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A. Implementation Details
We implement our model using PyTorch, trained for 20
epochs on the INTERACTION dataset with a batch size of
64 and 25 epochs on the Argoverse 2 dataset with a batch
size of 64. With only 1.3M parameters, the model balances
scalability and performance. We set α = 1 and use the
Adam optimization solver with a learning rate of 0.0001
and the learning rate decay schedule with a step size of 5
epochs and a rate of 0.3 to ensure efficient convergence. We
train and evaluate our model using only a single NVIDIA
GeForce RTX 3090 Ti.

B. Evaluation Metrics
B.1. Uncertainty Quantification

In our formulation, the random variables sf and v are both
Gaussian variables, and z follows a categorical distribu-
tion. Therefore, we can compute the total uncertainty for
a predicted distribution by its entropy. Given the generative
model in equation 4, the total entropy can be estimated by
the summation of three individual expected entropy:∑

z

∫
v

∫
sf

p(sf,v, z|x) log p(sf,v, z|x)dsfdv

=Ev,z∼p(v,z|x)Entropy(p(sf|v, x))
+ Esf∼p(z∼p(z)Entropy (p(v|x, z))
+ Entropy (p(z)) .

(17)

Since we have a fixed prior p(z), the comparison of the to-
tal entropy reduces to comparing the sum of the first two
terms. In our experiment, we use Monte-Carlo sampling to
generate Nmc samples of v for entropy calculation.

B.2. Motion Prediction

For motion prediction, we use the standard Minimum Av-
erage Displacement Error (minADE), Minimum Final Dis-
placement Error (minFDE), and Miss Rate (MR) to assess
the accuracy and effectiveness of our approach. minADE
and minFDE are distance-based metrics commonly used in
multi-modal trajectory prediction (i.e., trajectory prediction
with multiple possible outcomes) tasks. The minADE cal-
culates the average Euclidean distance between predicted
and ground truth trajectories at each time step, taking the
minimum across all trajectories in the prediction set:

minADE(x̂kn, xn) =
1

NT

N∑
n=1

min
k=1,...,K

T∑
t=1

∥∥x̂kn,t − xn,t
∥∥
2
.

(18)

On the other hand, the minFDE measures the Euclidean dis-
tance between predicted and ground truth final positions, ef-
fectively assessing the long-term prediction performance of
the model:

minFDE(x̂kn, xn) =
1

N

N∑
n=1

min
k=1,...,K

∥∥x̂kn,T − xn,T
∥∥
2
.

(19)
MR represents the ratio of ’miss’ cases over all cases.

The definitions of MR are significantly different for the IN-
TERACTION dataset and the Argoverse 2 dataset.

In the INTERACTION dataset, if its prediction at the fi-
nal timestamp (T=30) is out of a given lateral or longitudinal
threshold of the ground truth, it will be assumed as a ’miss.’
In the INTERACTION dataset, we need to align both the
ground truth and the prediction by rotating them based on
the yaw angle of the ground truth at the final timestamp,
ensuring that the x-axis represents the longitudinal direc-
tion and the y-axis corresponds to the lateral direction. The
lateral threshold is established as 1 meter, while the longi-
tudinal threshold is a piecewise function set as:

Thresholdlon =


1 v < 1.4m/s

1 + v−1.4
11−1.4 1.4m/s ≤ v ≤ 11m/s

2 v ≥ 11m/s
(20)

For the Argoverse 2 dataset, the MR indicates the propor-
tion of test samples where none of the predicted trajectories
fall within a 2-meter range of the ground truth, as measured
through the endpoint error measurement.

C. Methodology Details

C.1. Derivation of Evidence Lower Bound (ELBO)

The standard and intuitive objective for training the proba-
bilistic model in SeNeVA is to let the modeled conditional
distribution p(sf|x) to match ground-truth data distribu-
tion through maximizing the likelihood. However, direct
computation on the likelihood function is intractable since
it involves calculating the integration given as p(sf|x) =∑
z

∫
v
p(sf,v, z|x)dvdz, which is hard to estimate and op-

timize. To address this issue, we follow the popular vari-
ational inference method and introduce a tractable, closed-
form, and easy-sampling proxy posterior q(v, z|sf,x) of the
latent variables conditioned on the observed variables, and
the lower bound of the log-likelihood can be derived with



(a) Distribution evaluation output. The heatmap illus-
trate the distribution of yH+T in this case quantified by the
SeNeVA model.

(b) Dense grid generation. For sampling, we generate a
grid of candidates that covers 2 standard deviation area of the
yH+T distribution.

(c) NMS sampling results. Following Algorithm 1, we can
sample a set of top-M candidates (blue) regarding circular
buffers defined by radius r and their IoU threshold γ.

(d) Backward completion. Starting from the last location,
we assume homogeneous uncertainty over time and compute
intermediate waypoints to obtain the final trajectories (orange).

Figure 6. Example visualization of the backward sampling process. The multi-modal trajectory prediction is generated through (a)
evaluating distribution, (b) generating dense candidates, (c) applying NMS sampling, and finally (d) completing intermediate trajectories.
To better illustrate the effectiveness of our method, we plot the history (red) and ground-truth future trajectory (green) of the target agent.

Jensen’s Inequality:

log p(sf|x) = log

∫
z

∫
v

p(sf,v, z|x)dvdz

= logEq(v,z|sf,x)

[
p(sf,v, z|x)
q(v, z|sf,x)

]
≥ Eq(v,z|sf,x) log

[
p(sf,v, z|x)
q(v, z|sf,x)

]
.

(21)

Since we factorize the joint distribution p(sf,v, z|x) and
the posterior q(v, z|sf,x) in equation 4 and equation 6, re-
spectively, we can leverage the factorization and expand the
expectation term to compute the analytical solution of the
lower bound. To simplify the following notation, we denote
p(sf,v, z|x) = psf,v,z , q(v, z|sf,x) = qv,z , p(sf|v,x) =
psf , p(v|x, z) = pv , p(z) = pz , q(v|sf,x) = qv , and
q(z|v,x) = qz . The expansion of the expectation term

writes:

Eqv,z log
[
psf,v,z

qv,z

]
=

∫
z

∫
v

log

[
psfpvpz
qvqz

]
· qv,zdvdz

= Eqv log psf +

∫
z

qz

∫
v

qv log

[
pv
qv

]
dvdz

+

∫
v

qv

∫
z

qz log

[
pz
qz

]
dzdv

= Eqv (log psf −DKL(qz∥pz))− EqzDKL(qv∥pv).
(22)

The expansion above is the ELBO objective we max-
imize during training equivalent to the formula given in
equation 10. Therefore, maximizing the lower bound is
equal to minimizing the KL divergence, driving the varia-
tional posterior q(v, z|sf,x) towards the ground-truth pos-
terior. As a result, maximizing the ELBO objective can ef-
fectively maximize the likelihood.



C.2. Derivation of Assignment Network Loss

The assignment network directly approximates p(z|x) to
avoid tedious sampling at inference time from the latent v
space to estimate the posterior q(z|x) =

∫
v
q(z|v,x)dv.

We can obtain the distribution over z given in equation 13
by applying Bayes’ rule. Herein, we estimate the condi-
tional distribution p(sf|x, z) by applying Monte-Carlo sam-
pling over the latent v space at training:

p(sf|x, z) =
∫
v

p(sf,v|x, z)dv

≈ 1

Nmc

Nmc∑
n=1

p(sf,v
(n)|x)p(v(n), z|x).

(23)

C.3. Backward Sampling

As mentioned in section 4.5, we propose the backward sam-
pling procedure to generate a collection of trajectories lever-
aging the distribution information learned by the model.
The idea is first to sample the final location yH+T that ac-
counts for most uncertainty in the trajectory. The back-
ward sampling procedure consists of three steps: Evalua-
tion, Sampling, and Completion.

Evaluation At this stage, we leverage the output π̂ from
the assignment network to determine how we evaluate the
distribution of yH+T . One can use the component corre-
sponding to π̂max. In our case, we promote multi-modality
by computing the distribution as a mixture of top-6 com-
ponents. For handling the latent space v, one can apply
Monte-Carlo sampling to approximate the integral. In our
case, we choose to use the maximum likelihood samples
(i.e., vml = argmax

v
p(v, z|x)) in equation 16 to evaluate the

distribution, as shown in Figure 6a.

Sampling To allow full exploitation of the distribution in-
formation, we first generate a dense grid of candidates that
covers the area within 2 standard deviations of the distribu-
tion mean. We adopt a rectangular grid with a resolution
of 0.5 meters for simplicity, as illustrated in Figure 6b. One
can quickly improve precision by choosing a smaller resolu-
tion or clipping the grid area. We then apply the NMS sam-
pling given in Algorithm 1 to sampleM candidates from the
dense grid considering their circular buffers determined by
hyperparameter r and the IoU threshold γ (see Figure 6c).
Together, the two hyperparameters determine the density of
selected candidates. In our practice, we choose r = 1.4
meters and γ = 0%.

Completion The last step is to complete the intermedi-
ate trajectory from the target agent’s current position to the

sampled final locations. One can easily apply random sam-
pling on each timestep to get the waypoints. Nevertheless,
we find trajectories generated by this approach lack auto-
consistency and can be non-smooth. To address the prob-
lem, we propose a strong assumption that displacement un-
certainty is uniform over time. Hence, we can first param-
eterize an uncertainty distance parameter u(m) for each se-
lected candidate and then use it for computing waypoints for
all previous timesteps. Specifically, for sampled candidate
y
(m)
H+T from the distribution N (µH+T ,ΣH+T ), we have

u(m) = L−1
H+T

(
y
(m)
H+T − µH+T

)
: ΣH+T = LL⊺, (24)

where L is the upper triangle Cholesky decomposition of
the covariance. For each timestep t = 1, . . . , T − 1, we
have

y
(m)
H+t = µH+t + LH+t · u(m). (25)

Finally, we connect intermediate waypoints with the sam-
pled candidates to derive the required trajectory set. Fig-
ure 6d illustrates the final output from the backward sam-
pling process.

D. Extensive Qualitative Results
We further visualize the quantified trajectory distributions
on some representative cases selected from the INTER-
ACTION dataset. Figure 7 illustrates two examples from
unsignalized intersections, where SeNeVA successfully
identifies the left-turn intention of the driver and quanti-
fies the distribution of future trajectories that conform to the
road geometry. In Figure 8, we visualize two cases in the
expressway merging, where the SeNeVA model can antic-
ipate the maneuver of the surrounding vehicles and predict
distributions that avoid collisions.



(a) Results on a case from DR USA Intersection GL (b) Results on a case from DR USA Intersection MA

Figure 7. Representative example visualization of quantified uncertainty on intersections. The heatmap generated by the SeNeVA
model successfully identifies the left-turn intention of drivers in both cases. The predicted distributions conform to the road geometry.

(a) Results on a case from DR DEU Merging MT (b) Results on a case from DR CHN Merging ZS0

Figure 8. Representative example visualization of quantified uncertainty on intersections. The model recognizes the existence of
surrounding vehicles and predicts with higher certainty that a vehicle will stay hold to avoid collisions.
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