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The Supplementary Materials include the following contents:
1. The implementation details of our Spectrum AUC Differ-

ence metric and evaluation method.
2. Proof of our revision of the Cotan formula to be positive

semidefinite.
3. A counterexample of the original Cotan formula not guar-

anteed to be semidefinite.
4. Objects and distortions in our Shape Grading dataset.
5. Swiss system tournament in the human scoring process.
6. Examples and evaluation results of different metrics in

our dataset.
7. Implementation details on adapting SAUCD to training

loss for 3D hand mesh reconstruction.
8. Failure cases.
9. Discussion of future works.

1. Implementation Details
1.1. Discretization of Spectrum AUC Difference

Our Spectrum AUC Difference (SAUCD) is defined in main
paper Equation (7) as

d = D(M̂,Mgt) =

∫
λ

|F̂ (λ)− Fgt(λ)|dλ, (1)

where F̂ (λ) and Fgt(λ) are the test and groundtruth mesh
spectrum, respectively. To discretize Eq. (1) in the experi-
ments, we let {λ̂i} to be the discretized frequencies of F̂ (λ)
and {λgt,i} to be the discretized frequencies of Fgt(λ). We
sort the two sets {λ̂i} and {λgt,i} into one array from low to
high, resulting in a sorted array {λi} with Ngt + N̂ frequen-
cies, where Ngt is the vertex number of the ground truth
mesh and N̂ is the vertex number of the test mesh. The
Ngt + N̂ frequencies discretize Eq. (1) into the sum of the
area of Ngt + N̂ − 1 segments as:

d =

Ngt+N̂−1∑
i=1

si, (2)

where the area of each segment

si =

{
1
2 |Hi +Hi−1|(λi − λi−1), HiHi−1 ≥ 0

H2
i +H2

i−1

2|Hi+Hi−1| (λi − λi−1), HiHi−1 < 0,
(3)

is either a trapezoid when HiHi−1 ≥ 0 or two triangles
when HiHi−1 < 0. Here,

Hi = F̂ (λi)− Fgt(λi) (4)

is the amplitude difference between F̂ (λ) and Fgt(λ) at λi.
If λi is originally from the test mesh spectrum, then

F̂ (λi) = F̂ (λ̂i), (5)

and Fgt(λi) is calculated using interpolation as

Fgt(λi) =
(λgt,i+ − λi)Fgt(λgt,i+) + (λi − λgt,i−)Fgt(λgt,i−)

λgt,i+ − λgt,i−
,

(6)
where λgt,i− and λgt,i+ are the left and right nearest frequen-
cies of λi in the groundtruch frequency set {λgt,i}. Similarly,
if λi is originally from the ground truth mesh spectrum, then

Fgt(λi) = Fgt(λgt,i), (7)

and F̂ (λi) is calculated using interpolation as

F̂ (λi) =
(λ̂i+ − λi)F̂ (λ̂i+) + (λi − λ̂i−)F̂ (λ̂i−)

λ̂i+ − λ̂i−
, (8)

where λ̂i− and λ̂i+ are the left and right nearest frequencies
of λi in the test frequency set {λ̂i}.

In summary, to calculate the area of the region between
the two curves (i.e. AUC difference), we first sort the frequen-
cies from the test and ground truth spectrum in one array, and
interpolate the test and ground truth spectrum using the fre-
quencies from the other spectrum. Then, we calculate each
AUC difference in the range between two adjacent frequen-
cies and add them together. When HiHi−1 ≥ 0, the region
between the two curves is a trapezoid; when HiHi−1 < 0
the region is two triangles and we calculate the sum area of
the two triangles. Finally, the sum of the areas between adja-
cent frequencies is our Spectrum AUC Difference metric.

1.2. Discretization of Human-adjusted SAUCD

Our Human-adjusted SAUCD is defined in main paper Equa-
tion (8) as

d = D(M̂,Mgt) =

∫
λ

w(λ)|F̂ (λ)− Fgt(λ)|dλ. (9)
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Similar to SAUCD discretization, Human-adjusted SAUCD
can be discretized as

d =

Ngt+N̂−1∑
i=1

wisi, (10)

where si is defined the same as in Eq. (2), and wi is the
human-adjusted weight at λi in Eq. (3). Since the weight
vector w we use is only 20-dimensional to avoid overfitting,
we get each wi by interpolating w at each λi. Specifically,
the 20 elements of w represent the weights at frequencies
uniformly distributed in the range from 0 to 0.05. We denote
those 20 frequencies as {λw,k} on which the weights w are
explicitly defined, which means 0 ≤ k < 20, λw,0 = 0, and
λw,19 = 0.05. The last frequency location 0.05 is picked
empirically. Note that we use a revised version of Discrete
Laplace-Beltrami Operator (DLBO) as in main paper Equa-
tion (4) to make sure λi ≥ 0, then to calculate weight wi

whose corresponding λi /∈ {λw,k}, we only consider when
λi > 0. We use interpolation to calculate λi as

wi =

{
(λw,i+−λi)w(λw,i+)+(λi−λw,i−)w(λw,i−)

λw,i+−λw,i−
, 0 < λi < λw,19

λw,19, λi > λw,19,
(11)

where λw,i− and λw,i+ are the left and right nearest element
to λi in {λw,k}.

Having wi, we can calculate Human-adjusted SAUCD
following Eq. (10).

1.3. Evaluation methods

We use 3 different evaluation methods to evaluate the corre-
lation between our metrics and human scoring (ground truth)
on our provided Shape Grading dataset.

Pearson’s linear correlation coefficient (PLCC). Pear-
son’s correlation [21] evaluates the linear alignment between
our metrics and human evaluation. It is defined as

p =

∑N
i=1(hi − h̄i)(mi − m̄i)√∑N

i=1(mi − m̄i)2
√∑N

i=1(hi − h̄i)2
, (12)

where mi is the score of mesh i given by the tested metric
and hi is the groundtruth score (human scoring) of mesh i.
h̄i and m̄i are the average score of hi and mi, respectively.

Spearman’s rank order correlation coefficient
(SROCC). SROCC [23] is one of the most commonly used
metrics to measure rank correlations. It is defined as

rs = 1− 6
∑

(R(mi)−R(hi))
2

n(n2 − 1)
, (13)

where mi and hi is are defined the same as in Eq. (12).
R(mi) and R(hi) are the rankings of mi and hi, and n is
the amount of data. In our paper, n is the number of meshes
scored by one subject.

Kendall’s rank order correlation coefficient (KROCC).
KROCC [10] is also a rank order correlation. It is defined as

τ = 1− 2

n(n2 − 1)

∑
i<j

sgn(mi−mj)sgn(hi−hj), (14)

where mi, hi, and n is the same with Eq. (13), and sgn()̇
is the sign function, which means sgn(x) = 1 when x > 0,
sgn(x) = −1 when x < 0, and sgn(x) = 0 when x = 0.
The difference between SROCC and KROCC is that SROCC
considers the actual amount of rank order difference of input
data, while KROCC only counts the number of inverse pairs.

The possible ranges of all 3 metrics are [−1, 1]. Higher
numbers mean stronger correlations.

1.4. Human-adjusted SAUCD training

During training, Pearson’s correlation loss Lplcc and Spears-
man’s rank order loss Lsrocc in main paper Equation (9) are
defined the same as Eq. (12) and Eq. (13), respectively. Note
that, since the rank part of SROCC is not naturally differen-
tiable, we used a differentiable ranking approach provided
in [1] to make Eq. (13) differentiable. We set λp = 0.1 ,
λsr = 10, and λregu = 1 for main paper Equation (9). The
training process took about 1 minute on a 14-core Intel Xeon
CPU. The training code is implemented using PyTorch [20].

2. Proof of Positive-semidefiniteness of Revised
Cotan Formula

In this section, we prove that our revised version of the Cotan
formula in main paper Equation (4) is positive semidefinite.
Here, the DLBO defined in main paper Equation (4) is

Lij =


1
2

∑
j∈N(i) A

− 1
2

i A
− 1

2
j | cotαij + cotβij |, i = j

− 1
2
A

− 1
2

i A
− 1

2
j | cotαij + cotβij |, i ̸= j ∧ j ∈ N(i)

0, i ̸= j ∧ j /∈ N(i).
(15)

According to the Gershgorin circle theorem [8], for every
eigenvalue λk of L,

λk ∈
⋃
i

Si, (16)

where Si is the ith Gershgorin disc. The Gershgorin disc is
defined as

Si = {z ∈ C : |z − Lii| ≤ Ri =
∑
i ̸=j

|Lij |}, (17)

where C means the complex space. Since L is a real sym-
metric matrix, according to Eq. (15), the Gershgorin disc
degenerates into a line segment in the real space as

Si = {s ∈ R : |s− Lii| ≤ Ri =
∑
i̸=j

|Lij |}. (18)
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Figure 1. A simple mesh example to show that the original Cotan
formula does not guarantee to be positive semidefinite.

From Eq. (15), we can also have∑
i ̸=j

|Lij | =
∑

j∈N(i)

| cotαij + cotβij |
2
√
AiAj

= Lii. (19)

Note that Lii ≥ 0, so having Eq. (19), from Eq. (18) we get

Si = {s ∈ R : |s− Lii| ≤ Ri = Lii} ⇔ 0 ≤ Si ≤ 2Lii.
(20)

Thus, according to Eq. (16), we have

0 ≤ λk ≤ 2max
i

Lii,∀0 ≤ k ≤ N, (21)

where N is the number of vertices. Then, L is positive
semidefinite since L is a real symmetric matrix and all its
eigenvalues are greater than or equal to zero.

Q.E.D.

3. A Counterexample of the Original Cotan For-
mula not Being Positive Semidefinite

In this section, we provide a simple mesh example to show
that the original Cotan formula in main paper Equation (2)
does not guarantee to be positive semidefinite. As shown in
Fig. 1a, we reconstruct a 4-vertex mesh that is not Delauney
triangulated and the mixed Voronoi areas of the vertices are
not all equal. We make the two faces on the bottom (v1v2v0
and v3v0v2) be two congruent obtuse isosceles triangles
(shown in Fig. 1b). The apex angles of the two isosceles
triangles are 2π

3 , and the base angles are π
6 . If we make the

bottom two obtuse triangles form different angles to each
other, the top two triangle faces (v0v1v3 and v2v3v1) are
always congruent isosceles triangles (as in Fig. 1c), and their
apex angles vary continuously in the range of (0, π

3 ). Here,
we make the bottom two obtuse triangles form a certain
angle to each other so that the apex angles of the top two
triangles are equal to π

6 , which means their base angles are

5π
12 . For simplicity, we set the equal sides of the isosceles
triangles to be 1 (shown in Fig. 1a).

Now, we calculate the DLBO metric of this reconstructed
mesh using the Cotan formula in main paper Equation (2).
First, we calculate the mixed Voronoi area for each vertex.
Because of the shape symmetry, we only need to calculate
the mixed Voronoi areas for vertex v0 and v3. The mixed
Voronoi areas for vertex v2 and v1 are equal to v0 and v3,
respectively. For vertex v0, its mixed Voronoi area A0 can
be calculated as the sum of 2 times of yellow area in Fig. 1b
and 1 time of yellow area in Fig. 1c, which means

A0 = 2× (
1

4
× 1

2
cos

π

3
) + 1× (0.5 tan

π

12
× 0.5)

=
4−

√
3

8
,

(22)

where 1
2 cos

π
3 is the area of the outer triangle in Fig. 1b and

0.5 tan π
12 × 0.5 is the area of the yellow part in Fig. 1c. For

vertex v3, its mixed Voronoi area A3 can be calculated as the
sum of 1 time of green area in Fig. 1b and 2 times of green
area in Fig. 1c, which means

A3 = 1× (
1

2
× 1

2
cos

π

3
)

+ 2× (
1

2
× (sin

π

12
cos

π

12
− 0.5 tan

π

12
× 0.5))

=
3
√
3− 2

8
,

(23)

where sin π
12 cos

π
12 is the area of the outer triangle in Fig. 1c.

Second, we calculate the DLBO matrix according to main
paper Equation (2). The DLBO matrix of the constructed
mesh can be represented as

L =


w1

2A0

w0

2A0

w3

2A0

w0

2A0
w0

2A3

w2

2A3

w0

2A3

w4

2A3
w3

2A0

w0

2A0

w1

2A0

w0

2A0
w0

2A3

w4

2A3

w0

2A3

w2

2A3

 , (24)

where

w0 = −(cot
5π

12
+ cot

π

6
) = −2,

w1 = 2(cot
5π

12
+ cot

π

6
+ cot

2π

3
) = 4− 2

√
3

3
,

w2 = 2(cot
5π

12
+ cot

π

6
+ cot

π

6
) = 4 + 2

√
3,

w3 = −2 cot
2π

3
=

2
√
3

3
,

w4 = −2 cot
π

6
= −2

√
3.

(25)

Then, we can calculate the symmetric part of L as

Lsym =
L+ L⊤

2
. (26)



Distortion
types

Description Generating details

Impulse Adding impulsive
noise on mesh sur-
face

We add Gaussian noise on r percent of the ground truth mesh vertices. The mean
of the Gaussian noise is set to 0 and standard derivation is set to σ percent of the
mesh scale. For 4 levels of this distortion, (r, σ) are set to (1, 0.5), (5, 2), (8, 3),
and (1, 5), respectively.

Poisson recon-
struction noise

Synthesizing the
noise occurs in Pois-
son reconstruction [9]

We first use Poisson disk sampling [2] to sample sN points from the groundtruth
mesh surface, where N is the number of vertices in groundtruth mesh. Then, we
use Poisson reconstruction provided in MeshLab [5] to reconstruct the mesh surface
from the sampled points. The reconstruction depth is set to 6. For 4 levels of this
distortion, s is set to 0.9, 0.5, 0.2, and 0.05, respectively.

Smoothing Smoothing mesh sur-
face

We apply i times of λ− µ Taubin smoothing [25] to smooth the groundtruth mesh
surface, where λ = 0.5 and µ = −0.53. For 4 levels of this distortion, i is set to 5,
20, 50, and 200, respectively.

Unproportional
scaling

Stretching (or shrink-
ing) the mesh along x,
y, and z axis with dif-
ferent rates

We stretch the mesh to sx percent to its original length along x axis, and shrink the
mesh to sz percent to its original length along z axis. For 4 levels of this distortion,
(sx, sz) are set to (98, 102), (95, 105), (90, 110), (80, 120), respectively.

Low-
resolution
mesh

Simplifying mesh sur-
face to lower resolu-
tion

We simply the ground truth mesh surface using edge collapse algorithm [7]. For 4
levels of this distortion, the target face number is set to 5000, 2000, 1000, and 500,
respectively.

White noise Adding Gaussian
white noise on mesh
surface

We add Gaussian noise on all the groundtruth mesh vertices. The mean of the
Gaussian noise is set to 0 and standard derivation is set to σ percent of the mesh
scale. For 4 levels of this distortion, σ is set to 0.1, 0.2, 0.3, and 0.5, respectively.

Outlying
noise

Adding outlying
small floating spheres
around the mesh

We add floating spheres around the ground truth mesh to synthesize outlying noise
that occurs in 3D reconstruction. The number of the spheres is set to n and the radius
rA, where A is the maximum length of the mesh along x, y, and z dimensions.
The locations of the spheres are sampled randomly from a cube that surrounds the
ground truth mesh. The edge size of the cube is set to (1 + 6r)A. For 4 levels of
this distortion, (n, r) are set to (20, 0.002), (30, 0.004), (40, 0.006), (80, 0.008),
respectively.

Table 1. Distortions in our provided Shape Grading dataset.

We use Wolfram Mathematica [26] to calculate the eigenval-
ues of Lsym. The 4 eigenvalues are

λ0 =
2− 2

√
3

3

A0
,

λ1 =
2 + 2

√
3

A3
,

λ2 =
A0 +A3 −

√
2(A2

0 +A2
3)

A0A3
,

λ3 =
A0 +A3 +

√
2(A2

0 +A2
3)

A0A3
.

(27)

It is obvious that when A0 and A3 are both greater than 0,
λ0, λ1, and λ3 will be greater than 0. However, for λ2, we

have

λ2 =
A0 +A3 −

√
2(A2

0 +A2
3)

A0A3

=

√
A2

0 +A2
3 + 2A0A3 −

√
2(A2

0 +A2
3)

A0A3

≤
√

A2
0 +A2

3 + (A2
0 +A2

3)−
√
2(A2

0 +A2
3)

A0A3

= 0.

(28)

The equation holds if and only if A0 = A3. We know from
Eq. (22) and Eq. (23) that A0 ̸= A3. Thus, we have

λ2 < 0, (29)

which means in the given mesh example, the original Cotan
formula is not positive semidefinite.
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Figure 2. Examples of distorted meshes of different distortion levels in our provided Shape Grading dataset.
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Figure 3. Objects in our provided Shape Grading dataset and what the object numbers correspond to in main paper Table 2.

4. Objects and Distortions in Shape Grading

Fig. 3 shows the objects in our proposed dataset Shape Grad-
ing and what the object numbers correspond to in main paper
Table 2. We also show the distortion types that we used in
our dataset and how we generate them in Tab. 1. Fig. 2 shows
examples of distorted meshes of different distortion levels in
our dataset.

5. Swiss System Tournament for Human Scor-
ing

We do a Swiss system tournament for human scoring in main
paper Section 4.1. The tournament has 6 rounds. To begin
with, all 28 meshes are set to 0 points. In the first round, the

28 meshes are randomly sorted and we form the adjacent
meshes into pairs (the 1st and 2nd meshes form a pair, the
3rd and 4th meshes form another pair, etc.). Together, we
have 14 pairs. For each pair, we ask the subject which one is
closer to the ground truth. The mesh that the subject picked
will be added 1 point. From the 2nd to the 6th round, for each
round, we first sort the meshes by their current score from
low to high, and we also make pairs with adjacent meshes
in the sorted mesh array, like what we did in the first round.
The mesh closer to ground truth will be added 1 point. The
scores of the meshes after 6 rounds are their scores graded
by this subject. Fig. 4 shows the panel of our online human
scoring page.



Figure 4. The panel of our online user study system. The instructions on the left contain simple instructions for the subjects. On the right
side of the page, the top two videos are rendered from distorted meshes. The lower video is rendered from ground truth mesh.

6. More Examples and Evaluation Results

We show more examples in our dataset and evaluation results
using different metrics in Fig. 5. Compared to previous
methods, our provided metrics generally align better with
the human evaluation of mesh shape similarity.

7. Implementation Details on Adapting SAUCD
to Training Loss

We adapt SAUCD to a topology Laplacian version. Specifi-
cally, we replace the Laplacian matrix defined in the main
paper Eq.(4) to L = D − A defined in [4], where D is the
degree matrix of the mesh graph, and A is the adjacency
matrix of the mesh graph. By making the change, we can
avoid calculating a different SVD decomposition in every
training iteration when mesh vertex locations change. Our
network is designed as Fig. 6. The input image first goes
through a feature extraction CNNs network to get image
features, and uses that feature to generate MANO [22] mesh.
Then, we use features from CNNs network and 3 resolution
levels of Graph Convolution Networks (GCN) to reconstruct
the mesh details. In the main paper Fig. 8, we compare the
results using only MVPE loss (w/o SAUCD loss column)
and using both MVPE and SAUCD loss (w/ SAUCD loss
column). In this experiment, we use EfficientNet [24] and
GCN similar to [11].

8. Failure Cases
We also show a case that our metric does not provide accurate
evaluations aligned with the human evaluation in Fig. 7.

9. Discussions of Future Works
In future work, we plan to dig deeper into understanding
human sensitivity to frequency changes. To enhance the
robustness and applicability of our approach, we plan to
expand our dataset to include a wider range of distortions
and objects. While our current methods are effective on
general 3D meshes, we recognize the importance of de-
veloping specialized versions for particular areas of 3D
reconstruction, such as human body [12, 13, 18], human
face [6], human hand [19], or volumetric representations [14–
17]. Furthermore, the frequency method holds promise
for extension into 2D domains, including image classifi-
cation/segmentation/generation [29], as well as video analy-
sis/generation [3, 27, 28]. These future works will not only
refine our understanding of human perception alignment but
also broaden the potential applications of our research in
various fields.
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