
The appendix includes the following sections:
• Sec A - Contributions
• Sec B - Limitations
• Sec C - More Related Works
• Sec D - Model Implementation Details
• Sec E - Pre-training Details
• Sec F - Tasks and Instruction Tuning
• Sec G - Experiment Details and Additional Results

A. Contributions
Jiasen Lu, Christopher Clark, Sangho Lee, and Zichen
Zhang collectively contributed to dataset construction,
prompt development, and conducted numerous exploratory
experiments for this project.
Jiasen Lu led and designed the main idea and scope of the
project. Developed the majority of the model pipeline –
image and audio tokenizer, main architecture, model stabi-
lization, and training objective. Led and designed the pre-
training and instruction tuning data pipelines. Conducted
experiments with various model and data hyperparameters,
oversaw the model training process, and wrote the paper.
Coordinated with the whole team.
Christopher Clark co-led and designed the infrastruc-
ture, instruction tuning, and evaluation. Developed the
dynamic packing system, modality processing pipeline,
and classifier-free guidance for image and audio inference.
Added the NLP and many V&L datasets, added many syn-
thetic tasks, and built prompts for instruction-tuning tasks.
Ran the evaluation in § 5.1 (NLP), 5.2, and 5.5 (detection,
depth) and wrote the paper.
Sangho Lee core contribution to the pre-training data
pipeline. Added all large-scale multimodal pretraining
datasets, and video and audio instruction tuning datasets.
Developed sample construction pipeline for pre-training.
Helped with the model implementation – position encod-
ing, perceiver resamplers, and model stabilization. Ran the
evaluation in § 5.1 (audio), 5.3 (audio and image FID), 5.5
(video and audio understanding) and wrote parts of the pa-
per.
Zichen Zhang core contribution to the instruction tuning
data pipeline. Added many V&L, embodiment, video, au-
dio, data augmentation, and all instruction tuning datasets.
Built prompts for instruction tuning. Investigated the model
architectures and training pipelines and stabilized the train-
ing. Ran the experiments in § 5.1 (image TIFA, Seed-
Bench), 5.3 (image TIFA, action), 5.4, wrote parts of the
paper, developed the model demo and project page.
Savya Khosla added 3D object detection, optical flow, and
multi-point tracking datasets, ran the evaluation of 3D de-
tection, and initiated the demo.
Ryan Marten added part of video and tracking datasets.
Derek Hoiem advised on the research direction.

Aniruddha Kembhavi advised on the research direction
and evaluation, helped manage compute resources and
wrote the paper.

B. Limitation
• Due to memory constraints, we use the base versions of

the ViT and AST models for image and audio features
throughout the project. Using a larger version of these im-
age and audio encoders could substantially improve per-
formance.

• While our image generation is more faithful compared to
SD-based methods, its quality doesn’t match that of the
stable diffusion model. Additionally, our audio genera-
tion is capped at approximately 4 seconds, which restricts
the practical application of the audio outputs.

• Limited computational resources constrained our explo-
ration of the model’s hyperparameters. It’s likely that
using a significantly larger batch size could enhance the
model’s performance.

• Our model is much less reliable for modalities like depth,
and video or when requiring more niche abilities like 3D
object detection, etc. This is probably due to the limited
variety of tasks we have in these areas.

• Improving the quality of our data could enhance the
model’s performance. However, despite considerable ef-
forts, our human-written prompts still fall short in diver-
sity. We notice a notable decrease in the model’s perfor-
mance when dealing with new instruction tasks, as op-
posed to those it was trained on.

C. More Related Work
Overall, this shows a strong trend towards expanding the
number of supported tasks and modalities. UNIFIED-IO 2
pushes this trend to its limit, including the capabilities of
these prior works with few exceptions and the ability to gen-
erate outputs in more modalities. Recently, CoDi [174] also
achieved similar any-to-any generation capabilities by using
multiple independently trained diffusion models and align-
ing their embedding spaces. UNIFIED-IO 2 has stronger
language abilities and can perform well on many more
tasks.

A notable feature of UNIFIED-IO 2 is that the model
is trained from scratch instead of being initialized with a
pre-trained LLM. Prior works [114, 186, 188, 192] fol-
lowing this approach are typically not designed to produce
complex generations like free-form text responses, images
or sounds, or follow text instructions. Compared to re-
cent general-purpose multimodals models [81, 143, 210],
UNIFIED-IO 2 has a significantly broader scope of tasks
and outputs. Training from scratch means that the method
can be reproduced without a costly preliminary stage of lan-
guage model pre-training and is a more natural fit for how



humans learn modalities simultaneously through their co-
occurrences, not one at a time.

D. Model Implementation Details
In this section, we present the implementation details of our
model.

D.1. Detailed of Unified Task Representation

First, we provide details about how different modalities are
represented in our model.
Text representation. The Byte Pair Encoding (BPE) vo-
cabulary size is 32000. Similar to [147], we add 200 ad-
ditional special tokens to indicated masked spans when de-
noising. We further add 10 special tokens that can be used
to reference the image, audio, and history input in the text.
Two special tokens are to indicate the hImage Inputi and
hAudio Inputi, and 8 special tokens represent individ-
ual elements in the image and audio history inputs, both of
which have a maximum of 4 frames. We use a maximum of
512 input and output tokens.
Sparse structures representation. We use an additional
1000 special tokens to represent all continuous values, such
as points, boxes, camera transformation, and 3D cuboids.
Points are represented with [y, x] coordinates and boxes
with [y1, x1, y2, x2] coordinates with values normalized by
the image size. Camera transformations are represented as
polar angle ✓, azimuth angle �, and distance r. 1000 special
tokens to represent discretized angle from �⇡ to ⇡. Fol-
lowing [16], 3D cuboids are represented with 12 parame-
ters including projected center [u, v], virtual depth z, log-
normalized box dimension [w̄, h̄, l̄], and continuous allocen-
tric rotation p.
• [u, v] represent the projected 3D center on the image

plane relative to the 2D RoI
• z 2 R+ is the object’s center depth in meters.
• [w̄, h̄, l̄] 2 R+ are the log-normalized physical box di-

mensions in meters.
• p 2 R6 is the continuous 6D allocentric rotation.
For 3D cuboid detection, we use prompts to indicate the tar-
get format, such as “Locate all objects in 3D using projected
3D center, virtual depth, log-normalized box size, and rota-
tion in the image.”
Action representation. For embodied navigation tasks,
the discrete action space is directly represented as texts,
e.g. “forward”, “left”, “right”, “stop”. For ob-
ject manipulation tasks, the action is represented differ-
ently based on the robots. Overall, the positional change
(e.g. (�PosX,�PosY,�PosZ)), rotational change (e.g.
(�RotX,�RotY,�RotZ)), and gripper open or close are
discretized using the same 1000 special tokens, and we use
the text prompt to indicate the input and target format. For
tasks that require multi-step planning (e.g. VIMA [87]), the
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AST patch size 16
Pretraining size 128 ⇥ 256
Token size 8 ⇥ 16
Pretrain sub-sample 64
Max num segments 4
Latent size 16

Final size 16, 32, 48, 64 tokens

Table 7. Input representations details

actions are represented as human-readable texts with the in-
dication of steps, skills used (e.g. pick, place, or push), and
discretized positional and rotational parameters. Figure 9
provides a detailed illustration of the robot tasks.
Images representation. Images are encoded with a pre-
trained ViT [45]. We use the ViT-B checkpoint trained on
LAION 2B dataset2. For image inputs, we use a maximum
length of 576 tokens (i.e. 24 ⇥ 24 patch encoding from a
384 ⇥ 384 image). We concatenate features from the sec-
ond and second-last layers of the ViT to capture both low
and high-level visual information. To generate the image,
we encode these images as discrete tokens [49]. Different
from UNIFIED-IO [123], which uses the VQ-GAN trained
on ImageNet [41] to convert 256⇥256 resolution image into
16 ⇥ 16 tokens, we use the VQ-GAN trained on the Open

2
https://github.com/mlfoundations/open_clip

https://github.com/mlfoundations/open_clip


Images dataset [103] with a compression ratio of 8 and a vo-
cabulary size of 163843. This converts 256⇥256 resolution
image into 32⇥ 32 tokens. We also compare the VQ-GAN
tokenizer with the ViT-VQGAN [208] and MoVQ [223].
We empirically find VQ-GAN leads to best generation re-
sults.
Dense structures representation. To handle this modality,
we convert per-pixel labels into RGB images. For depth,
we construct a grayscale image by normalizing the depth
map. For surface normal estimation, we convert the x/y/z
orientations into r/g/b values. For segmentation, we train
UNIFIED-IO 2 to predict a single black-and-white mask for
a particular object specified by a class and a bounding box.
Instance segmentation (as done in GRIT [66]) can then be
performed by first performing localization for the target
class and then performing segmentation for each detected
box. UNIFIED-IO instead trains the model to produce an
image with a randomly selected color for each instance. We
found this makes post-processing difficult since output im-
ages sometimes do not exactly follow the color scheme, and
the model could struggle with images with many different
instances.
Audio representation. This modality encodes a 4.08-
second segment of audio. We take the waveform sampled
at 16000 Hz and convert it to a log-mel-scaled spectrogram.
We compute the spectrogram for an entire audio segment
(4.08 seconds) simultaneously. Each window involves 1024
samples and 256 samples ‘hops’ between windows. The re-
sulting spectrogram has a size of 128 mel bins with 256
windows. We chose these hyperparameters largely around
efficiency. We then encode this with a pre-trained AST [57]
with the patch size of 16⇥ 16, hence a total of 128 tokens.

To generate audio, we use ViT-VQGAN [208] to con-
vert the spectrograms into discrete tokens. Since the authors
of [208] did not release the source code or any pre-trained
models, we implement and train our own version of ViT-
VQGAN with 8 ⇥ 8 patch size that encodes a 256 ⇥ 128
spectrogram into 512 tokens with a codebook size of 8196.
The model is trained with the audio on AudioSet [54],
ACAV100M [105], and YT-Temporal-1B [215] datasets.
After getting the log-mel-scaled spectrograms, we use HiFi-
GAN4 [98] vocoder to decode the spectrograms back to
waveforms. We train the HiFi-GAN using the same param-
eters shown in Table 7. We trained the model on a mixture
of AudioSet and LJSpeech [85] to cover natural sound and
human voice.
History representation. Images and audio inputs in this
history are first encoded in the same way as image and au-
dio inputs. We then use a perceiver resampler [5] to further
compress the image and audio features and produce a fixed
number of visual outputs (32) and audio outputs (16) to re-

3
https://github.com/CompVis/taming-transformers

4
https://github.com/jik876/hifi-gan
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Figure 3. Different training paradigms in masked image modeling:
(a) autoregressive, (b) mask auto-encoder, (c) autoregressive with
dynamic masking. Our proposed paradigms can maintain causal
generation while avoiding information leaks in the decoder.

duce the total sequence length of the model. As shown in
Table 7, we consider a maximum of 4 images and audio
segments. In our experiments, we test with two different
variants of perceiver implementations: 1) a small group of
latent embeddings query each frame/segment individually
[5, 9], 2) a large group of latent embeddings query all his-
tory at once. While the second implementation can finely
represent the referenced image and audio, the first can pre-
serve better temporal information. Thus, our final imple-
mentation uses the first one.

D.2. 2D Rotary Embedding

We use a rotary position encoding to model the relative lo-
cation of input sequences [169]. We chose this primarily
because we did not want to use absolute (additive) position
embeddings, which would have to be added to the inputs
of each encoder, and also wanted to be consistent with the
LLaMA [177] position encoding.

The rotary encoding uses no parameters and instead uses
a kernel trick to allow the model to recover relative dis-
tances between key and query elements in a transformer’s
attention head. For text, we apply rotary encoding at each
layer of the network. For other modalities, we extend RoPE
to two-dimensional cases by splitting each of the query and
key embeddings of transformer attention heads in half and
apply separate rotary embeddings constructed by each of
the two coordinates to the halves.

We treat each token (image, audio, image history, and
audio history) as having a 2-dimensional position corre-
sponding to 1) h,w coordinates in the image or audio spec-
trogram, 2) (t, l) where t and l represent the indices of
frame and perceiver latent vector in the image or audio his-
tory, respectively. Different from [215], which uses a 4-
dimensional position to represent all the inputs, we use a
combination of learnable segment (modality) embeddings
and rotary encoding.

https://github.com/CompVis/taming-transformers
https://github.com/jik876/hifi-gan


L XL XXL

Tr
an

sf
or

m
er

Params 1.1B 3.2B 6.8B
Vocab size 33280
Image vocab size 16512
Audio vocab size 8320
Model dims 1024 2048 3072
MLP dims 2816 5120 8192
encoder layer 24
decoder layer 24
Heads 16 16 24
MLP activations silu, linear
Logits via embedding True
Dropout 0
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Latents size 32
Model dims 768 1024 1024
Heads 12 16 16
Head Dims 64
Number layer 2
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MLP activations gelu
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Latents size 16
Model dims 768 1024 1024
Heads 12 16 16
Head Dims 64
Number layer 2
MLP Dims 2048 4096 4096
MLP activations gelu

V
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Patch size 16
Model dims 768
Heads 12
Head Dims 64
Number layer 11
MLP Dims 3072
MLP activations gelu

A
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Patch size 16
Model dims 768
Heads 12
Head Dims 64
Number layer 11
MLP Dims 2048
MLP activations gelu

Table 8. Model Hyperparameters

D.3. Autoregressive with Dynamic Masking

One problem with image and audio masked denoising in
an autoregressive manner is an information leak on the de-
coder side; see Figure 3 (a). The current decoder’s input
token (3) is conditioned on enocoder’s information (2, 5)
and all previous tokens (s ! 2) to predict target (4). As
a result, the predicted token will be conditioned on 1 even
though it was masked in the encoder since it appears in the
decoder, which will simplify the task and harm represen-

tation learning. Simply masking the token in the decoder,
as shown in Figure 3 (b), avoids this information leakage
but causes the generation and de-noising tasks to interfere
with one another. For example, we found that joint train-
ing with generation (50% MAE and 50% causal modeling)
significantly reduced image generation performance. Our
solution is to mask the token in the decoder except when
predicting that token, as shown in Figure 3 (c), which does
not interfere with causal prediction whilst mostly eliminat-
ing data leakage. For image and audio generation, we also
use row, column, and conv-shaped masked sparse attention
[148] in the decoder.

D.4. Dynamic Packing

Here, we describe the dynamic packing algorithm in more
detail. As is standard practice, when batching together in-
puts, we pad input tensors to a maximum length and use
attention masked to prevent the transformer from attending
to padding elements. This, however, is highly inefficient
in our multi-modal setting because many modalities are not
present in most examples, which results in a huge amount
of padding. For example, if one example in the batch has
an image output, every other example must be padded with
1024 target image tokens, even if their output is in a differ-
ent modality.

One solution is to arrange batches so that each batch
contains examples with similar numbers of tokens in each
modality. This is, however, complicated to do in practice
since (1) our data does not fit in RAM, so we cannot easily
sort and group data this way, especially if needing to match
tokens across five input and three output modalities and (2)
our coding framework, JAX [15], does not support variable
length tensors when constructing the execution graph which
makes handling variable lengths between batches extremely
difficult.

Instead, we use packing, a process where the tokens of
multiple examples are packed into a single sequence, and
the attentions are masked to prevent the transformer from
cross-attending between examples. Packing is often done
as a pre-processing step when handling text, but this does
not work in our setup since some parts of our network can-
not operate on packed data (e.g., the VAE or image ViT).
Instead, we start with an unpacked batch of examples, run
these components first, and then dynamically pack the re-
sulting tokens in a backdrop-compatible way before running
the transformer. To run efficiently on TPUs we pack exam-
ples using matrix multiplication with carefully constructed
one-hot matrices.

To account for all modalities, the maximum sequence
length our transformer needs to take as input is 1152, and
the maximum target length is 2048. When packing, we can
generally pack two examples into an input sequence of 864
and a target sequence of 1280, which gives a roughly 4x



speed up due to reduced sequence length and the ability
to process two examples simultaneously. When streaming
data, packing cannot be done reliably. For example, if two
consecutive examples have an image output, they cannot be
packed since they will total over 1280 output tokens. To
handle this, we use a heuristic algorithm to re-arrange data
as it is being streamed. The algorithm keeps a small pool of
examples in memory. Given a new example, it pairs it with
the largest example in the pool it can be packed with and
outputs both as a pair. If no such example exists, it adds the
example to the pool. If the pool reaches a maximum size
of 10, the largest example is emitted and processed with-
out being packed with another example. We find this occurs
less than 0.1% of the time during training.

D.5. Full Model Details
In Table 8, we present the full hyperparameters of
our model. During pre-training, we train the UIO-2L,
UIO-2XL, and UIO-2XXL with a batch size of 512 due to
memory limit. We sub-sample 50% of the image, audio,
and history inputs patches. The total packing length is 864
for the encoder and 1280 for the decoder. During instruc-
tion tuning, we train all of our models with a batch size 256
due to computing constraints. We sub-sample 87.5% of the
image, audio, and history input patches. The total packing
length is 1024 for pretraining and 1280 for instruction tun-
ing. 8-way in-layer parallelism and 64-way data parallelism
were used to scale up to the 7B model training.

We pre-train and fine-tune for 1.5 million steps with an
effective batch size of 512. This results in training on ap-
proximately 1 trillion tokens in each stage. During pre-
training, we keep at most 50% of the image patches in the
image history or image encoder, as is common practice with
MAE pre-training [71]. We use up to four images/segments
in image/audio history.

D.6. Optimizer
We use Adafactor [164] as our optimizer with a linear
warm-up for the first 5,000 steps and a learning rate decay
of 1/

p
k. We train with �1 = 0.9 and �2 = 1.0 � k�0.8,

where k is the step number. We use global norm gradient
clipping with a threshold of 1.0 and find that this is crucial
to stabilized training. Table 1 gives the details of our differ-
ent models. For all models, we train 3.0M steps – 1.5M for
pre-training and 1.5M for instruction tuning, respectively.
More details in Appendix D.5.

D.7. Training Stability
An example of training instability as more modalities are
added is shown in Figure 5. As shown in (a) and (b), train-
ing only on image generation (green curve) results in stable
loss and gradient norm convergence. Introducing a combi-
nation of image and text tasks (orange curve) slightly in-

creases the gradient norm compared to a single modality,
but remains stable. However, the subsequent inclusion of
the video modality (blue curve) leads to an unrestrained es-
calation in the gradient norm. When an XXL version of this
model is trained on all modalities, as shown in Figure 5 (c)
and (d), the loss explodes after 350k steps, and the next to-
ken prediction accuracy significantly drops at 400k steps.
Figure 6 shows that the pre-training loss for our model is
stable despite the heterogeneity of input and output modal-
ities.

E. Pre-Training Details
In this section, we provide additional details about the data
UNIFIED-IO 2 is pre-trained on. The datasets we use for
pre-training are listed in Table 9. Unless otherwise speci-
fied, we use the pre-training objective described in Section
3.3, where one of the present modalities is randomly se-
lected as the target. We sample data to ensure all the output
modalities are well represented and to balance how often
our various corpora are used based on their size. The distri-
bution is shown in Figure 4.

E.1. Data Sources
Text. Our data follows the mixture used by MPT-7B [176].
Image & Text. Image & text paired data comes from var-
ious unsupervised corpora, shown in Table 9. For LAION
data, we only generate images from image/text pairs from
LAION aesthetic, which contains higher quality images,
while we generate text for image/text pairs from LAION
400M. We also only keep images from LAION if they are
marked as being unlikely to be NSFW in the LAION meta-
data. Web images is a dataset of images we download and
focuses on icons and stylized images.
Video. We gather a total of 180M short videos from various
sources. During training, we pick a random sequence of up
to five frames from the video. The first four will be encoded
with an image/audio history encoder, while the fifth frame
will be encoded with the image/audio encoder. The text
matching these frames is encoded with a text encoder along
with marker tokens to show where each frame occurred as
stated in D.1, or, if the dataset only includes a single caption
that is not aligned with individual frames, the entire caption
is encoded instead. The text, audio, or image modality can
be selected as the target modality. As usual, other modal-
ities are randomly masked, and the target modality is ran-
domly masked or injected with noise in the input. Note we
have sub-sampled data from many of these corpora to keep
the dataset size more manageable, and sometimes due to
broken video links.
Interleaved Image & Text. We primarily use
OBELICS [104], which contains paragraphs and im-
ages interleaved together. For each document, we randomly
select an image or a paragraph as the target and use up to
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Figure 4. Pre-training data distribution, segments proportional to sampling rates. The inner section shows the target modality, the middle
section shows the type of data, and the third shows particular datasets.

Figure 5. Left: Training loss (a) and gradient norms (b) on different modality mixtures. Right: Training loss (c) and next token prediction
accuracy (d) of UIO-2XXLon all modalities. Results were obtained before applying the proposed architectural improvements.

the previous four (if the target is an image) or five (if the
target is a paragraph) images as context. The last image is
encoded with the image encoder, and the remaining images
are encoded in the image history. The text matching those
images is concatenated and interjected with marker tokens
to indicate where the images in the image history or image
input occur. We either do de-noising, where a noisy version

of the target is included in the input, or generation, where
the target is not part of the input, although we always
include both the text and image input modalities.

In addition, we construct interleaved data by interleav-
ing multiple images and captions from several image/text
pair corpora. The images are encoded as the image input
and/or the image history, and matching text is constructed



Size Rate Text Sparse Dense Image Audio ImageH AudioH Text Sparse Dense Image Audio

Text 6.6b 33.0 X - - - - - - X - - - -
MC4 [201] 5.0b 11.7 X - - - - - - X - - - -
C4 [68] 266m 10.6 X - - - - - - X - - - -
Stack [95] 147m 3.55 X - - - - - - X - - - -
RedPajama CC [32] 1.2b 3.55 X - - - - - - X - - - -
Wikipedia 6.8m 1.42 X - - - - - - X - - - -
RedPajama Book [32] 13m 1.06 X - - - - - - X - - - -
Stack-Markdown [95] 34m 1.06 X - - - - - - X - - - -

Image/Text 970m 31.3 X - - X - - - X - - X -
LAION Aesthetics v2.5 [158] 491m 17.7 X - - X - - - - - - X -
LAION-400M [159] 346m 8.95 X - - X - - - X - - - -
CC12M [23] 11m 1.48 X - - X - - - X - - X -
RedCaps [42] 12m 1.39 X - - X - - - X - - X -
Web Images 107m 1.33 X - - X - - - X - - X -
CC3M [163] 3.0m 0.49 X - - X - - - X - - X -

Video 181m 25.0 X - - X X X X X - - X X
YT-Temporal [215] 146m 13.7 X - - X X X X X - - X X
ACAV [105] 17m 3.98 X - - X - X - X - - X X
HD-VILA [200] 7.1m 2.75 X - - X X X X X - - X X
AudioSet [54] 1.7m 2.75 X - - X X X X X - - X X
WebVid [13] 9.2m 1.23 X - - X X X X X - - X -
Ego4D [60] 0.7m 0.55 X - - X X X X X - - X X

Interleaved Image/Text 157m 8.70 X - - X - X - X - - X -
OBELICS [104] 131m 8.00 X - - X - X - X - - X -
CC12M Interleaved 11m 0.35 X - - X - X - X - - - -
CC3M Interleaved 3.0m 0.21 X - - X - X - X - - - -
RedCaps Interleaved 12m 0.14 X - - X - X - X - - - -

Multi-View 3.4m 0.67 X - - X - X - - X - X -
CroCo Habitat [157, 194] 2.6m 0.33 X - - X - X - - - - X -
Objaverse [40] 0.8m 0.33 X - - X - X - - X - X -

Agent Trajectories 1.3m 0.33 X - - X - X - X - - X -
ProcTHOR [39] 0.7m 0.17 X - - X - X - X - - X -
Habitat [157] 0.6m 0.17 X - - X - X - X - - X -

Synthetic 504m 1.00 X X - X - - - - X X - -
Segment Anything [94] 1.1m 0.50 X X - X - - - - - X - -
Laion Aesthetics Patches 491m 0.45 X - - X - - - - X - - -
RedCaps Patches 12m 0.05 X - - X - - - - X - - -

All 8.5b 100 X X - X X X X X X X X X

Table 9. Datasets used for pre-training, rate shows the sampling percentage during pre-training and size shows the approximate number of
examples if iterating through the data once.

by specifying the caption for one, or all, of these images us-
ing special tokens to mark which image each caption refers
to. For this task, we only target the text modality, and train
the model to either (1) de-noise the caption of a single im-
age, (2) generate a caption for a single image that is speci-
fied in an input prompt using a marker token or (3) generate
a sequence of marker tokens and captions that describe each
input image. This task aims to ensure the model learns the
semantics of the images in the history and understands the
marker tokens.

Multi-View. We train on the cross-view completion task
from CroCo [194], where the model must complete a heav-
ily noised image using an image of the same scene, but from
a slightly different angle, as context. The noised input is en-
coded as an image and the second image is encoded through
the image history encoder. In addition, we generate data us-
ing Objaverse [40] objects by capturing multiple views of
the object in 3D, and either specify the camera coordinates
in the input text and train the model to generate a new image
matching new camera coordinates, or train the model to pre-



Figure 6. Training loss curves for the three models, which are
pretrained with dynamic packing and a batch size of 512.

dict how the camera has moved between different images.
We further augment the view synthesis task by providing
in-context examples. For example, by giving one or more
examples of the views and transformations in the image his-
tory, the model predicts the new view from the new camera
transformation specified by the prompt. Both tasks aim to
improve the model’s 3D understanding during pre-training.
Agent Trajectory. We use scripted shortest path trajec-
tories in ProcTHOR [39] and human-collected demonstra-
tions in Habitat [149, 157]. While the original datasets are
for object navigation with relatively long episode lengths,
we only subsample from the last few frames for image his-
tory and image input such that mostly the target object is
within the observation. The task is randomly selected from
1) generating the next visual observation frame as the target
image, 2) predicting the next positional observation coor-
dinates as the text target, and 3) predicting the next action
as the text target. 1) requires inferring from the image and
image history input and the last action specified in the text
input, 2) further requires the location information, and 3) is
based on the target object name and visual observations for
the next action prediction.
Synthetic. We add two synthetic tasks. First, we use the
automatically annotated data from Segment Anything [94].
We give the model either a set of points or a bounding box as
input and train it to generate a segmentation mask as output.
Second, we add artificial patches of various shapes and col-
ors to images from other unsupervised datasets and train the
model to output their locations in order to train the model
to generate sparse coordinates as output. We additionally
train the model to output the total number of patches on the
image to pre-train its counting abilities.

E.2. Pretraining Objective Example

Figure 8 shows an example of our unsupervised pretraining
objective using a video that contains a sequence of image
frames, the corresponding audio, and a text transcript. The
pre-training sample is constructed by following the proce-
dure: 1. select the target modality; 2. select which other
input modalities to keep; 3. select the objective; 4. generate

the random input mask depending on the task of denoising
or generation; 5. add a prefix token indicating the task.

F. Instruction Tuning Details
In this section, we provide additional details about the in-
struction tuning data and individual tasks UNIFIED-IO 2
supports. An overview of the instruction tuning data is
shown in Table 10. We show a visualization including indi-
vidual datasets in Figure 7. We sample broad categories of
tasks evenly and then generally sample individual datasets
in proportion to the square root of their size, although with
some minor hand-engineered adjustments to downweight
noisy datasets or upweight very rare tasks.
Natural Language [25.0%]. For natural language, we use
the mixture from FlanV2 [122] and various other instruc-
tion following datasets [33, 142]. In addition, we continue
pre-training on our unsupervised NLP mixture to help pre-
vent the model from forgetting information learned from
pre-training during the extensive instruction tuning stage.
Image Generation [17.6%]. For text-to-image generation,
we use the same image & text pairs we used during pre-
training. We also include data from [102, 103, 115] that
provide better caption quality. We additionally train the
model to generate images through view synthesis [40, 194],
image editing [18, 217], segmentation-based image genera-
tion [123] and inpainting [123].
Audio Generation [7.5%]. This includes text-to-audio
datasets with audio in the wild [47, 93, 131], music [2],
and human speech [85]. We also add pre-training data with
the task of predicting the next audio clip in a video. More
specifically, we divide the audio into segments and then
generate one of them given both the text and previous seg-
ments as input.
Image Understanding [17.8%]. We include various data
sources from visual question answering [6], image tagging
[41], region classification [102], and datasets with open-
ended chat-like responses [119, 220]. We also include
the multimodal instruction tuning datasets M3IT [112] and
MIMIC-IT [107].
Video Understanding [10.6%]. We include data sources
from video captioning [190, 199], video tagging [35, 111,
168], and video question answering [196, 198]. We also use
examples from M3IT [112] and MIMIC-IT [107] for video
instruction following.
Audio Understanding [2.5%]. We include data sources
from audio tagging [24, 54], and audio captioning [47, 93].
We also include data from video action classification [7]
with audio in the dataset.
Image Sparse Labelling [7.25%]. These tasks require out-
putting sparse coordinates based on an input image. We
mainly consider object detection [115], referring expression
[91], 3D detection [16], camera pose prediction [40], text
detection [183] and human keypoints [115].
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Figure 7. Sunburst chart of our instruction-tuning mixtures, sections are proportional to sampling rates.

the side there's a brick 
base at the bottom 
complete with …

1. Select target modalities 

[Audio][R] the side there's 
a brick base at the bottom 
complete with …

2. Select input modalities 4. Generate input mask 5. Pair with Prefix token

[Audio][R] (Text, Image, Image History)

Video Data Model Inputs

1.

2.

3.

3.

…

…

(Audio)

3. Select objective

Mask Audio Denoising [R]

Model Targets

…

Figure 8. Construction of training samples from video data for the model’s input and target. Given the video, we first extract the video
frames and the corresponding audio spectrograms and transcript. Then, the data passes through a random selection process to determine
the target modality, input modalities, training objective, input mask etc. The model’s final input and target are shown in the top right.

Image Dense Labelling [4.06%]. We do several image la-
beling tasks, including surface normal estimation [78, 204],

depth estimation [138], and optical flow [21, 44]. We also
train our models on various segmentation tasks, including



Size Rate Datasets Text Sparse Dense Image Audio ImageH AudioH Text Sparse Dense Image Audio

Image Generation 506m 17.6 21 X X X X - X X X - - X -
Image from Text 497m 10.6 5 X - - - - - - - - - X -
Controllable Image Editing 3.0m 2.92 4 X - X X - X - - - - X -
Image Editing 1.1m 1.66 3 X - - X - - - - - - X -
Next Frame Generation 24k 0.96 2 X X - - - X X - - - X -
Image Inpainting 1.0m 0.79 3 X X - X - - - - - - X -
View Synthesis 4.2m 0.60 4 X - - X - X - X - - X -

Audio Generation 164m 7.50 9 X - - X X X X - - - - X
Audio from Text 19m 5.62 8 X - - - - - X - - - - X
Audio from Video 145m 1.88 1 X - - X X X X - - - - X

Image Understanding 53m 17.8 73 X X - X - X - X - - - -
VQA 5.8m 6.23 31 X - - X - - - X - - - -
Image Captioning 32m 4.25 14 X - - X - - - X - - - -
Region Classification 6.1m 2.41 4 X X - X - - - X - - - -
Image Tagging 3.8m 2.38 8 X - - X - - - X - - - -
Relationship Prediction 0.8m 1.41 6 X X - X - - - X - - - -
Region Captioning 3.5m 0.60 1 X X - X - - - X - - - -
Image Instruction Following 0.4m 0.37 6 X - - X - - - X - - - -
Image Pair QA 0.1m 0.17 3 X - - X - X - X - - - -

Image Sparse Labelling 13m 7.25 26 X X - X - X - - X - X -
Object Detection 5.3m 3.08 9 X - - X - - - - X - - -
Object Localization 6.0m 1.31 3 X - - X - - - - X - - -
Referring Expression 0.2m 1.08 7 X - - X - - - - X - - -
3D 1.0m 1.00 2 X - - X - X - - X - X -
Text Detection 37k 0.41 3 X - - X - - - - X - - -
Keypoint Detection 0.3m 0.38 2 X X - X - - - - X - - -

Image Dense Labelling 6.9m 4.06 19 X X - X - X - - - X - -
Semantic Segmentation 2.4m 1.23 4 X - - X - - - - - X - -
Localized Segmentation 3.2m 1.17 3 X X - X - - - - - X - -
Surface Normal Estimation 1.1m 1.03 6 X - - X - - - - - X - -
Referring Expression Segmentation 0.1m 0.47 3 X - - X - - - - - X - -
Depth Estimation 47k 0.11 1 X - - X - - - - - X - -
Optical Flow 24k 0.06 2 X - - X - X - - - X - -

Video Understanding 13m 10.6 24 X - - X X X X X - - - -
Video Captioning 9.1m 3.75 3 X - - X - X X X - - - -
Video Tagging 1.1m 3.75 6 X - - X - X X X - - - -
Video Question Answering 2.5m 2.84 9 X - - X X X X X - - - -
Video Instruction Following 0.2m 0.21 6 X - - X - X X X - - - -

Video Sparse Labelling 0.4m 3.42 5 X X - X - X X - X - - -
Video Tracking 0.2m 2.50 3 X X - X - X X - X - - -
Video Action Localization 0.2m 0.61 1 X - - X - X X - X - - -
Video Sound Localization 2.5k 0.31 1 X - - X - X X - X - - -

Audio Understanding 2.2m 2.50 10 X - - X X X - X - - - -
Audio Tagging 2.1m 1.25 5 X - - X X X - X - - - -
Audio Captioning 75k 1.25 5 X - - - X - - X - - - -

Natural Language 11m 25.0 17 X - - - - - - X - - - -
Text Instruction Following 11m 12.5 10 X - - - - - - X - - - -
Language Modeling - 12.5 7 X - - - - - - X - - - -

Embodied AI 7.2m 4.33 23 X - - X - X - X X - X -
Action Prediction 4.3m 3.37 12 X - - X - X - X - - - -
Next Frame/State Prediction 1.3m 0.33 2 X - - X - X - X - - X -
Goal Generation 0.7m 0.33 3 X - - X - X - - - - X -
Embodied QA 1.0m 0.30 6 X - - X - X - X X - - -
All Tasks 775m 100 227 X X X X X X X X X X X X

Table 10. Instruction tuning training mixture. Due to the number of datasets used, we group them by task and only show statistics for each
group. The rate shows the sampling rate, size shows the number of examples of iterating through the data once, and datasets show the
number of individual data sources used for the tasks.



semantic segmentation, localization segmentation, and re-
ferring expression segmentation.
Video Sparse Labelling [3.42%]. We do video detection
[151], single object tracking [50, 79] and video action lo-
calization [61].
Embodied AI [4.33%]. For VIMA-Bench [87], we use
the image input as the initial observation of the environ-
ment and the image history for the images or videos in
the prompt. We add large-scale manipulation datasets
[63, 127, 184] with continuous control in both simulated
and real-world environments. We also train on the Point-
Nav task from Habitat Gibson scenes.

F.1. Natural Language
For natural language data we use the mixture from
FlanV2 [122], which in turn includes data from Muf-
fin [193], T0-SF [156], NIV2 [191], and CoT annotations,
as well data from Alpaca [142], Dolly [33], Open Assis-
tant [99], and MDPP [8]. In addition, we continue pre-
training on our unsupervised NLP mixture from our fine-
tuning stage to ensure the model does not forget informa-
tion learned from unsupervised data during the extensive
instruction-tuning stage.

F.2. Image Generation
For text-to-image generation, we use the same image/text
pairs we used during pre-training, as well as localized
narratives from Open Images [103] and captions from
COCO [115] and Visual Genome (VG) [102]. Our prompts
for these tasks specify that the image might be noisy or ap-
proximate for unsupervised corpora (e.g. “Generate an im-
age that roughly matches this text: {caption}”) and give
hints as to the style for supervised corpora (e.g. “What
do you see in this image? Plainly describe the individ-
ual element you observe.” for localized narratives) to help
disambiguate the stylistic differences between the datasets.
We use simple prompts (e.g. “Caption this image.”) for the
COCO captions.

We additionally train the model to generate images
through view synthesis [40, 194] as was done during pre-
training. We also integrate data for image editing [18, 217]
and image editing based on various dense control signals
such as depth maps, edges, segmentation, etc. Follow-
ing [145], and the segmentation-based image generation
from UNIFIED-IO using data from COCO and LVIS [62].
Finally, we train on inpainting by masking a region of an
input image that contains an object and training the model
to generate the complete image given the object name and
location. We derive data for this task from the object anno-
tation data in COCO, Open Images, and VG.

During inference, we use top-p sampling, also known as
nucleus sampling [75], for generating images with the tem-
perature t = 1.0 and p = 0.95. We also enable classifier-

free guidance [74] by replacing the prompt with the un-
informative prompt “An image of a random picture.” 10%
of the time during training. That prompt is then used as the
classifier-free prompt with a guidance scale of ↵ = 10.0
during inference.

F.3. Audio Generation
Datasets for audio generation from text include Audio-
Caps [93], Clotho [47], MACS [131], MusicCaps [2], and
LJSpeech [85]. During training, we divided the audio into
4-second-long segments and then generated one segment of
the target audio, giving both the text and any previous seg-
ments as input. We also train on the next-frame prediction
task, which aims to generate the audio for the next frame in
a video from YT-Temporal-1B [215].

Our prompts for these tasks specify the characteristics
of target audio; e.g., “Generate the sound/music based on
the description: {caption}” for natural sound and music,
respectively, and “Speak: {passage}” for speech. We use
the same sampling method as the image generation, the top-
p sampling with the temperature t = 1.0 and p = 0.95. We
do not use the classifier-free guidance because it can lead to
poor performance. When generating audio longer than 4.08
seconds during inference, we generate an initial segment
that is 4.08 seconds long and then extend it by generating
additional segments using previous audio segments as the
audio history input.

F.4. Image Understanding
These tasks require generating text in response to a query
about an image or a pair of images. We use the data from
M3IT [112] and MIMIC-IT [107, 108], as well as a variety
of other additional sources. For VQA, we add GQA [83],
TallyQA [1], OK-VQA [130], A-OKVQA [160], OCR-
based VQA datasets [133, 165], Visual Genome, Sci-
enceQA [124], VCR [213] and VizWiz [67]. For im-
age tagging we add Caltech Birds [195], iNaturalist [180],
Sun397 [197], and Places365 [224]. For region classifica-
tion, we add examples derived from object annotation from
Open Images, VG, and COCO. We categorize datasets with
open-ended responses such as LLaVa [119], Visual Story-
telling [82], and Visual Dialog [36] as visual instruction
following, and we categorize NLVR [171] and the “spot the
differences” tasks from MIMIC-IT as image pair QA. For
image pair QA tasks, we encode the second image in the
image history modality.

We also add a grounded relationship prediction task us-
ing data from Visual Genome and VSR [116] as well as
image captioning using the same supervised sources we use
for image generation.

We again put stylistic hints in the prompts for these tasks.
For example, in VQA and captioning datasets, we specify
to return a short answer (e.g. “Answer this question very



succinctly: {question}”), which we find is critical to allow
the model to produce longer, more natural responses when
asked user questions. Likewise, we roughly specify the kind
of class to output for image tagging, e.g., “”What is the sci-
entific name of this animal?” for the iNaturalist dataset.

F.5. Image Sparse Labelling
These tasks require outputting sparse coordinates based on
an input image. We use Open Images, Visual Genome, and
COCO for object detection and localization, which requires
detecting all objects belonging to a specific class and three
COCO referring expression datasets [91, 136, 209] for re-
ferring expressions.

In addition, we train on the OmniLabel [16] 3D detection
dataset by generating the projected 3D center, virtual depth,
log-normalized box size, and rotation of each 3D box, again
by normalizing these values between 0 and 1 and then en-
coding them using the location tokens. We also added the
camera pose prediction tasks using Objaverse objects that
were used during pre-training.

We include 3 text detection datasets from COCO-
Text [183], including finding the bounding box of an input
text string for multiple text strings or finding and listing all
text along with their bounding boxes in an image.

Lastly, we do keypoint detection using COCO pose data.
For keypoint detection, we input a bounding box around a
person in the image and train the model to return a list of
keypoints for that person. During inference, we first localize
all people in the image and then use each returned bounding
box as a keypoint query to find that person’s keypoints. Dur-
ing training, the model predicts “MISSING” for keypoints
that are not visible (e.g. “right elbow: MISSING”). During
inference, we use a masking function over the model’s logit
to force it to guess a valid point for each keypoint since the
keypoint metric does not award points for correctly identi-
fying a keypoint as being not visible.

F.6. Image Dense Labelling
We do several image labeling tasks, including surface nor-
mal estimation on FramNet [78], BlendedMVS [204] and
Taskonomy [211], depth on NYU Depth [138], and optical
flow on Flying Chairs [44] and MPI Sintel [21].

We additionally train on several segmentation tasks: se-
mantic segmentation (segmenting a particular class), lo-
calization segmentation (segmenting an object in an input
bounding box), and referring expression segmentation (seg-
menting an object matching a referring expression). Data
comes from Open Images, COCO, LVIS, and referring ex-
pressions from the COCO refexp datasets [91, 136, 209]. To
do instance segmentation, as needed for GRIT, we first do
localization on the target class and then perform localized
segmentation on each returned bounding box.

During inference, we do temperature sampling with a

top-p of 0.95 as before, but without classifier-free guidance.
For segmentation, we find it beneficial to increase the value
of p to 0.97.

F.7. Video Understanding
These tasks require generating text in response to a query
about a video. For video captioning, we add VA-
TEX [190] and MSR-VTT [199]. For action classifica-
tion (video tagging), we add UCF101 [168], Kinetics-
710 [111], Something-Something v2 [58] and EPIC-
KITCHENS-100 [35]. We also use examples from EPIC-
KITCHENS-100 for action anticipation. For video question
answering, we add MSRVTT-QA [198], MSVD-QA [198],
STAR [196] and M4-ViteVQA [221]. Lastly, we use ex-
amples from M3IT and MIMIC-IT for the video instruction
following.

To cover the visual content of the entire video with a
small number of frames (5), we use the segment-based sam-
pling following [185]; we first divide the video into five
segments of equal duration and then randomly sample one
frame from each of the segments during training, and the
middle frame at inference. We use the first four frames as
the image history input and the final frame as the image in-
put for action classification and video captioning. We em-
pirically found that using the third frame as the image input
while using the other frames as the image history input per-
forms better for video question answering.

We use similar prompts to those for image understanding
tasks, e.g., “Write a short description of this video.”, “The
question {question} can be answered using the video. A
short answer is” and “What are they doing in this video?
Short answer:” in video captioning, video question answer-
ing, and video tagging, respectively, for ensuring a short
answer.

F.8. Video Sparse Labelling
We do single object tracking and spatial-temporal action lo-
calization on video data. We train on YouTube-BB [151],
LaSOT [50] and GOT-10k [79] by inputting bounding boxes
around a target object in each of previous frames and hav-
ing the model return the next location as a bounding box
(“Anticipate the object’s next location from all previous
images and the location of the object in those frames:
{locations}.”). We also train the model on AVA [61] by
inputting a video snippet consisting of five frames and re-
quiring the model to detect all actions of humans appearing
in the middle (third) frame of the video snippet (“Given the
temporal context from the video, detect all of the humans
performing actions in the image.”). Note that we provide
the video snippet, not a single video frame, because some
of the actions require temporal context to answer (e.g., stand
and sit) correctly. We use the final/middle frame of five con-
secutive frames in the video as the image input and the other



frames as the image history input for single object tracking
and action localization, respectively.

F.9. Audio Understanding
We train the model on audio tagging and audio captioning
tasks. For audio tagging, we add AudioSet [54], VGG-
Sound [24], and MACS. For audio captioning, we use the
same datasets as text-to-audio generation, that is, Audio-
Caps, Clotho, MACS, MusicCaps, and LJSpeech. For
audio-visual action classification, we train on Kinetics-
Sounds [7] and VGG-Sound.

We again use stylistic hints in the prompts for these tasks.
For example, we specify the characteristics of target audio
(e.g., “Describe the music.” and “Transcribe the audio to
text.” for MusicCaps and LJSpeech, respectively), enforce
a short answer (e.g., “What is this in the audio? Short an-
swer:” and “Give a short description of this audio.”), and
specify the kind of class to output for audio tagging, e.g.,
“This audio depicts a scene of a” for MACS. We use the
same prompts as video tagging for audio-visual action clas-
sification.

We use the same sampling strategy as the video under-
standing; we sample five audio segments with uniform in-
tervals from the whole audio and use the middle/final audio
segment as the audio input while using the other segments
as the audio history input for audio classification and audio
captioning, respectively.

F.10. Embodied AI
While many robot manipulation tasks can be formulated by
multimodal prompts that interleave language and images
or video frames, we use VIMA-Bench [87] to evaluate the
robot manipulation skills. We use the image input as the
initial observation of the environment and the image history
for the images or videos in the prompt. The text inputs, or
the language instructions, also include special tokens to ex-
plicitly express the interleaved multimodal prompt. The ac-
tion space consists of primitive actions of “pick and place”
for tasks with a suction cup as the end effector or “push”
for tasks with a spatula. Both primitive actions contain two
poses and one rotation 2 R3, specifying the start and target
states of the end effector.

With the action representation described in D.1, we
seamlessly add large-scale manipulation datasets Language
Table [127], BridgeData V2 [184], and FrankaKitchen [63]
with the continuous control in both simulated and real-
world environments. The model directly predicts the next
action as the text target based on the current observation
as image input, previous frames as image history, and lan-
guage instruction and previous actions as text inputs.

Due to the non-causality of the model and limited se-
quence length for the image history, we only added the
PointNav task from Habitat [157] Gibson scenes for the

navigation. The model is required to predict the next action,
with random augmentation for predicting the next position
and rotation state, based on the point goal (positions 2 R2),
visual observations, and previous actions and states, if any.

F.11. Task Augmentation
In addition to these sources, we derive several additional
tasks that use the same supervised annotations as other tasks
but require performing slightly different functions. We call
this task augmentation. The new tasks include prompts that
specify the desired output. These tasks serve to add diver-
sity to our instruction following data. We review the task
augmentation we construct below.
Segmentation. We build several augmentations of the seg-
mentation tasks, including (1) segmenting pixels belonging
to one of a set of 2-4 categories, possibly including cate-
gories that do not exist in the image, (2) segmenting pix-
els belonging to a class and are within an input bound-
ing box and (3) build a map of pixels that do not belong
to a set 1-4 classes. Prompts are designed for these that
state the requirement, e.g., “Show pixels that are part of
chair, paper and in <extra id 289> <extra id 871> <ex-
tra id 781> <extra id 1156>”.
Detection and Referring Expression. For detection, local-
ization, and referring expressions, we also train the model to
output various properties of the output bounding boxes in-
stead of the boxes themselves. Properties include the width,
height, area, left/right/top/bottom half, center coordinates,
distance from the left/right/top/bottom edge of the image,
or the coordinates of different corners of the bounding box.
We also change the format of the output bounding box (e.g.,
[x1, y1, w, h] instead of [y1, x1, y2, x2] format), and change
whether the model labels the boxes with the object category
or not.

For detection, we train the model to detect any object
belonging to a set of 1-4 classes. For referring expressions,
we train the model to locate multiple referring expressions
from a single query. In this case, we sometimes train the
model to predict a property of both referenced boxes in-
stead of outputting the directly, for example, which box is
the smallest, which is the largest, the area of intersection, a
box containing both boxes, etc.
Relationship Prediction. We train the model to list all re-
lationships between a particular object in the image and any
other object. A bounding box and category specify the tar-
get object. Similarly, we train the model to predict all rela-
tionships between any instance of a particular class of ob-
jects and any other object in the image.
Captioning. For captioning, we train the model to generate
a caption that is longer or shorter than a given character or
word length or contains a particular word or set of words.
We also randomly require the caption to start with a partic-
ular prefix. Again, these requirements are specified in the



Figure 9. Examples of input and target representations for embodied and robot tasks.

Prompt Model Response

A video of a man (woman) saying UNIFIED-IO 2 is a model that works with vision, language, audio, and action. � (�)

A video of a man playing guitar. � �

Table 11. Audio generation samples from the pre-trained model.

prompt, for example, “Generate a caption longer than five
words for this image. Start your output with the text ‘My
caption is:’”.
Surface Normal Estimation. For surface normal estima-
tion, we train the model to generate RGB images that en-
code the pixel orientation differently. This includes chang-
ing which RGB channels correspond to the x, y, and z ori-
entations and only including a subset of those orientations.
We also include tasks that require specifying the x, y, and
z orientation at a particular point specified in the prompt
using location tokens. Finally, we include tasks requiring
segmentation masks over pixels with particular orientations,
e.g., “Build a binary mask over surfaces with an upward ori-
entation”.
Embodied AI. We further augment the embodiment
datasets with the video QA and goal image generation tasks.

The QA augmentation aims for the robot’s planning and af-
fordance. For example, given a robot video trajectory, the
model is supposed to predict the plan (caption), or whether
a given action is reasonable from the language instruction.
Applying image editing in embodied space, we further let
the model generate the goal or subgoal images based on
the initial visual observation in the image input and the lan-
guage prompt in the text input. While recent works show
that embodiment QA with VLM [46, 162] and (sub-)goal
generation with diffusion model [134] are effective in the
decision-making downstream tasks, our model combines
the both augmentation strategies.

https://ai2-prior-uio.s3.us-west-2.amazonaws.com/public/samples/pretrain/pretrain-1-man.wav
https://ai2-prior-uio.s3.us-west-2.amazonaws.com/public/samples/pretrain/pretrain-1-woman.wav
https://ai2-prior-uio.s3.us-west-2.amazonaws.com/public/samples/pretrain/shred_guitar.wav
https://ai2-prior-uio.s3.us-west-2.amazonaws.com/public/samples/pretrain/guitar_out.wav


Input image Rotate right Rotate right Move forward Move forward Rotate right Move forward

Figure 10. Future frame prediction samples from the pre-trained model. Given the initial input image and action, the model can generate a
plausible frame that reflects the result of the action.

Categorization Localization VQA Refexp Segmentation Keypoint Normal All

ablation test ablation test ablation test ablation test ablation test ablation test ablation test ablation test

0 NLL-AngMF [11] - - - - - - - - - - - - 49.6 50.5 7.2 7.1
1 Mask R-CNN [70] - - 44.7 45.1 - - - - 26.2 26.2 70.8 70.6 - - 20.2 20.3
2 GPV-1 [65] 33.2 33.2 42.8 42.7 50.6 49.8 25.8 26.8 - - - - - - 21.8 21.8
3 CLIP [146] 48.1 - - - - - - - - - - - - - 6.9 -
4 OFALARGE [186] 22.6 - - - 72.4 - 61.7 - - - - - - - 22.4 -
5 GPV-2 [89] 54.7 55.1 53.6 53.6 63.5 63.2 51.5 52.1 - - - - - - 31.9 32.0
5 DINO + SAM [94, 139] - - 66.0 66.0 - - - - 60.2 60.1 - - - - 18.0 18.0

6 UNIFIED-IOSMALL 42.6 - 50.4 - 52.9 - 51.1 - 40.7 - 46.5 - 33.5 - 45.4 -
7 UNIFIED-IOBASE 53.1 - 59.7 - 63.0 - 68.3 - 49.3 - 60.2 - 37.5 - 55.9 -
8 UNIFIED-IOLARGE 57.0 - 64.2 - 67.4 - 74.1 - 54.0 - 67.6 - 40.2 - 60.7 -
9 UNIFIED-IOXL 61.7 60.8 67.0 67.1 74.5 74.5 78.6 78.9 56.3 56.5 68.1 67.7 45.0 44.3 64.5 64.3

9 UIO-2L 70.1 - 66.1 - 67.6 - 66.6 - 53.8 - 56.8 - 44.5 - 60.8 -
10 UIO-2XL 74.2 - 69.1 - 69.0 - 71.9 - 57.3 - 68.2 - 46.7 - 65.2 -
11 UIO-2XXL 74.9 75.2 70.3 70.2 71.3 71.1 75.5 75.5 58.2 58.8 72.8 73.2 45.2 44.7 66.9 67.0

Table 12. GRIT results and additional baselines from the GRIT leaderboard.

Figure 11. Image generation samples from the pre-trained model.
Prompts from left to right: 1) An image of an astronaut riding a
horse in the forest. There is a river in front of them with water
lilies, Fantasy, HD. 2) A image of a cat wearing sunglasses, HD.
3) A image of a black german shepherd wearing a red beret, HD.
4) An image of a stop sign in a Fantasy style with the text “1991”.

G. Experiment Details
G.1. Pre-training Visualization
In the main paper, we evaluate the effectiveness of our pre-
training by evaluating UNIFIED-IO 2 quantitively on a va-
riety of benchmarks. Here, we qualitatively show the vi-
sualizations from the pre-trained UIO-2XXLmodel. Table
11 shows audio generation from text (top) and text + video
(bottom). We can see the pre-trained model learns text-to-
speech synthesis through video pre-training, and the model

can also synthesize music that matches the video input. Fig-
ure 10 shows the future frame prediction samples given the
initial input image and action sequence. Figure 11 shows
the image generation samples given prompts. The model
has a good understanding of different objects. However, it
struggles to generate the correct text from the given caption.

G.2. 3D Object Detection
We show the single-object 3D detection results in Ta-
ble 13. Our model shows decent results, similar to Cube-
RCNN [16], on the Objectron benchmark [3]. However, its
performance drops significantly in multi-object 3D detec-
tion tasks, like those on nuScenes [22] and Hypersim [153].
This could be because only 1.0% of our training data fo-
cuses on 3D detection. A potential solution might be to
combine 2D and 3D detection techniques.

G.3. NLP Results
We present results on a set of NLP tasks to evaluate the
model’s language understanding abilities. We evaluate us-
ing the EleutherAI LM-Eval harness [51], tasks are evalu-
ated zero-shot using the default prompts without any adjust-



AP3D AP3D@15 AP3D@25 AP3D@50

Cube-RCNN [16] 50.8 65.7 54.0 22.5

UIO-2L 42.9 54.4 45.7 21.7
UIO-2XL 43.3 54.4 46.8 21.8
UIO-2XXL 42.4 54.0 45.6 20.9

Table 13. Single-object 3D detection results on Objectron [3].

HellaSwag MMLU Arc Easy Arc Cha. BoolQ

UIO-2L 39.4 28.4 41.8 26.2 66.6
UIO-2XL 49.9 29.7 49.5 31.3 72.8
UIO-2XXL 52.7 30.4 55.3 33.5 77.3

Open LLaMA 3B 67.4 23.9 69.3 33.8 67.0
LLaMA 7B 57.1 42.6 76.4 43.5 77.7
LLaMA 7B Chat 73.5 47.6 74.4 44.0 80.7
KOSMOS 2 49.4 - - - 62.0

Table 14. Results on NLP tasks.

ments aside from adding the [Text] [S] prefix used for
all text generation tasks. We evaluate on HellaSwag [214]
and a selection of other question answering benchmarks:
MMLU [72], ARC [31], and BoolQ [30]. Results are shown
in Table 14. Baselines were evaluated in the same setting,
i.e., zero-shot, with the default prompts, and using LM-
Eval. UNIFIED-IO 2 is generally ahead of Open LLaMA
3B but behind LLaMA. Compared to KOSMOS-2, which
was also trained from scratch, UIO 2 shows a significant
advantage.

G.4. GRIT Details
We present GRIT results in more detail in Table 12. No-
tably, UNIFIED-IO 2 is the first unified model to pass the
Masked R-CNN baseline for localization and goes a long
way toward closing the gap between SAM and unified mod-
els on segmentation.

For GRIT VQA, looking at the scores from GRIT on dif-
ferent VQA subsets, we find that UNIFIED-IO 2 does bet-
ter on the same-source subset (84.6 vs 58.5) but worse on
the new-source subset (57.7 vs 67.2). Same-source ques-
tions come from VQA 2.0, and new-source questions come
from VG, so the difference can be attributed to the kinds
of questions being asked. Qualitatively, it is hard to under-
stand why the scores differ on these subsets since the GRIT
ablation questions lack ground truth annotations. How-
ever, we notice the models often produce different answers
when faced with ambiguous questions (e.g. “What color is
black on the horse”, “hair” for UNIFIED-IO vs. “mane” for
UNIFIED-IO 2), so one possibility is that UNIFIED-IO 2
does not match the VG answer style as well as UNIFIED-IO,
which would likely be due to differences in the kind of VQA
training data the models were trained on.

For GRIT localization, we find the model can struggle
with images with many instances of the target class, par-

Splits Metrics UIO-2XXL UIO-2XL UIO-2L [206] [207] [26]

Random

Accuracy (") 90.90 88.27 84.03 88.28 90.24 86.90
Precision (") 94.30 97.44 77.73 94.34 97.72 94.40
Recall (") 87.07 78.60 95.40 82.20 83.00 79.27
F1-Score (") 90.54 87.01 85.66 87.85 89.76 86.19
% Yes 46.17 40.33 61.37 44.91 43.78 43.26

Popular

Accuracy (") 88.17 87.47 77.27 86.20 84.90 83.97
Precision (") 89.13 95.69 70.03 89.46 88.24 87.55
Recall (") 86.93 78.47 95.33 82.06 80.53 79.20
F1-Score (") 88.02 86.23 80.75 85.60 84.21 83.16
% Yes 48.77 41.00 68.07 45.86 45.63 45.23

Adversarial

Accuracy (") 84.17 85.77 72.00 84.12 82.36 83.10
Precision (") 82.17 92.01 65.00 85.54 83.60 85.60
Recall (") 87.27 78.33 95.33 82.13 80.53 79.60
F1-Score (") 84.64 84.62 77.30 83.80 82.00 82.49
% Yes 53.10 42.57 73.30 48.00 48.18 46.50

Table 15. Object hallucination benchmark POPE results, in com-
parison with mPLUG-Owl2 [206], Ferret [207], and Shikra [26].

Img Video All

InstructBLIP [34] 58.8 38.1 53.4
VideoChat-7B [110] 39.0 33.9 37.6
Otter-7B [108] 42.9 30.6 39.7
Qwen-VL-7B [12] 62.3 39.1 56.3
Qwen-VL-chat-7B [12] 65.4 37.8 58.2
mPLUG-Owl2-7B [206] 64.1 39.8 57.8
LLaVA-1.5-7B [118] - - 58.6
LLaVA-1.5-13B [118] 68.2 42.7 61.6

UNIFIED-IO 2L 56.0 37.5 51.1
UNIFIED-IO 2XL 64.1 45.6 60.2
UNIFIED-IO 2XXL 65.7 46.8 61.8

Table 16. Results on SEED-Bench [106]. Our XXL model out-
performs all 7B vision language models and is even slightly better
than the LLaVA-1.5 13B model.

ticularly when using beam search. We hypothesize that
this is because the probability mass can get split between
many similar location tokens, resulting in EOS becoming
the most probable token even if its probability is low. As a
solution, during inference, we only output EOS if the EOS
token itself has a probability of over 0.5, which we find sig-
nificantly improves the performance on crowded images.
In rare cases, we observe this leads to the model generat-
ing bounding boxes for the same instance multiple times.
As a solution, we apply Non-maximum suppression with a
higher threshold of 0.8 to remove these duplicates. We ap-
ply this inference trick for localization and when doing the
initial localization step for the keypoint and segmentation
tasks.

G.5. Multimodal Benchmark Details

We now provide the breakdown results for the evaluation-
only multimodal benchmarks, POPE [113] and SEED-
Bench [106]. POPE is the object hallucination benchmark,
requiring ‘yes’ or ‘no’ answers. As shown in Table 15, our
largest model achieves the highest F1 score in all 3 dimen-
sions. Interestingly, smaller models favored ‘no’ responses,



Groundtruth
UIO-2XXL

Without CLF
13.39

UIO-2XXL
With CLF

33.77

A pizza with pineapple and
meat topping on a metal pizza pan.

An elephant standing in
the dry grass at the edge of water.

The big grey bear is staring at something

A stack of pan cakes sitting on
top of a plate.

A picture of a vacant home's kitchen and
living room.

Figure 12. Samples generated by UIO-2XXL for the MS COCO
captions [115]. While the classifier-free guidance [74] signifi-
cantly boosts image quality and fidelity, it achieves poor FID.

possibly due to a bias from negative examples encountered
during the instruction tuning phase. SEED-Bench offers
19k multiple-choice questions with human annotations for
evaluating multimodal models across 12 dimensions, in-
cluding spatial (Image) and temporal (Video) understand-
ing. As shown in Table 16, our XXL model outperforms all
other 7B vision/video language models, and is even slightly
better than the LLaVA-1.5 13B model. Notably, our XL
(3B) model has already outperformed all other counterparts
in the temporal understanding split. While recent video lan-
guage models [108, 110, 128] have shown proficiency in
conventional video tasks like video tagging and caption-
ing, their performance in SEED-Bench’s temporal under-
standing is even worse than that of vision language mod-
els, which might be attributed to their limited instruction-
following capabilities.

G.6. Image Generation Details
Figure 13 shows generated images for the TIFA benchmark
captions [76] using several baselines as well as UIO-2XXL.
We use the official implementation code (Emu [172] and
CoDi [174]) or the images shared in the official GitHub
repository of TIFA5 (Stable Diffusion v1.5 [154] and
miniDALL-E [37]) for baselines. All the baselines except
miniDALL-E use the Stable Diffusion decoder trained on
large-scale, high-quality image datasets, generating images
of high fidelity. However, they often generate images that

5
https://github.com/Yushi-Hu/tifa/tree/main/

human_annotations

do not fully follow the input captions while UNIFIED-IO 2
generates faithful images.

For text-to-image generation on MS COCO [115], we
follow the standard convention [226]; we evaluate on a sub-
set of 30K captions sampled from the validation set.6 Fol-
lowing [43], we generate 8 images for each caption and se-
lect the best one using CLIP text-image similarity [146].
Despite classifier-free guidance [74] resulting in generated
images of qualitatively higher quality, the computed FID
score [73] is significantly worse compared to what would
have been achieved without employing it (33.77 vs 13.39);
see Figure 12.

G.7. Audio Generation Details
For text-to-audio generation, we evaluate on the Audio-
Caps [93] test set. Note that we cannot do an apples-to-
apples comparison with other methods because AudioCaps
consists of 10-second audio clips while our model can gen-
erate 4.08-second audio at a time. Instead, we evaluate the
dataset in the following setup: we first sample four 2-second
audio segments, convert them to log-mel-spectrograms with
zero-padding, and generate the following audio with the
prompt “Generate the following sound based on what you
heard and the description: {caption}”. We convert the
model output, that is, a log-mel-scaled spectrogram, into
a waveform using the pretrained HiFi-GAN, and compare
the ground-truth audio and generated audio using compu-
tational metrics including Fréchet Audio Distance [92], In-
ception Score [155] and Kullback–Leibler divergence. We
use the same evaluation code as AudioLDM7 [117]. We
show the audio generation examples in Table 17 and audio-
visual qualitative examples in Table 18.

G.8. Video and Audio Understanding Details
We consider classification and question-answering tasks as
open-ended answer generation and use the Exact Match
(EM) to measure the performance. We also tried to formu-
late the classification task as multiple-choice answering and
generate answers by computing the logit for each dataset
label and selecting the one with the highest logit, but the
performance boost was quite marginal. Note that we do
not train our model directly on the Kinetics-400 [90]; we
instead train on Kinetics-710, a mixture of three different
datasets belonging to the Kinetics family, that is, Kinetics-
400, 600, and 700. Our model achieves top-1 accuracy 79.1
(vs. instruction tuning only: 73.8) when further finetun-
ing on Kinetics-400 for 5 epochs, following [111]. For
Kinetics-Sounds, leveraging both audio and visual inputs
largely improves performance (audio-visual: 89.3 vs. video-
only: 87.4 vs. audio-only: 38.2). For captioning tasks, we

6We use the evaluation code at https : / / github . com /

MinfengZhu/DM-GAN

7
https://github.com/haoheliu/audioldm_eval

https://github.com/Yushi-Hu/tifa/tree/main/human_annotations
https://github.com/Yushi-Hu/tifa/tree/main/human_annotations
https://github.com/MinfengZhu/DM-GAN
https://github.com/MinfengZhu/DM-GAN
https://github.com/haoheliu/audioldm_eval


Emu
65.5

CoDi
71.6

SD-1.5
78.4

miniDALL-E
79.4

UIO-2XXL
81.3

two laptops a mouse cords
wires and a monitor

A red motorcycle parked
by paint chipped doors.

A boy wearing a green shirt
posing with some fruit.

a photo of blue fire hydrant

a photo of bike and skateboard;
skateboard is left to bike

a mountain with a cloud
hanging over it

A Mesoamerican pyramid
surrounded by jungle.
detailed charcoal sketch.

A photo of an Athenian vase
with a painting of toucans playing tennis
in the style of Egyptian hieroglyphics

A Christmas tree with
lights and teddy bear

Figure 13. Samples generated for the TIFA bnechmark captions [76]. Some of the images generated by baselines (e.g., rows 1-2, 6, 9) have
high quality but do not fully follow the input text while UNIFIED-IO 2 generates faithful images.



Prompt Model Response

What is the sound of a duck quacking? �

A bell is ringing loudly and quickly. �

Speak out the text “Police protection was better and more effective;” for me. �

Speak: Printing, then, for our purpose, may be considered as the art of making books by means of movable types. �

Read “Many animals of even complex structure which live parasitically within others are wholly devoid of an alimentary cavity.” �

Generate the music based on the description “Slow tempo, bass-and-drums-led reggae song.” �

Based on the given description “Industrial techno sounds, repetitive, hypnotic rhythms”, produce a corresponding piece of music. �

Table 17. Audio generation examples. UNIFIED-IO 2 can generate not only environmental sound (rows 1-2), but also speech (rows 3-5)
and music (rows 6-7). Note that some of the outputs longer than 4.08 seconds have discontinuity in sound, or changes in tone, speed
or melody (rows 4-5, 7). Since our model can output 4.08-second audio at a time, we complete the audio clip by using any previously
generated clips as additional input. Click � for audio samples.

Guess the next location of the object from its prior locations: <image_history_1> <extra_id_619> <extra_id_936> <extra_id_714> <extra_id_1014> object.

Utilizing the object's past locations: <image_history_1> <extra_id_667> <extra_id_932> <extra_id_687> <extra_id_943> object, can you guess its upcoming location?

Figure 14. Single object tracking examples from LaSOT [50]. Given the first input image and the corresponding bounding box of the target
object, our model can track the object across video frames.

Describe the video.
A man is trying to skip stones on a clear, blue lake.

What is the man doing in the video?
The man in the video is dancing and posing in 
front of the camera, showing off his dance moves 
and body movements.

What is the robot doing?
Move the orange object from the table to the 
toaster oven.

Figure 15. Video understanding qualitative examples.

use CIDEr [182] as the evaluation metric. Figure 15 shows
the qualitative examples for video understanding tasks.

G.9. Embodiment Details
In VIMA-Bench [87], there are 4 levels of evaluation proto-
cols: L1 object placement, L2 novel combination, L3 novel
object, and L4 novel task. Results and comparisons are
shown in Table 19. The inputs for the autoregressive trans-
former model VIMA [87] are object tokens consisting of
cropped images and bounding boxes; image patch tokens
encoded by ViT for VIMA-Gato [152]; image patch tokens
encoded by ViT, further downsampled by a perceiver mod-

What is the final frame after completing the 
task: "Move the silver pot to the lower 
right of the burner"?

What does the goal image look like given 
the current robot RGB observation and 
prompt 'Pick the green rectangle block 
and put it on the table between the 
yellow and red block'?

Task: Move the cloth from the left to the 
right side of the burner. Given the start 
state as image, generate the end state 
image.

Input Prompt Prediction GT

Figure 16. Future state prediction examples on robotic manipula-
tion tasks. Given the input image and instructions, our model can
successfully generate the target state after the prompt instruction.

ule for VIMA-Flamingo [5]; and single image token en-
coded by ViT for VIMA-GPT [19]. The output of those
baselines is all next-step action prediction. Since our model
has to predict all actions at once only with the initial ob-
servation, the task setting is then more challenging than the
casual policy learning baselines. Nevertheless, our mod-
els still outperform counterparts that input image or im-
age patches for all 4 levels and are only behind the object-
centric method [87]. In Figure 16, we show the future state
prediction examples on robotic manipulation tasks. Given

https://ai2-prior-uio.s3.us-west-2.amazonaws.com/public/samples/a+duck+quacking.wav
https://ai2-prior-uio.s3.us-west-2.amazonaws.com/public/samples/a+bell+is+ringing+loudly+and+quickly.wav
https://ai2-prior-uio.s3.us-west-2.amazonaws.com/public/samples/tts_output_1.wav
https://ai2-prior-uio.s3.us-west-2.amazonaws.com/public/samples/tts_output_2.wav
https://ai2-prior-uio.s3.us-west-2.amazonaws.com/public/samples/tts_output_3.wav
https://ai2-prior-uio.s3.us-west-2.amazonaws.com/public/samples/music_gen_1.wav
https://ai2-prior-uio.s3.us-west-2.amazonaws.com/public/samples/music_gen_2.wav


Input Image Prompt Model Response

What is the sound of this instrument? �

What is the sound of this instrument? �

Generate music about this scene. �

Generate music about this scene. �

� Locate the bounding boxes of the sound sources in the given image.

� Identify the locations of the sound sources in the given image.

� Identify the locations of the instruments producing the given sound.

� Identify the locations of the instruments producing the given sound.

Table 18. Audio-visual qualitative examples showcasing the abil-
ity of UNIFIED-IO 2 to reason across modalities. UNIFIED-IO 2
can generate the sound of the instrument in the input image (rows
1-2), and generate the music that matches the mood of the input
image (rows 3-4). The last four examples (rows 5-8) show the re-
sults of visual sound localization. Note that UNIFIED-IO 2 can
accurately identify the instruments that make and do not make
sounds (rows 7-8). Click � for audio samples.

L1 L2 L3 L4 Avg.

VIMA [87] 81.5 81.5 78.7 48.6 72.6
VIMA-Gato [152] 57.0 53.9 45.6 13.5 42.5
VIMA-Flamingo [5] 47.4 46.0 40.7 12.1 36.6
VIMA-GPT [19] 46.9 46.9 42.2 12.1 37.0

UNIFIED-IO 2L 66.9 63.8 57.5 12.6 50.2
UNIFIED-IO 2XL 70.3 69.8 64.5 13.1 54.2
UNIFIED-IO 2XXL 71.3 70.4 68.0 15.5 56.3

Table 19. Evaluations on VIMA-Bench [87]

the input state image and natural language prompt, our
model can successfully synthesize the target image state.

G.10. Other Tasks
Figure 14 shows single object tracking examples from the
LaSOT [50] dataset. Note that UNIFIED-IO 2 does not
use specific class labels for tracking and tracks small mov-
ing objects such as a table tennis paddle well. Figure 17
presents qualitative examples of 3D object detection from
the Objectron dataset [3]. As outlined in our main paper,
UNIFIED-IO 2 exhibits suboptimal performance in bench-
marks for multi-object 3D detection. Additionally, Fig-
ure 18 illustrates examples of image-based 3D view syn-

Figure 17. 3D object detection qualitative examples from Objec-
tron [3].

Input Prompt Prediction GT

Relative camera transformation is in the 
format of “theta sin(phi) cos(phi) r”. What is 
the image after applying the transformation:
( <extra_id_608> <extra_id_493> 
<extra_id_1154> <extra_id_661> )

Complete a new image of the image following 
the implementation of the camera 
transformation theta sin(phi) cos(phi) r: ( 
<extra_id_616> <extra_id_1011> 
<extra_id_309> <extra_id_729> ).

[Complete a new image of the image 
following the implementation of the camera 
transformation theta sin(phi) cos(phi) r: ( 
<extra_id_789> <extra_id_464> 
<extra_id_258> <extra_id_450> )

Figure 18. Image-based 3D view synthesis examples from Obja-
verse [40].

thesis using the Objaverse dataset [40]. While the model
produces coherent results, it faces challenges in accurately
representing relative camera transformations.

https://ai2-prior-uio.s3.us-west-2.amazonaws.com/public/samples/piano_sound.wav
https://ai2-prior-uio.s3.us-west-2.amazonaws.com/public/samples/violin_sound.wav
https://ai2-prior-uio.s3.us-west-2.amazonaws.com/public/samples/dock.wav
https://ai2-prior-uio.s3.us-west-2.amazonaws.com/public/samples/dock_haunted.wav
https://ai2-prior-uio.s3.us-west-2.amazonaws.com/public/samples/visual_sound_localization_input_1.wav
https://ai2-prior-uio.s3.us-west-2.amazonaws.com/public/samples/visual_sound_localization_input_2.mp3
https://ai2-prior-uio.s3.us-west-2.amazonaws.com/public/samples/visual_sound_localization_input_3.mp3
https://ai2-prior-uio.s3.us-west-2.amazonaws.com/public/samples/visual_sound_localization_input_4.mp3
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