
Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering

Supplementary Material

6. Overview

This supplementary is organized as follows: (1) In the
first section, we elaborate implementation details of our
Scaffold-GS, including anchor point feature enhancement
(Sec.3.2.1), structure of MLPs (Sec.3.2.2) and anchor point
refinement strategies (Sec.3.3); (2) The second part de-
scribes our dataset preparation steps. We then show addi-
tional experimental results and analysis based on our train-
ing observations.

7. Implementation details.

Anchor Growing Our anchor growing process is summa-
rized in Algorithm 1:

Algorithm 1 Anchor Growing
V Anchors . Positions, features, neural gaussians
C [] . New anchors candidate
⌧g, ✏g Gradient threshold, Voxel size
m 1 . Iteration Count
M Maximum iterations
while m<=M do

⌧ ⌧g · 2m�1

✏ 16✏g ÷ 4m�1

for all neural gaussians g generated from V do

if g’s gradient > ⌧ then

C.append([bg.xyz✏ e, g’s anchor feature f])
end if

end for

C MergeSamePosition(C) . Feature merging
using scatter max pooling

C RandomElimination(C)
C RemoveOccupiedLocations(V , C)
V Concatenate(V , C)
C = []
m=m+1

end while

Feature Bank. To enhance the view-adaptability, we up-
date the anchor feature through a view-dependent encoding.
Following calculating the relative distance �vc and view-
ing direction ~dvc of a camera and an anchor, we predict
a weight vector w 2 R3 as follows:

(w,w1, w2) = Softmax(Fw(�vc, ~dvc)), (13)

where Fw is a tiny MLP that serves as a view encoding func-
tion. We then encode the view direction information to the

anchor feature fv by compositing a feature bank containing
information with different resolutions as follows:

f̂v = w · fv + w1 · fv#1 + w2 · fv#2 , (14)

In practice, we implement the feature bank via slicing and
repeating, as illustrated in Fig. 9. We found this slicing and
mixture operation improves Scaffold-GS’s ability to cap-
ture different scene granularity. The distribution of feature
bank’s weights is illustrated in Fig. 10.

fv↓ repeat repeat repeat repeat

repeat repeat

fv

1

fv↓2

Figure 9. Generation of Feature Bank. We expand the anchor
feature f into a set of multi-resolution features {fv, fv#1 , fv#2 }
via slicing and repeating. This operation improves Scaffold-GS’s
ability to capture different scene granularity.

(a) (b) (c)

Figure 10. View-based feature bank’s weight distribution.

(a), (b) and (c) denote the predicted weights {w2, w1, w} for
{fv#2 , fv#1 , fv} from a group of uniformally distributed view-
points. Light color denotes larger weights. For this anchor, finer
features are more activated at center view positions. The patterns
exhibit the ability to capture different scene granularities based on
view direction and distance.

MLPs as feature decoders. The core MLPs include the
opacity MLP F↵, the color MLP Fc and the covariance
MLP Fs and Fq . All of these F⇤ are implemented in a LIN-
EAR! RELU! LINEAR style with the hidden dimension
of 32, as illustrated in Fig. 11. Each branch’s output is acti-
vated with a head layer.
• For opacity, the output is activated by Tanh, where value

0 serves as a natural threshold for selecting valid samples
and the final valid values can cover the full range of [0,1).

• For color, we activate the output with Sigmoid function:

{c0, ..., ck�1} = Sigmoid(Fc), (15)

36x32 32×1×(𝑘)
ReLU

36x32 32×3×(𝑘)
ReLU

36x32 32×7×(𝑘)
ReLU

In
pu

t: N
×(

32
+3

+1
)

3

…

3 … 3

1 1 1 1 1 1

Opacity: N×1×(𝑘)

Color: N×3×(𝑘)

Tanh

Sigmoid

3 3 … 3

4 4

fv
^

dvc
→

𝛿vc

… 4

Scale: N×3×(𝑘)

Quaternion: N×4×(𝑘)

Sigmoid*sv

Normalization

F𝛼

Fc

Fs & Fq

Figure 11. MLP Structures. For each anchor point, we use small
MLPs (F↵, Fc, Fs, Fq) to predict attributes (opacity, color, scale
and quaternion) of k neural Gaussians. The input to MLPs are
anchor feature f̂v , relative viewing direction ~dvc and distance �vc
between the camera and anchor point.

which constrains the color into a range of (0,1).
• For rotation, we follow 3D-GS [22] and activate it with a

normalization to obtain a valid quaternion.
• For scaling, we adjust the base scaling sv of each anchor

with the MLP output as follows:

{s0, ..., sk�1} = Sigmoid(Fs) · sv, (16)

Voxel Size. The voxel size ✏ sets the finest anchor reso-
lution. We employ two strategies: 1) Use the median of
the nearest-neighbor distances among all initial points: ✏
is adapted to point cloud density, yielding denser anchors
with enhanced rendering quality but might introduce more
computational overhead; 2) Set ✏ manually to either 0.005
or 0.01: this is effective in most scenarios but might lead to
missing details in texture-less regions. We found these two
strategies adequately accommodate various scene complex-
ities in our experiments.

Anchor Refinement. As briefly discussed in the main pa-
per, the voxelization process suggests that our method may
behave sensitive to initial SfM results. We illustrate the ef-
fect of the anchor refinement process in Fig. 12, where new
anchors enhance scene details and fill gaps in large texture-
less regions and less observed areas.

8. Experiments and Results

Additional Data Preprocessing. We used
COLMAP [39] to estimate camera poses and generate
SfM points for VR-NeRF [51] and BungeeNeRF [49]
datasets. Both two datasets are challenging in terms of
varying levels of details presented in the captures. The
VR-NeRF dataset was tested using its eye-level subset with
3 cameras. For all other datasets, we adhered to the original
3D-GS [22] method, sourcing them from public resources.

zoom
out

Initial anchors Refined anchors

zoom
out

Example scene

Figure 12. Anchor Refinement. We visualize the initial and re-
fined anchor points on the truck scene [23]. The truck is high-
lighted by the circle. Note that the refined points effectively cov-
ers surrounding regions and fine-scale structures, leaning to more
complete and detailed scene renderings.

Selection Process by Opacity. We examine the decoded
opacity from neural Gaussians and our opacity-based selec-
tion process (Fig. 2(b)) from two aspects. First, without
the anchor point refinement module, we filter neural Gaus-
sian using their decoded opacity values to extract geometry
from a random point cloud. Fig. 15 demonstrates that the re-
mained neural Gaussians effectively reconstruct the coarse
structure of the bulldozer model from random points, high-
lighting its capability for implicit geometry modeling un-
der mainly rendering-based supervision. We found this is
conceptually similar to the proposal network utilized in [4],
serving as the geometry proxy estimator for efficient sam-
pling. Second, we apply different k values in our method.
Fig. 14 shows that regardless of the k value, the final num-
ber of activated neural Gaussians converges to a similar
amount through the training, indicating Scaffold-GS’s pref-
erence to select a collection of non-redundant Gaussians

Tr
ai

ni
ng

 vi
ew

s
Te

sti
ng

 vi
ew

s

Amsterdam (BungeeNeRF) Pompidou (BungeeNeRF) Train (Tanks&Temples) Counter (Mip-NeRF360)

3D-GS Ours

Figure 13. PSNR curve of Scaffold-GS and 3D-GS [22] across diverse datasets [4, 17, 49]. We illustrate the variations in PSNR during
the training process for both training and testing views. The orange curve represents Scaffold-GS, while the blue curve corresponds to
3D-GS. Our method not only achieves rapid convergence but also exhibits superior performance, marked by a significant rise in training
PSNR and consistently higher testing PSNR, in contrast to 3D-GS.

Training iterations

Ac
tiv

at
ed

 ne
ur

al
 G

au
ss

ia
ns

Figure 14. Learning with different k values. Despite varying
initial k values under different hyper-parameter settings, they con-
verge to activate a similar number of neural Gaussians with com-
parable rendering fidelity.

Anchor points

𝞪 > 𝝉

Selected Neural Gaussians in a test view

selector

Figure 15. Geometry culling via selector. (Left) Anchor points
from randomly initialized points; (Right) Activated neural Gaus-
sians derived from each anchor under the current view. In synthetic
Blender scenes, with all 3D Gaussians visible in the viewing frus-
tum, our opacity filtering functions similar to a geometry proxy
estimator, excluding unoccupied regions before rasterization.

that are sufficient to represent the scene.

Per-scene Results. Here we list the error metrics used in
our evaluation in Sec.4 across all considered methods and
scenes, as shown in Tab. 6-17.

Table 6. SSIM scores for Mip-NeRF360 [4] scenes.

Method Scenes bicycle flowers garden stump treehill room counter kitchen bonsai

3D-GS [22] 0.771 0.605 0.868 0.775 0.638 0.914 0.905 0.922 0.938
Mip-NeRF360 [4] 0.685 0.583 0.813 0.744 0.632 0.913 0.894 0.920 0.941

iNGP [31] 0.491 0.450 0.649 0.574 0.518 0.855 0.798 0.818 0.890
Plenoxels [13] 0.496 0.431 0.606 0.523 0.509 0.842 0.759 0.648 0.814

Ours 0.739 0.577 0.851 0.764 0.641 0.929 0.917 0.932 0.949

Table 7. PSNR scores for Mip-NeRF360 [4] scenes.

Method Scenes bicycle flowers garden stump treehill room counter kitchen bonsai

3D-GS [22] 25.25 21.52 27.41 26.55 22.49 30.63 28.70 30.32 31.98
Mip-NeRF360 [4] 24.37 21.73 26.98 26.40 22.87 31.63 29.55 32.23 33.46

iNGP [31] 22.19 20.35 24.60 23.63 22.36 29.27 26.44 28.55 30.34
Plenoxels [13] 21.91 20.10 23.49 20.66 22.25 27.59 23.62 23.42 24.67

Ours 25.02 21.25 27.32 26.65 23.21 31.90 29.61 31.73 32.78

Table 8. LPIPS scores for Mip-NeRF360 [4] scenes.

Method Scenes bicycle flowers garden stump treehill room counter kitchen bonsai

3D-GS [22] 0.205 0.336 0.103 0.210 0.317 0.220 0.204 0.129 0.205
Mip-NeRF360 [4] 0.301 0.344 0.170 0.261 0.339 0.211 0.204 0.127 0.176

iNGP [31] 0.487 0.481 0.312 0.450 0.489 0.301 0.342 0.254 0.227
Plenoxels [13] 0.506 0.521 0.386 0.503 0.540 0.419 0.441 0.447 0.398

Ours 0.266 0.372 0.134 0.260 0.347 0.191 0.184 0.117 0.178

Table 9. Storage size (MB) for Mip-NeRF360 [4] scenes.

Method Scenes bicycle flowers garden stump treehill room counter kitchen bonsai

3D-GS [22] 1291 804 1268 1034 813 327 261 414 281

Ours 275 217 213 230 209 86 83 101 126

Table 10. SSIM scores for Tanks&Temples [23] and Deep

Blending [18] scenes.

Method Scenes Truck Train Dr Johnson Playroom

3D-GS [22] 0.879 0.802 0.899 0.906
Mip-NeRF360 [4] 0.857 0.660 0.901 0.900

iNPG [31] 0.779 0.666 0.839 0.754
Plenoxels [13] 0.774 0.663 0.787 0.802

Ours 0.886 0.821 0.907 0.913

Training Process Analysis. Figure 13 illustrates the vari-
ations in PSNR during the training process for both train-

Table 11. PSNR scores for Tanks&Temples [23] and Deep

Blending [18] scenes.

Method Scenes Truck Train Dr Johnson Playroom

3D-GS [22] 25.19 21.10 28.77 30.04
Mip-NeRF360 [4] 24.91 19.52 29.14 29.66

iNPG [31] 23.26 20.17 27.75 19.48
Plenoxels [13] 23.22 18.93 23.14 22.98

Ours 25.89 22.20 29.79 31.07

Table 12. LPIPS scores for Tanks&Temples [23] and Deep

Blending [18] scenes.

Method Scenes Truck Train Dr Johnson Playroom

3D-GS [22] 0.148 0.218 0.244 0.241

Mip-NeRF360 [4] 0.159 0.354 0.237 0.252
iNPG [31] 0.274 0.386 0.381 0.465

Plenoxels [13] 0.335 0.422 0.521 0.499

Ours 0.141 0.204 0.250 0.250

Table 13. Storage size (MB) for Tanks&Temples [23] and Deep

Blending [18] scenes.

Method Scenes Truck Train Dr Johnson Playroom

3D-GS [22] 578 240 715 515

Ours 94 58 61 50

Table 14. PSNR scores for Synthetic Blender [30] scenes.

Method Scenes Mic Chair Ship Materials Lego Drums Ficus Hotdog

3D-GS [22] 35.36 35.83 30.80 30.00 35.78 26.15 34.87 37.72

Ours 37.25 35.28 31.17 30.65 35.69 26.44 35.21 37.73

Table 15. Storage size (MB) for Synthetic Blender [30] scenes.

Method Scenes Mic Chair Ship Materials Lego Drums Ficus Hotdog

3D-GS [22] 50 116 63 35 78 93 59 44

Ours 12 13 16 18 13 35 11 8

Table 16. PSNR scores for BungeeNeRF [49] and VR-

NeRF [51] scenes.

Method Scenes Amsterdam Bilbao Pompidou Quebec Rome Hollywood Apartment Kitchen

3D-GS [22] 25.74 26.35 21.20 28.79 23.54 23.25 28.48 29.40

Ours 27.10 27.66 25.34 30.51 26.50 24.97 28.87 29.61

Table 17. Storage size (MB) for BungeeNeRF [49] and VR-

NeRF [51] scenes.

Method Scenes Amsterdam Bilbao Pompidou Quebec Rome Hollywood Apartment Kitchen

3D-GS [22] 1453 1337 2129 1438 1626 1642 202 323

Ours 243 197 230 166 200 182 48 90

ing and testing views. Our method demonstrates quicker
convergence, enhanced robustness, and better generaliza-
tion compared to 3D-GS, as evidenced by the rapid increase
in training PSNR and higher testing PSNR. Specifically, for
the Amsterdam and Pompidou scenes in BungeeNeRF, we
trained them with images at three coarser scales and eval-

uated them at a novel finer scale. The fact that 3D-GS
achieved higher training PSNR but lower testing PSNR in-
dicates its tendency to overfit at training scales.

	. Introduction
	. Related work
	. Methods
	. Preliminaries
	. Scaffold-GS
	Anchor Point Initialization
	Neural Gaussian Derivation

	. Anchor Points Refinement
	. Losses Design

	. Experiments
	. Experimental Setup
	. Results Analysis
	. Ablation Studies
	. Discussions and Limitations

	. Conclusion
	. Overview
	. Implementation details.
	. Experiments and Results

