Unsegment Anything by Simulating Deformation

Supplementary Material

The supplementary material is organized as follows: In
Sec. 1, we present our findings regarding the challenges
of transferring prompt-specific attacks to unseen prompts.
We offer additional ablation studies in Sec. 2, covering top-
ics including (1) the combination with other transferabil-
ity methods, and (2) the impact of source models. These
sections aim to enhance the reader’s comprehension of our
approach’s underlying mechanisms. In Sec. 5, we offer
visualizations of our attacks and baseline attacks from a
panoramic perspective to provide a more straightforward
comparison. In Sec. 4, we provide a table listing all the
notations used throughout this paper. Finally, in Sec. 6, we
discuss the limitations of our work and the potential societal
impact that may arise from our research.

1. Prompt-Specific Attack Fail to Transfer

We present visualizations of adversarial noises along-
side their corresponding segmentation results for various
prompts in Fig. 7. These visualizations underscore the het-
erogeneous nature of prompt-specific adversarial noises.

Notably, the adversarial noises induced by spatial
prompts (the first three rows) exhibit distinct characteristics
compared to those induced by semantic prompts (the last
row). The adversarial noises from the spatial prompts share
similarities, characterized by shattered and random-noise-
like patterns. Conversely, the adversarial noise stemming
from the semantic prompt aligns closely with essential im-
age features.

Furthermore, we observe that the generated adversarial

examples tend to exhibit overfitting to the specific prompts
used during their generation. Consequently, these adversar-
ial examples struggle to generalize to unseen prompts. At-
tacks generated using spatial prompts have minimal impact
on segmentation results driven by text prompts. Similarly,
the adversarial sample generated from a text prompt has lit-
tle effect on box prompts.
Results. We present the histogram of feature similarities
between TAP and AA attacks in Fig. 2. The findings reveal
that both targeted and untargeted feature disruption attacks
effectively alter features in the source model. However,
untargeted attacks are notably less effective on the target
model. We hypothesize this is due to the high-dimensional
nature of the data, which often leads these attacks to stray
from the image distribution. As a result, in the target model,
adversarial features appear similar to normal features, indi-
cating lower transferability for untargeted attacks.

2. Ablation Studies
2.1. Study 1: Combining Transferability Methods

Previous research on the transferability of adversarial exam-
ples has highlighted four distinct technical approaches, as
discussed in Section 5. These approaches encompass fea-
ture disturbance, gradient momentum, input augmentation,
and model ensembling. Notably, our UAD method falls
under the category of feature disturbance. In the precon-
dition of not introducing external model information (we
will investigate the impact of model ensembling in the next
subsection), we concentrate on exploring how gradient mo-
mentum and input augmentation could potentially help us
to reach our objective.

As recently demonstrated in a comprehensive bench-
mark study [58], under a fair and rigorous comparison, the
most effective gradient momentum and input augmentation
methods are, in fact, the most classic ones, specifically MI
[6] and DI [47], respectively. In Table 1, we have already
presented results indicating that the inclusion of both of
these techniques does not significantly enhance attack per-
formance. Now we will separately integrate each of these
techniques into our method, given that they should operate
independently of each other, and examine their combined
effects in conjunction with our proposed approach in Tab.
2.

Contrary to our expectations, our method, when used
alone without the inclusion of MI or DI tricks, yielded the
best results. The addition of gradient momentum proved to
be more effective than data augmentation. However, com-
bining both techniques resulted in a drop in performance.

2.2. Study 2: Source Model Selection

Previous research findings provide valuable insights: (1)
Adversarial examples generated by high-capacity (more
over-parameterized) models exhibit higher transferability to
low-capacity networks, in contrast to adversarial samples
crafted by low-capacity networks, which have limited suc-
cess when transferred to high-capacity networks; (2) Em-
ploying an ensemble of networks proves to be more effec-
tive in generating transferable adversarial samples.

To evaluate the upper limits of our approach in tackling
the anything unsegmentable task, we conducted an ablation
study to assess the enhanced transferability of adversarial
examples generated from a more capable model.

In Table 1, we performed all experiments using SAM-
B as the source model, which has one of the smallest pa-
rameter sizes (91 M). Now, we aim to generate adversarial
samples based on larger and more powerful models, such
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Figure 7. We claim that prompt-specific attacks exhibit fundamental differences in the adversarial noise they generate, and their transfer-
ability is limited to a narrow range of prompts. Adversarial examples tend to overfit to the prompts used during the attack phase and have

limited impact on unseen prompts.

Models
Approach

SAM-B (source)

SAM-L

SAM-H FastSAM

| mIoU] | ASR@501 | ASR@107 | mIoU} | ASR@501 | ASR@101 | mloU} | ASR@501 | ASR@101 | mloU} | ASR@507 | ASR@101

UAD 51.53 43.89 20.79 66.07 26.44
UAD + DI [47] 56.74 41.01 18.51 70.19 24.54
UAD + MI [6] 55.99 44.29 21.54 67.79 25.29
UAD + MI [6] + DI [47] | 56.49 42.06 19.24 67.94 24.76

12.27 68.96 23.42 10.23 28.83 69.95 59.63
11.07 71.25 22.15 8.83 28.88 65.38 56.69
11.80 69.62 2322 9.97 27.44 70.97 59.81
11.32 69.26 23.03 9.51 27.60 70.36 59.58

Table 2. Results of combining our method with gradient momentum and input augmentation.

as SAM-L (308 M parameters) and SAM-H (636 M param-
eters). Additionally, we conducted experiments by ensem-
bling SAM-B and SAM-L. We couldn’t ensemble SAM-H
due to its high GPU memory consumption, as we have lim-
ited computational resources.

As indicated in Table 3, our attack, much like many other
adversarial attacks, demonstrates a tendency to overfit to
the source model. Specifically, when the source and target
models are identical, the attack performs significantly bet-
ter when the source model does not encompass the target
model. Interestingly, model ensembling further enhances
attack results; for instance, ensembling SAM-B and SAM-L
surpasses the performance of using SAM-B alone by a con-
siderable margin. Ensembling exhibits a stronger impact on

the global results, leading to a lower mean IoU (mloU).

3. Algorithm Pseudo-code

We present the pseudo-code of our attack in Alg.1.

4. Notations

We put all symbols appeared in this paper in Tab. 4 for
reference.

5. More visualization results

We visualize the attack effect under segment everything
mode (which provides a panoramic view without prompts)
on SAM-B and SAM-H models in Fig.8, Fig. 9 and 10. We



Target Models
Source Models SAM-B SAM-L

SAM-H FastSAM

| mIoU| | ASR@507 | ASR@107 | mloU| | ASR@501 | ASR@101 | mloU| | ASR@501 | ASR@107 | mloU) | ASR@507 | ASR@101

SAM-B (91 M) 51.53 43.89 20.79 66.07 26.44 12.27 68.96
SAM-L (308 M) 61.67 35.65 13.45 55.41 28.50 15.53 68.98
SAM-H (636 M) 61.06 35.69 13.87 63.92 24.32 13.04 63.31
SAM-B + SAM-L (Ensemble) 50.54 44.18 22.61 59.67 26.88 14.40 68.35

23.42 10.23 28.83 69.95 59.63
23.37 10.41 31.27 63.23 52.27
25.85 12.61 30.60 64.59 53.75
23.81 11.35 27.36 71.38 60.90

Table 3. Ablation study on source models used to craft adversarial examples.

Algorithm 1 Unsegment Anything by Simulating Deforma-
tion

Input: Input image: I;
Deformation parameters: w;
Maximal deformation iterations: Tp;
Maximal proxy perturbation iteration: T'f;
Maximal perturbation iterations: 7'
Perturbation step size: «;
Perturbation range: ¢;

Output: Adversarial perturbation: r

Table 4. Notation Table

Description

1: procedure UAD(I,w,Tp,T¢, T, o, €) .
2 T = Lr—0.tp=0420; Variable
3 Initialize w so that D,, produces identity mapping; I
4 While tp < Tp do > Stage 1: Deformation P
5: I=D,(); > Get deformed image M
6 =1, for
7 ty =05 hgp
8 Whilet; < Ty do © proxy adversarial sample Gom
9: I"=1"—a-sign(V Lp(I,1"); w
10: I" = clip(I" — 1)+ 1 Dy,
11: I" = clipo(I") I
12: end While wyr
13: L(w) = Lp(I, 1)+ Lo(w) + Lp(I, 1) w()
14: w=w—Vu,L(w) > Update deformation Yu
parameters AV
15: end While r
16: I1=7D, (I); > End of stage 1, deformed target fixed I'=I+7r
17: While ¢t < T do > Stage 2: Simulation Tp
18: I'=T1—a-sign(VpLp(l,I') o
19: I' =clip.(I' = 1)+ I T
20: I' = Clipo,l(l/) «
21: end While €
22: r=1—1 Lp
23: return r Lo
24: end procedure Lr
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compare the attack results with Attack-SAM and PATA++
to highlight the difference in failure patterns and our effec-
tiveness.
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Figure 8. Visualizations of attack results in panoramic view(I)
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Figure 9. Visualizations of attack results in panoramic view(II)
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Figure 10. Visualizations of attack results in panoramic view(III)
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6. Limitation and social impact
Limitation

While we have made a progressive step in the task of “Any-
thing Unsegmentable”, successfully creating an attack that
is effective and transferable across several models trained
under the Segment Anything task, we found it challeng-
ing when evaluating our attack on Segment Everything Ev-
erywhere Models (SEEM) [61]. The reason behind this
lack of transferability may stem from fundamental dif-
ferences in training data and tasks: SEEM is trained on
COCO02017 [30] with panoptic segmentation annotations.
Consequently, the feature space of the SEEM model in-
herently contains rich information about semantic labels,
which is significantly different with SAM family. We be-
lieve that this divergence in feature space is the primary
reason our attack did not transfer successfully.

However, we are optimistic about the potential for im-
provement. By introducing additional loss term that targets
the category feature space, we anticipate the development
of new and more powerful adversarial attacks capable of si-
multaneously compromising SAM, SEEM, and even more
promptable segmentation models.

Social Impact

Our primary goal is to protect the personal digital content
from potential copyright infringement and privacy breaches.
We envision users employing our approach to preprocess
their digital assets before uploading them to public web-
sites, thereby reducing the risk of misuse or theft of their
photos and digital creations.

An alternative approach, instead of incorporating adver-
sarial attacks, could involve implementing protective mea-
sures directly within the segmentation models themselves.
For instance, model publishers might consider adopting a
consensus not to perform valid segmentations on protected
data. However, establishing and enforcing such a consensus
is a complex challenge. Moreover, addressing the issue of
models that have already been downloaded and deployed by
potential adversaries presents its own set of difficulties.
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