
Supplementary Material for
Unsigned Orthogonal Distance Fields (UODFs):

An Accurate Neural Implicit Representation for Diverse 3D Shapes

A. Detailed Configurations
A.1. Training Details in Our method

All reconstruction results shown in this manuscript are
free of fine-tuning parameters in the network and the post-
processing method, thus are easy to reproduce. Each shape
is normalized with a radius of 0.9. In our training, the
UODFs for each model are trained for 100 epochs. The
method for point sampling during training is detailed in
Sec. 3.4 in the main manuscript. We adopt a batch size of
1024 points during training. The optimization is performed
using the Adam optimizer, starting with an initial learning
rate of 0.001, which is halved every 20 epochs.

A.2. Post-processing Details in Our method

In this section, we detail the post-processing meshing
process for UODFs. Our process begins with the employ-
ment of the VCGlib library [1], a comprehensive toolbox
also utilized by MeshLab [12], to compute normal for the
reconstructed grid edge points (GEP). The number of neigh-
boring point clouds required for merging when calculating
normal is set to the default value of 10. Subsequently, we
use screened Poisson surface reconstruction (SPSR) [7] for
meshing the point clouds. Within SPSR, we adhere to sev-
eral default parameters: the maximum depth of the octree
used for reconstruction is set at 8, the minimum number of
samples within each octree node is 1.5, and the interpola-
tion weight between point clouds is 4. It is worth empha-
sizing that all models presented in our paper strictly follow
these default VCGlib and SPSR settings, with no additional
modifications post-reconstruction. This consistent use of
default parameters ensures a standardized and reproducible
approach across all our models.

A.3. Configurations of Other Methods

SIREN [10]. We configure SIREN following the original
paper. Notably, in our experimental setup, we deliberately
abstain from utilizing the normal information of SIREN for
supervision. This exclusion aims to maintain uniform su-
pervision conditions across all methods. Furthermore, our
loss setup incorporates the Eikonal regularizer, denoted as
∇|f | = 1. This inclusion is specifically designed to align
with our Lder term, thereby maintaining fairness and con-
sistency in the comparative analysis of different methods.

NGLOG [11]. The official implementation of NGLOD in
accordance with the original paper is adopted. To attain a

more precise reconstruction model, we opt for a dense voxel
version of NGLOD. This variation permits NGLOD to en-
compass global SDF details, resulting in a more complete
surface reconstruction, thereby facilitating a fairer compar-
ison among different reconstruction methods.
NDF [3]. While the original NDF is designed to learn and
reconstruct a class of objects, including unseen ones, mod-
ifications to NDF are needed to align with single object re-
construction. To this end, we replicate 20 instances of a
single training model as input. Since the input point clouds
of each model consist of 50k points near the surface, our
configuration yields approximately 1 million sample train-
ing points, ensuring a similar scale to the sample inputs used
for UODFs. Moreover, to make a fair reconstruction com-
parison with UODFs, the point cloud estimated from NDF
prediction also undergoes SPSR with masking. This revi-
sion is non-trivial as it bypasses the use of BPA [2], whose
parameter configuration is tailored to different models.
GIFS [14]. Similar to NDF’s adjustment, GIFS is adapted
for single object reconstruction. The training process in-
volves replicating a single model 20 times to form a class of
identical objects. This approach generates 1 million learn-
ing points per object. For mesh reconstruction, we employ
GIFS’ default mesh post-processing extraction algorithm,
ensuring consistency with the original paper.
HSDF [13]. HSDF also undergoes modifications to fo-
cus on learning and reconstructing a single model. Similar
to NDF and GIFS, the sampling entails repeating a single
model 20 times, resulting in a mesh model extraction us-
ing the masked marching cube (MC) algorithm proposed
by HSDF.

A.4. Parameter Amount

Table A.1 presents a comprehensive comparison of the
total number of parameters utilized in various methods. In
our method, we employ a configuration of three 10∗256 and
3∗256 MLPs to separately regress UODF in each orthogo-
nal direction. Despite this seemingly large network setup,
our parameter amount (1.84M) is notably smaller than those
in three UDF regression methods and the state-of-the-art
SDF regression method NGLOD5.

Table A.1. Comparison of parameter amount.

Method SDF UDF UODFs
SIREN

[10]
NGLOD3

[11]
NGLOD5

[11]
NDF
[3]

HSDF
[13]

GIFS
[14] Ours

Paras. (M) 0.199 0.199 10.1 4.62 6.60 3.68 1.84
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B. Unstable Cases of SDF Sign
SDF presents unique challenges in determining the sign

at each sampling position, especially for complex shapes,
unlike UDF and UODFs that only require specific distance
values. This section discusses the instability issues associ-
ated with SDF computation using the following two cate-
gories of approaches.

• First Category: Implemented in the libigl library [6],
used by NI [4] and HSDF [13]. libigl employs the
generalized winding number to determine the inside or
outside positioning of points relative to a given mesh.

• Second Category: Adopted in NGLOD [11] and
Instant-NGP [9]. NGLOD initially computes the un-
signed distance, then determines the sign through ray
stabbing in 13 pre-defined directions. Instant-NGP fol-
lows a similar approach but uses BVH acceleration and
ray stabbing with 32 uniformly distributed directions.

Figure B.1 illustrates the marching cubes (MC) recon-
struction results based on the ground truth SDF computed
by NI and NGLOD, highlighting noticeable artifacts and
detail errors. In contrast, UODFs do not exhibit these is-
sues in ground truth computation, as evidenced by the com-
parative reconstruction metrics presented in Table B.2. The
table reveals that MC reconstructions based on ground truth
SDF are significantly less accurate and NGLOD tends to di-
minish high-frequency details in its regression to the ground
truth SDF.

Table B.2. Comparison of reconstruction for the birdcage.

Metric
Method

NGLOD3 NGLOD5 SDF GT
UODFs
Ours

CD-GEP(*105) ↓ 9.91 23.7 32.7 1.62
CD-Mesh(*105) ↓ 14.0 27.7 39.2 5.90
NC-Mesh ↑ 95.9 94.5 93.1 97.7

C. Additional Details of UODFs Fitting and
Reconstruction

C.1. 2D UODF Results

In this section, we present the additional details of
UODFs fitting and reconstruction using two distinct in-
stances: the closed ‘Rabbit’ from the Thingi32 dataset and
the ‘Dragon’ from the Stanford Scanning dataset.

Rabbit Instance:
• The fitting and reconstruction results at 2573 grid cor-

ners are displayed in Fig. C.2. The first row depicts the
predicted masks on three orthogonal planes, accompa-
nied by the number of rays (NoR) in each mask.

• The subsequent row details the maximum errors in
fitted UODF values along each orthogonal direction,
along with the number of outliers (defined as points
deviating more than 5 grids from the shape surface).

Figure B.1. Reconstructions of the watertight birdcage and the
non-watertight garment for two choices of SDF computation. Due
to the unstable SDF sign, most of the shape surface may not be
reconstructed.

• A significant reduction of outliers is observed from the
third row, due to averaging operations in estimating
GEP, as discussed in Sec. 3.5. Moreover, the fusion op-
eration results in only 4 final outliers, illustrating that
most outliers in one orthogonal direction are isolated.

• Fine-tuning efforts can be seen in the last two rows, in-
volving over-sampling rays with high prediction errors
and additional training epochs. This leads to a notice-
able decrease in outliers of the fitted UODF values, the
estimated GEP, and the fused GEP.

The right part of Fig. C.2 illustrates the results for the
‘Dragon’ instance, being more complex. Consequently, the
second to fifth rows show higher numbers of rays with out-
liers. Similarly, the number of final outliers in fused points
reduced from 32 to 13 after fine-tuning, affirming the ef-
fectiveness of our approach. As the complement of Fig. 3
in the main manuscript, Fig. C.3 shows a slice of UODF in
the other two orthogonal directions for the ‘Dragon’ model.
There is a subtle difference between ground truth and our
prediction, highlighted by black dotted circles.

These instances exemplify the effectiveness of our
UODFs fitting and reconstruction process. We empha-
size that the experimental results in our manuscript and
video are free of fine-tuning, although this can further
improve the visual effect and accuracy metrics.

2



Figure C.2. Detailed results of UODF fitting and reconstruction of grid edge points for ‘Rabbit’ and ‘Dragon’.

Figure C.3. One slice of the UODFLR and UODFFB of the ‘Dragon’ model. A subtle difference between ground truth and our prediction
can be seen in the areas drawn by black dotted circles in the UODFFB (with zoomed-in views).

D. Ablation of Point Merging Threshold

This section presents an ablation study on the point
merging threshold τ , initially introduced in Sec. 3.5. While
the threshold τ is set to 1/512 (a quarter of the grid size at a
2563 resolution) in our primary experiments, we explore its
impact on reconstruction accuracy by adjusting its value. τ
is additionally set to 1/256 (half of the grid size) and 1/128
(equal to the grid size). Along with the ‘Nandi the Bull’ and
‘Hilbert Cube’ from the main manuscript, we include the

‘Lamp’ from ShapeNet, the ‘Birdcage’ from Thingi10K,
and the ‘Armadillo’ from the Stanford dataset.

Table D.3 shows the three metrics across five shapes. It
indicates that the reconstruction accuracy remains largely
unaffected by variations in the point merging threshold.
Even at a threshold of 1/128, the accuracy metrics show
minimal sensitivity to this parameter. This finding suggests
a robustness in our method’s performance relative to the
point merging threshold.
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Table D.3. Ablation study of the point merging threshold τ . The metrics in each cell are CD-GEP(*105) ↓, CD-Mesh(*105) ↓, and NC-
Mesh ↑, respectively.

τ
Shape

‘Nandi the Bull’ ‘Hilbert Cube’ Lamp Birdcage ‘Armadillo’

1/512 0.228 / 2.77 / 98.5 0.00532/12.0/92.1 0.0399/2.43/98.8 1.62/5.90/97.7 0.684/2.37/97.8
1/256 0.217 / 2.77 / 98.5 0.00523/12.0/92.0 0.0398/2.43/98.7 1.66/5.93/97.6 0.726/2.39/97.8
1/128 0.210 / 2.76 / 98.5 0.00523/12.0/92.0 0.0405/2.44/98.8 1.69/6.02/97.7 0.707/2.39/97.8

E. Additional Reconstruction Results
This section presents additional reconstruction results

not included in the main manuscript.
First, we elaborate on the three reconstruction met-

rics for the ten non-watertight garments from the MGN
dataset in Table E.4. These results show that our UODFs
based NIR method significantly outperforms three other
UDF regression methods. We have already showcased the
‘TshirtNoCoat-1’ garment in Fig. 9 in the main manuscript
and the results for the remaining nine garments are illus-
trated in Fig. E.4.

Second, for the watertight shapes, additional results on
the Thingi32 dataset are displayed in Fig. E.5, demonstrat-
ing consistency with the findings shown in Fig. 6 and Ta-
ble 1 in the main manuscript.

Third, we present the outcomes for the additional four
complex shapes in Fig. E.6. The zoomed-in views further
underscore the high-quality shape reconstruction achievable
with our proposed UODFs.

Finally, more reconstruction experiments at various grid
resolutions from 323 to 2563 are conducted. Fig. E.7 shows
the results of four distinct shapes: two watertight and two
non-watertight. To highlight the reconstruction accuracy
of our UODF-based NIR method, we compare it with the
marching cube (MC) algorithm [8] and MeshUDF [5], that
utilize ground truth SDF and UDF as input, respectively.
Therefore, the MC and MeshUDF results do not suffer
from fitting errors of neural network, but are only affected
by interpolation errors. For these two watertight models,
our method achieves performance comparable to the MC
method across all grid resolutions. In the case of non-
watertight models, our method significantly outperforms
MeshUDF using the ground truth UDF as input, at all grid
resolutions. MeshUDF has some spurious meshes at the
edge of shapes, especially under lower resolutions. In addi-
tion, our meshes generated by SPSR [7] are smoother than
those extracted by MC and MeshUDF.
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Table E.4. Detailed reconstruction metrics for each of ten garments from the MGN dataset. The two CD metrics ↓ are multiplied by a
factor of 105.

Method
UDF regression UODFs regression

NDF [3] HSDF [13] GIFS [14] Ours

Shape
Metric CD-

GEP
CD-

Mesh
NC-
Mesh

CD-
GEP

CD-
Mesh

NC-
Mesh

CD-
GEP

CD-
Mesh

NC-
Mesh

CD-
GEP

CD-
Mesh

NC-
Mesh

TshirtNoCoat-1 146 145 94.4 8.52 10.1 90.0 2.13 3.32 97.7 0.212 1.87 99.8
ShortPants-1 154 155 93.6 13.5 17.7 93.4 2.04 5.05 97.4 0.162 3.60 99.6
Pants-1 81.7 82.0 94.0 14.4 15.8 90.1 2.0 3.49 95.4 0.284 2.04 99.6
Pants-2 148 145 91.5 17.9 19.4 88.3 3.78 5.07 90.9 0.182 2.05 99.7
ShirtNoCoat-1 34.9 34.8 93.7 12.0 11.8 81.7 16.5 16.1 84.6 0.311 0.929 99.7
TshirtNoCoat-2 158 156 91.5 7.98 9.40 91.0 2.12 3.35 95.6 0.156 1.86 99.8
ShortPants-2 245 248 93.4 13.2 17.2 91.6 2.46 5.21 97.3 0.143 3.43 99.7
ShirtNoCoat-2 107 104 77.2 13.6 13.1 85.2 8.24 8.0 86.7 0.183 0.777 99.7
LongCoat-1 135 141 88.1 10.4 11.4 88.4 6.62 7.24 86.0 0.368 1.69 98.9
LongCoat-2 66.9 65.0 90.7 18.0 18.3 80.5 3.61 3.88 88.5 0.264 1.07 99.7
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Figure E.4. Reconstruction results for other nine shapes in the MGN10 dataset.
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Figure E.5. Reconstruction results for more shapes in the Thingi32 dataset. The metrics from left to right below each shape are CD-
GEP(*105) ↓, CD-Mesh(*105) ↓, and NC-Mesh ↑, respectively.
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Figure E.6. Reconstruction results for additional four complex shapes.
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Figure E.7. Additional reconstruction results at various resolutions of grids. The metrics from left to right below each shape are CD-
GEP(*105) ↓, CD-Mesh(*105) ↓, and NC-Mesh ↑, respectively.
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