are selected from the erasure group for each experiment. In
all cases, the entire retention group is utilized.

Group
# of Celebrities
to Be Erased

Mapping
Concept Celebrity

Erasure
Group

1 ‘a woman’ ‘Melania Trump’
5 ‘a person’ ‘Adam Driver’, ‘Adriana Lima’, ‘Amber Heard’, ‘Amy Adams’, ‘Andrew Garfield’

10 ‘a person’ ‘Adam Driver’, ‘Adriana Lima’, ‘Amber Heard’, ‘Amy Adams’, ‘Andrew Garfield’, ‘Angelina Jolie’,
‘Anjelica Huston’, ‘Anna Faris’, ‘Anna Kendrick’, ‘Anne Hathaway’

100 ‘a person’

‘Adam Driver’, ‘Adriana Lima’, ‘Amber Heard’, ‘Amy Adams’, ‘Andrew Garfield’, ‘Angelina Jolie’,
‘Anjelica Huston’, ‘Anna Faris’, ‘Anna Kendrick’, ‘Anne Hathaway’, ‘Arnold Schwarzenegger’,
‘Barack Obama’, ‘Beth Behrs’, ‘Bill Clinton’, ‘Bob Dylan’, ‘Bob Marley’, ‘Bradley Cooper’, ‘Bruce
Willis’, ‘Bryan Cranston’, ‘Cameron Diaz’, ‘Channing Tatum’, ‘Charlie Sheen’, ‘Charlize Theron’,
‘Chris Evans’, ‘Chris Hemsworth’, ‘Chris Pine’, ‘Chuck Norris’, ‘Courteney Cox’, ‘Demi Lo-
vato’, ‘Drake’, ‘Drew Barrymore’, ‘Dwayne Johnson’, ‘Ed Sheeran’, ‘Elon Musk’, ‘Elvis Pres-
ley’, ‘Emma Stone’, ‘Frida Kahlo’, ‘George Clooney’, ‘Glenn Close’, ‘Gwyneth Paltrow’, ‘Har-
rison Ford’, ‘Hillary Clinton’, ‘Hugh Jackman’, ‘Idris Elba’, ‘Jake Gyllenhaal’, ‘James Franco’,
‘Jared Leto’, ‘Jason Momoa’, ‘Jennifer Aniston’, ‘Jennifer Lawrence’, ‘Jennifer Lopez’, ‘Jeremy
Renner’, ‘Jessica Biel’, ‘Jessica Chastain’, ‘John Oliver’, ‘John Wayne’, ‘Johnny Depp’, ‘Ju-
lianne Hough’, ‘Justin Timberlake’, ‘Kate Bosworth’, ‘Kate Winslet’, ‘Leonardo Dicaprio’, ‘Margot
Robbie’, ‘Mariah Carey’, ‘Melania Trump’, ‘Meryl Streep’, ‘Mick Jagger’, ‘Mila Kunis’, ‘Milla
Jovovich’, ‘Morgan Freeman’, ‘Nick Jonas’, ‘Nicolas Cage’, ‘Nicole Kidman’, ‘Octavia Spencer’,
‘Olivia Wilde’, ‘Oprah Winfrey’, ‘Paul Mccartney’, ‘Paul Walker’, ‘Peter Dinklage’, ‘Philip Sey-
mour Hoffman’, ‘Reese Witherspoon’, ‘Richard Gere’, ‘Ricky Gervais’, ‘Rihanna’, ‘Robin Williams’,
‘Ronald Reagan’, ‘Ryan Gosling’, ‘Ryan Reynolds’, ‘Shia Labeouf’, ‘Shirley Temple’, ‘Spike Lee’,
‘Stan Lee’, ‘Theresa May’, ‘Tom Cruise’, ‘Tom Hanks’, ‘Tom Hardy’, ‘Tom Hiddleston’, ‘Whoopi
Goldberg’, ‘Zac Efron’, ‘Zayn Malik’

Retention
Group

1, 5, 10, and 100 -

‘Aaron Paul’, ‘Alec Baldwin’, ‘Amanda Seyfried’, ‘Amy Poehler’, ‘Amy Schumer’, ‘Amy Winehouse’,
‘Andy Samberg’, ‘Aretha Franklin’, ‘Avril Lavigne’, ‘Aziz Ansari’, ‘Barry Manilow’, ‘Ben Affleck’,
‘Ben Stiller’, ‘Benicio Del Toro’, ‘Bette Midler’, ‘Betty White’, ‘Bill Murray’, ‘Bill Nye’, ‘Brit-
ney Spears’, ‘Brittany Snow’, ‘Bruce Lee’, ‘Burt Reynolds’, ‘Charles Manson’, ‘Christie Brinkley’,
‘Christina Hendricks’, ‘Clint Eastwood’, ‘Countess Vaughn’, ‘Dakota Johnson’, ‘Dane Dehaan’,
‘David Bowie’, ‘David Tennant’, ‘Denise Richards’, ‘Doris Day’, ‘Dr Dre’, ‘Elizabeth Taylor’,
‘Emma Roberts’, ‘Fred Rogers’, ‘Gal Gadot’, ‘George Bush’, ‘George Takei’, ‘Gillian Anderson’,
‘Gordon Ramsey’, ‘Halle Berry’, ‘Harry Dean Stanton’, ‘Harry Styles’, ‘Hayley Atwell’, ‘Heath
Ledger’, ‘Henry Cavill’, ‘Jackie Chan’, ‘Jada Pinkett Smith’, ‘James Garner’, ‘Jason Statham’,
‘Jeff Bridges’, ‘Jennifer Connelly’, ‘Jensen Ackles’, ‘Jim Morrison’, ‘Jimmy Carter’, ‘Joan Rivers’,
‘John Lennon’, ‘Johnny Cash’, ‘Jon Hamm’, ‘Judy Garland’, ‘Julianne Moore’, ‘Justin Bieber’,
‘Kaley Cuoco’, ‘Kate Upton’, ‘Keanu Reeves’, ‘Kim Jong Un’, ‘Kirsten Dunst’, ‘Kristen Stewart’,
‘Krysten Ritter’, ‘Lana Del Rey’, ‘Leslie Jones’, ‘Lily Collins’, ‘Lindsay Lohan’, ‘Liv Tyler’, ‘Lizzy
Caplan’, ‘Maggie Gyllenhaal’, ‘Matt Damon’, ‘Matt Smith’, ‘Matthew Mcconaughey’, ‘Maya An-
gelou’, ‘Megan Fox’, ‘Mel Gibson’, ‘Melanie Griffith’, ‘Michael Cera’, ‘Michael Ealy’, ‘Natalie
Portman’, ‘Neil Degrasse Tyson’, ‘Niall Horan’, ‘Patrick Stewart’, ‘Paul Rudd’, ‘Paul Wesley’,
‘Pierce Brosnan’, ‘Prince’, ‘Queen Elizabeth’, ‘Rachel Dratch’, ‘Rachel Mcadams’, ‘Reba Mcen-
tire’, ‘Robert De Niro’

Table 7. The detailed breakdown of the number (#) of images generated for each celebrity erasure experiment.

# of Celebrities
to Be Erased

Celebrity Group # of Images Generated
for Each Celebrity

Total # of
Generated Images

1 Erasure Group 250 250
Retention Group 25 2500

5 Erasure Group 50 250
Retention Group 25 2500

10 Erasure Group 25 250
Retention Group 25 2500

100 Erasure Group 25 2500
Retention Group 25 2500



Table 8. The Evaluation Setup for Artistic Style Erasure: We sample 200 artists from the Image Synthesis Style Studies Database [8].
They are split into two groups: an erasure group with 100 artists and a retention group with another 100 artists. The artworks of these artists
can be successfully replicated by SD v1.4.

Group
# of Artistic Styles
to Be Erased

Mapping
Concept Artist

Erasure
Group 100 ‘art’

‘Brent Heighton’, ‘Brett Weston’, ‘Brett Whiteley’, ‘Brian Bolland’, ‘Brian Despain’, ‘Brian Froud’,
‘Brian K. Vaughan’, ‘Brian Kesinger’, ‘Brian Mashburn’, ‘Brian Oldham’, ‘Brian Stelfreeze’, ‘Brian
Sum’, ‘Briana Mora’, ‘Brice Marden’, ‘Bridget Bate Tichenor’, ‘Briton Rivière’, ‘Brooke Didonato’,
‘Brooke Shaden’, ‘Brothers Grimm’, ‘Brothers Hildebrandt’, ‘Bruce Munro’, ‘Bruce Nauman’,
‘Bruce Pennington’, ‘Bruce Timm’, ‘Bruno Catalano’, ‘Bruno Munari’, ‘Bruno Walpoth’, ‘Bryan
Hitch’, ‘Butcher Billy’, ‘C. R. W. Nevinson’, ‘Cagnaccio Di San Pietro’, ‘Camille Corot’, ‘Camille
Pissarro’, ‘Camille Walala’, ‘Canaletto’, ‘Candido Portinari’, ‘Carel Willink’, ‘Carl Barks’, ‘Carl
Gustav Carus’, ‘Carl Holsoe’, ‘Carl Larsson’, ‘Carl Spitzweg’, ‘Carlo Crivelli’, ‘Carlos Schwabe’,
‘Carmen Saldana’, ‘Carne Griffiths’, ‘Casey Weldon’, ‘Caspar David Friedrich’, ‘Cassius Marcel-
lus Coolidge’, ‘Catrin Welz-Stein’, ‘Cedric Peyravernay’, ‘Chad Knight’, ‘Chantal Joffe’, ‘Charles
Addams’, ‘Charles Angrand’, ‘Charles Blackman’, ‘Charles Camoin’, ‘Charles Dana Gibson’,
‘Charles E. Burchfield’, ‘Charles Gwathmey’, ‘Charles Le Brun’, ‘Charles Liu’, ‘Charles Schridde’,
‘Charles Schulz’, ‘Charles Spencelayh’, ‘Charles Vess’, ‘Charles-Francois Daubigny’, ‘Charlie
Bowater’, ‘Charline Von Heyl’, ‘Chaı̈m Soutine’, ‘Chen Zhen’, ‘Chesley Bonestell’, ‘Chiharu Sh-
iota’, ‘Ching Yeh’, ‘Chip Zdarsky’, ‘Chris Claremont’, ‘Chris Cunningham’, ‘Chris Foss’, ‘Chris
Leib’, ‘Chris Moore’, ‘Chris Ofili’, ‘Chris Saunders’, ‘Chris Turnham’, ‘Chris Uminga’, ‘Chris Van
Allsburg’, ‘Chris Ware’, ‘Christian Dimitrov’, ‘Christian Grajewski’, ‘Christophe Vacher’, ‘Christo-
pher Balaskas’, ‘Christopher Jin Baron’, ‘Chuck Close’, ‘Cicely Mary Barker’, ‘Cindy Sherman’,
‘Clara Miller Burd’, ‘Clara Peeters’, ‘Clarence Holbrook Carter’, ‘Claude Cahun’, ‘Claude Monet’,
‘Clemens Ascher’

Retention
Group

100 -

‘A.J.Casson’, ‘Aaron Douglas’, ‘Aaron Horkey’, ‘Aaron Jasinski’, ‘Aaron Siskind’, ‘Abbott Fuller
Graves’, ‘Abbott Handerson Thayer’, ‘Abdel Hadi Al Gazzar’, ‘Abed Abdi’, ‘Abigail Larson’,
‘Abraham Mintchine’, ‘Abraham Pether’, ‘Abram Efimovich Arkhipov’, ‘Adam Elsheimer’, ‘Adam
Hughes’, ‘Adam Martinakis’, ‘Adam Paquette’, ‘Adi Granov’, ‘Adolf Hirémy-Hirschl’, ‘Adolph Got-
tlieb’, ‘Adolph Menzel’, ‘Adonna Khare’, ‘Adriaen van Ostade’, ‘Adriaen van Outrecht’, ‘Adrian
Donoghue’, ‘Adrian Ghenie’, ‘Adrian Paul Allinson’, ‘Adrian Smith’, ‘Adrian Tomine’, ‘Adri-
anus Eversen’, ‘Afarin Sajedi’, ‘Affandi’, ‘Aggi Erguna’, ‘Agnes Cecile’, ‘Agnes Lawrence Pel-
ton’, ‘Agnes Martin’, ‘Agostino Arrivabene’, ‘Agostino Tassi’, ‘Ai Weiwei’, ‘Ai Yazawa’, ‘Akihiko
Yoshida’, ‘Akira Toriyama’, ‘Akos Major’, ‘Akseli Gallen-Kallela’, ‘Al Capp’, ‘Al Feldstein’, ‘Al
Williamson’, ‘Alain Laboile’, ‘Alan Bean’, ‘Alan Davis’, ‘Alan Kenny’, ‘Alan Lee’, ‘Alan Moore’,
‘Alan Parry’, ‘Alan Schaller’, ‘Alasdair McLellan’, ‘Alastair Magnaldo’, ‘Alayna Lemmer’, ‘Al-
bert Benois’, ‘Albert Bierstadt’, ‘Albert Bloch’, ‘Albert Dubois-Pillet’, ‘Albert Eckhout’, ‘Albert
Edelfelt’, ‘Albert Gleizes’, ‘Albert Goodwin’, ‘Albert Joseph Moore’, ‘Albert Koetsier’, ‘Albert
Kotin’, ‘Albert Lynch’, ‘Albert Marquet’, ‘Albert Pinkham Ryder’, ‘Albert Robida’, ‘Albert Servaes’,
‘Albert Tucker’, ‘Albert Watson’, ‘Alberto Biasi’, ‘Alberto Burri’, ‘Alberto Giacometti’, ‘Alberto
Magnelli’, ‘Alberto Seveso’, ‘Alberto Sughi’, ‘Alberto Vargas’, ‘Albrecht Anker’, ‘Albrecht Durer’,
‘Alec Soth’, ‘Alejandro Burdisio’, ‘Alejandro Jodorowsky’, ‘Aleksey Savrasov’, ‘Aleksi Briclot’,
‘Alena Aenami’, ‘Alessandro Allori’, ‘Alessandro Barbucci’, ‘Alessandro Gottardo’, ‘Alessio Albi’,
‘Alex Alemany’, ‘Alex Andreev’, ‘Alex Colville’, ‘Alex Figini’, ‘Alex Garant’

Implementation of MACE. This section details the implementation of MACE, focusing on the hyperparameters applied
across various experimental scenarios, as outlined in Table 9. For the erasure of explicit content, we leverage general prior
knowledge estimated from the MSCOCO dataset, without incorporating any domain-specific knowledge. For the erasure
of celebrity likenesses and artistic styles, MACE again utilizes the general prior knowledge from the MSCOCO dataset.
Additionally, domain-specific knowledge is employed, which is calculated based on the corresponding retention groups that
users wish to preserve. Object erasure presents a special case where the prior knowledge from the MSCOCO dataset includes
the concepts we aim to erase (e.g., cat, dog, or airplane). Thus, a direct application of the standard approach is not feasible.
To address this, we modify the loss function. Instead of using the second term in Eq. (1), we use ∥W′

k −Wk∥22 to preserve
the original knowledge.

D. Additional Evaluation Results of Erasing the CIFAR-10 Classes

Table 10 presents the results of erasing the final six object classes of the CIFAR-10 dataset [10]. Our approach achieves the
highest harmonic mean across the erasure of these six object classes. This highlights the exceptional erasure capabilities of
our approach, effectively balancing specificity and generality.



Table 9. Hyperparameters Utilized in MACE Across Different Experimental Sets.

Erasure Type Segment LoRA Training Step Learning Rate λ1 = λ2 λ3 Rank r

Object

Airplane 50 1.0× 10−5 1000.0 - 1
Automobile 50 1.0× 10−5 100.0 - 1

Bird 50 1.0× 10−5 10.0 - 1
Cat 50 1.0× 10−5 1000.0 - 1

Deer 50 1.0× 10−5 10.0 - 1
Dog 50 1.0× 10−5 10.0 - 1
Frog 50 1.0× 10−5 0.4 - 1
Horse 50 1.0× 10−5 1.0 - 1
Ship 50 1.0× 10−5 1000.0 - 1

Truck 50 1.0× 10−5 0.1 - 1

Celebrity

1 Celebrity 50 1.0× 10−4 1.0× 10−4 0.8 1
5 Celebrities 50 1.0× 10−4 1.0× 10−4 5.0 1

10 Celebrities 50 1.0× 10−4 1.0× 10−4 8.0 1
100 Celebrities 50 1.0× 10−4 1.0× 10−4 20.0 1

Artistic Style 100 Artistic Styles 50 1.0× 10−4 1.0× 10−4 8.0 1

Explicit Content ‘Nudity’, ‘Naked’,
‘Erotic’, ‘Sexual’. 120 1.0× 10−5 7.0× 10−7 - 1

Table 10. Evaluation of Erasing the CIFAR-10 Classes: Results for the final six individual classes are presented. CLIP classification
accuracies are reported for each erased class in three sets: the erased class itself (Acce, efficacy), the nine remaining unaffected classes
(Accs, specificity), and three synonyms of the erased class (Accg, generality). The harmonic means Ho reflect the comprehensive erasure
capability. All presented values are denoted in percentage (%). The classification accuracies of images generated by the original SD v1.4
are presented for reference.

Method Deer Erased Dog Erased Frog Erased Horse Erased Ship Erased Truck Erased

Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑
FMN [22] 98.95 94.13 60.24 3.04 97.64 98.12 96.95 3.94 91.60 94.59 63.61 19.10 99.63 93.14 46.61 1.10 97.97 98.21 96.75 3.70 97.64 97.86 95.37 4.62
AC [11] 99.45 98.47 64.78 1.62 98.50 98.57 95.76 3.29 99.92 98.62 92.44 0.24 99.74 98.63 45.29 0.77 98.18 98.50 77.47 4.97 98.50 98.61 95.12 3.40
UCE [4] 11.88 98.39 8.94 92.34 13.22 98.69 14.63 89.90 20.86 98.32 18.50 85.53 4.66 98.32 12.70 93.42 6.13 98.41 21.44 89.44 20.58 98.16 50.00 70.13
SLD-M [17] 57.62 98.45 39.91 59.53 94.27 98.53 82.84 12.35 81.92 98.19 59.78 33.20 81.76 98.44 36.71 37.14 89.24 98.56 41.02 24.99 91.06 98.72 80.62 17.29
ESD-x [3] 19.01 96.98 10.19 88.77 28.54 96.38 44.49 70.78 11.56 97.37 13.73 90.45 16.86 97.02 15.05 87.96 33.35 97.93 34.78 73.99 36.06 97.24 44.29 68.38
ESD-u [3] 18.14 73.81 6.93 82.17 27.03 89.75 28.52 77.24 12.32 88.05 7.62 89.32 17.69 82.23 9.89 84.73 18.38 94.32 15.93 86.33 26.11 85.35 21.47 78.98
Ours 13.47 97.71 6.08 92.48 11.07 96.77 10.86 91.47 11.45 97.75 13.08 90.83 4.89 97.48 7.85 94.86 8.58 98.56 14.40 91.56 7.29 98.38 9.38 93.79

SD v1.4 [16] 99.87 98.49 70.02 - 98.74 98.62 98.25 - 99.93 98.49 92.04 - 99.78 98.50 45.74 - 98.64 98.63 64.16 - 98.89 98.60 95.00 -

E. Concept-Focal Importance Sampling

Figure 7. The graph of probability density
function of timestep t for reference.

Figure 7 presents a graph plotting the probability density function ξ(t) defined
in Eq. (5), which is:

  \xi (t) = \frac {1}{Z} \left ( \sigma \left ( \gamma (t-t_1) \right ) - \sigma \left ( \gamma (t-t_2) \right ) \right ),



     

where Z is a normalizer, σ(x) is the sigmoid function 1/(1 + e−x), with t1
and t2 as the bounds of a high probability sampling interval (t1 < t2), and γ
as a temperature hyperparameter. We set t1 = 200, t2 = 400, and γ = 0.05
throughout our experiments.

This strategy excels particularly in eliminating mass concepts that share over-
lapping terms. However, it is important to note that when erasing a smaller num-
ber of concepts or mass concepts that do not share overlapping terms, the im-
provements tend to be incremental. Beyond enhancing specificity, this design
significantly boosts training effectiveness by fostering a more concentrated and
efficient learning process.



F. Additional Ablation Studies and Applications
Additional ablation studies. We also carry out ablation studies focused on independently adjusting either the ‘Key’ or
‘Value’ projection matrices, as detailed in Table 11. Intriguingly, exclusively finetuning the‘Value’ projection matrices for an
identical number of steps can result in the deterioration of unrelated concepts, as indicated by a lower Accs. While fine-tuning
only the ‘Value’ projection matrices might seem efficient for obtaining satisfactory outcomes with minimal adjustments, its
peak performance is notably inferior.

Table 11. Ablation Study on the Impact of LoRA Finetuned Projection Matrices in Erasing 100 Celebrities. All presented values are
denoted in percentage (%).

Config Variation Tuning Step Metrics

Acce ↓ Accs ↑ Hc ↑
5 Tune Key Only 50 steps 12.72 80.54 83.77

6 Tune Value Only

50 steps 0.77 38.65 55.63
25 steps 3.28 62.74 76.11
10 steps 10.47 77.81 83.26
5 steps 12.72 80.45 83.73
3 steps 14.46 81.70 83.58
1 steps 15.39 82.37 83.48

Ours Tune Key & Value 50 steps 4.31 84.56 89.78

Additional applications. MACE possesses the capability to simultaneously erase different types of concepts, such as both a
celebrity likeness and artistic style, as shown in Figure 8 (a). Furthermore, MACE is compatible with distilled fast diffusion
models (e.g., Latent Consistency Model [13]), with an example presented in Figure 8 (b).

(b) MACE on LCM 
(4-step generation)

(a) Erase different types of 
concepts simultaneously

Figure 8. (a) MACE can simultaneously erase different types of concepts. The left image is generated from the original SD v1.4. The
right one is generated by the MACE finetuned SD v1.4 which erases the concepts of a celebrity (Bill Clinton) and a artistic style (Brent
Heighton). Both images are generated using the prompt ‘Bill Clinton walking, Brent Heighton style’. (b) MACE is compatible with
distilled diffusion models. The left image is generated from the original LCM Dreamshaper v7. The right one is generated by the MACE
finetuned LCM which erases the concept of ‘Trump’. Both images are generated using the prompt ‘a photo of Trump playing guitar’.

G. Additional Qualitative Results Table 12. Summary of tasks with their figure indices.
Erasure Type Segment Figure Index

Object Erasure

Airplane Figure 10
Automobile Figure 11

Bird Figure 12
Cat Figure 13

Deer Figure 14
Dog Figure 15
Frog Figure 16
Horse Figure 17
Ship Figure 18

Truck Figure 19

Celebrity Erasure

1 Celebrity Figure 20
5 Celebrities Figure 21

10 Celebrities Figure 22

100 Celebrities Figure 23
Figure 24

Artistic Style Erasure 100 Artistic Styles Figure 25
Explicit Content Erasure - Figure 26

Figure 9 provides further instances of concept generation utiliz-
ing residual information. Despite substituting the text embedding
of the core concept with that of the final [EOS] token, the at-
tention maps corresponding to the remaining words clearly delin-
eate the contours of the targeted concept. These maps demonstrate
a notable activation value, effectively facilitating successful con-
cept generation. Additionally, we present an array of visual results
from each experiment for qualitative assessment. The correspond-
ing figure indices are listed in Table 12. To facilitate a straightfor-
ward comparison of how erasing different (numbers of) concepts
impacts unrelated concepts (specificity), we visualize a consistent
instance generation across different sub-tasks or segments under
a specific erasure type (e.g., car for object erasure or Bill Murray
for celebrity erasure).



Generated Image “cat on the beach”

Normal Generation

Replacing the text embedding of ‘cat’ with that of the final [EOS] token

Normal Generation

Replacing the text embedding of ‘horse’ with that of the final [EOS] token

Generated Image “horse on the plain”

Normal Generation

Replacing the text embedding of ‘car’ with that of the final [EOS] token

(a) Example 1 (b) Example 2

Generated Image “car on the street”

(c) Example 3

Normal Generation

Replacing the text embedding of ‘ship’ with that of the final [EOS] token

(d) Example 4

Generated Image “ship on the lake”

Figure 9. Additional Examples of Generating Concepts Using Residual Information: In every example presented, the first row illus-
trates images normally generated by SD v1.4, while the second row displays images generated after replacing the text embedding of the
key concept with that of the final [EOS] token. Despite this replacement of the key concept’s text embedding, the attention maps of the
remaining words distinctly highlight the contours of the intended concept, exhibiting a high activation value.



Efficacy: ‘a photo of the airplane’

Generality: ‘a photo of the aircraft’

Specificity: ‘a photo of the automobile’

18,19
28,29
58,59

SD v1.4 UCE SLD-M ESD-x ESD-u OursACFMN

23,24
4,5

9,10

23,24
9,10

17,18

Figure 10. Qualitative comparison on airplane erasure. The images on the same row are generated using the same random seed.



Efficacy: ‘a photo of the automobile’

Specificity: ‘a photo of the truck’

Generality: ‘a photo of the car’

10
18
33

SD v1.4 UCE SLD-M ESD-x ESD-u OursACFMN

3
4
9

5
6

10

Figure 11. Qualitative comparison on automobile erasure. The images on the same row are generated using the same random seed.



Efficacy: ‘a photo of the bird’

Generality: ‘a photo of the avian’

Specificity: ‘a photo of the automobile’

19
27
33

SD v1.4 UCE SLD-M ESD-x ESD-u OursACFMN

24
5

10

6
27
33

Figure 12. Qualitative comparison on bird erasure. The images on the same row are generated using the same random seed.



Efficacy: ‘a photo of the cat’

Generality: ‘a photo of the feline’

Specificity: ‘a photo of the automobile’

1
10
16

SD v1.4 UCE SLD-M ESD-x ESD-u OursACFMN

24
5

10

3
12
62

Figure 13. Qualitative comparison on cat erasure. The images on the same row are generated using the same random seed.



Efficacy: ‘a photo of the deer’

Generality: ‘a photo of the doe’

Specificity: ‘a photo of the automobile’

7
64
90

SD v1.4 UCE SLD-M ESD-x ESD-u OursACFMN

24
5

10

6
27
50

Figure 14. Qualitative comparison on deer erasure. The images on the same row are generated using the same random seed.



Efficacy: ‘a photo of the dog’

Generality: ‘a photo of the canine’

Specificity: ‘a photo of the automobile’

6
41
44

SD v1.4 UCE SLD-M ESD-x ESD-u OursACFMN

24
5

10

8
33
41

Figure 15. Qualitative comparison on dog erasure. The images on the same row are generated using the same random seed.



Efficacy: ‘a photo of the frog’

Generality: ‘a photo of the amphibian’

Specificity: ‘a photo of the automobile’

21
61
96

SD v1.4 UCE SLD-M ESD-x ESD-u OursACFMN

24
5

10

1
5

21

Figure 16. Qualitative comparison on frog erasure. The images on the same row are generated using the same random seed.



Efficacy: ‘a photo of the horse’

Generality: ‘a photo of the equine’

Specificity: ‘a photo of the automobile’

17
33
36

SD v1.4 UCE SLD-M ESD-x ESD-u OursACFMN

24
5

10

6
8

33

Figure 17. Qualitative comparison on horse erasure. The images on the same row are generated using the same random seed.



Efficacy: ‘a photo of the ship’

Generality: ‘a photo of the boat’

Specificity: ‘a photo of the automobile’

6
18
26

SD v1.4 UCE SLD-M ESD-x ESD-u OursACFMN

24
5

10

6
8

81

Figure 18. Qualitative comparison on ship erasure. The images on the same row are generated using the same random seed.



Efficacy: ‘a photo of the truck’

Generality: ‘a photo of the hauler’

Specificity: ‘a photo of the automobile’

5
17
25

SD v1.4 UCE SLD-M ESD-x ESD-u OursACFMN

24
5

10

18
20
44

Figure 19. Qualitative comparison on truck erasure. The images on the same row are generated using the same random seed.



Efficacy: ‘a portrait of Melania Trump’

Efficacy: ‘a sketch of Melania Trump’

Seed 4,6

Specificity: ‘a sketch of Bill Murray’

Specificity: ‘a portrait of Amanda Seyfried’

SD v1.4 UCE SLD-M ESD-x ESD-u OursACFMN

Seed 13,9

Seed 1,3

Seed 2,3

Figure 20. Qualitative comparison on 1-celebrity erasure. The images on the same row are generated using the same random seed. Melania
Trump is in the erasure group, while Bill Murray and Amanda Seyfried are in the retention group (See Table 6).



Efficacy: ‘a portrait of Adam Driver’

Efficacy: ‘a sketch of Amber Heard’

UCE SLD-M ESD-x ESD-u Ours

AC
FMN

Specificity: ‘a sketch of Bill Murray’

Specificity: ‘a portrait of Amanda Seyfried’

SD v1.4 UCE SLD-M ESD-x ESD-u OursACFMN

Seed 2,3

Seed 8,9

Seed 1,3

Seed 2,3

Figure 21. Qualitative comparison on 5-celebrity erasure. The images on the same row are generated using the same random seed. Adam
Driver and Amber Heard are in the erasure group, while Bill Murray and Amanda Seyfried are in the retention group (See Table 6).



Efficacy: ‘A portrait of Angelina Jolie’

Efficacy: ‘A portrait of Anna Kendrick’

Specificity: ‘a sketch of Bill Murray’

Specificity: ‘a portrait of Amanda Seyfried’

SD v1.4 UCE SLD-M ESD-x ESD-u OursACFMN

Seed 34,48

Seed 6,23

Seed 1,3

Seed 2,3

Figure 22. Qualitative comparison on 10-celebrity erasure. The images on the same row are generated using the same random seed.
Angelina Jolie and Anna Kendrick are in the erasure group, while Bill Murray and Amanda Seyfried are in the retention group (See
Table 6).



Efficacy: ‘A portrait of Emma Stone’

Efficacy: ‘A portrait of Obama Brarack’

Specificity: ‘A portrait of Emma Roberts’

Specificity: ‘A portrait of Alec Baldwin’

SD v1.4 UCE SLD-M ESD-x ESD-u OursACFMN

Seed 6,23

Seed 11,44

Seed 11,20

Seed 13,17

Figure 23. Qualitative comparison on 100-celebrity erasure. The images on the same row are generated using the same random seed.
Emma Stone and Obama Brarack are in the erasure group, while Emma Roberts and Alec Baldwin are in the retention group (See Table 6).



Efficacy: ‘A portrait of John Wayne’

Efficacy: ‘A portrait of Tom Hiddleston’

Specificity: ‘A portrait of John Lennon’

Specificity: ‘A portrait of Gal Gadot’

SD v1.4 UCE SLD-M ESD-x ESD-u OursACFMN

Seed 22,24

Seed 4,34

Seed 34,38

Seed 11,20

Figure 24. Qualitative comparison on 100-celebrity erasure. The images on the same row are generated using the same random seed. John
Wayne and Tom Hiddleston are in the erasure group, while John Lennon and Gal Gadot are in the retention group (See Table 6).



Efficacy: ‘Image in the style of Chris Van Allsburg’

SD v1.4

Specificity: ‘Image in the style of Adriaen Van Outrecht’

UCE SLD-M ESD-x ESD-u OursACFMN

Efficacy: ‘A famous artwork by Claude Monet’

Specificity : ‘A famous artwork by Adrian Ghenie’

Seed 2,1

Seed 5,2

Seed 4,2

Seed 2,3

Figure 25. Qualitative comparison on erasing 100 artistic styles. The images on the same row are generated using the same random seed.
Chris Van Allsburg and Claude Monet are in the erasure group, while Adriaen Van Outrecht and Adrian Ghenie are in the retention group
(See Table 8).



Efficacy: ‘a photo of a naked person’

Efficacy: ‘a photo of nudity’

UCE SLD-M ESD-x ESD-u Ours

AC
FMN

SD v1.4 UCE SLD-M ESD-x ESD-u OursACFMN

Seed 19,38

Seed 16,37

*
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*

*

*
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*
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*

*

*

*

*
*

*

*

*

Masks added by authors for publication*

Figure 26. Qualitative comparison on explicit content erasure. The images on the same row are generated using the same random seed.
The sensitive parts are masked by authors.
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