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1. Algorithms

Algorithm 1: Class-wise Balanced Memory
Input: the minibatch stream data Bt in task Tt

the class-wise saved number {qci}Ki=1

the class-wise seen number {zci}Ki=1

the memory bufferMt and buffer size m
the random.choice function RC

for (x, y) ∈ Bt do
zci ← zci + 1, ci = y;
if |Mt| < m then
Mt.append(x, y)

else if qci < m
K then

ck ← RC({cj |qcj > m
K , 1 ≤ j ≤ K});

(x̂, ŷ)←RC({(x′
, y

′
)|(x′

, y
′
)∈Mt, y

′
=ck});

qck ← qck − 1, qci ← qci + 1;
Mt.delete(x̂, ŷ);
Mt.append(x, y);

else
ck ← y;
Mt←CW RSV (zck ,

m
K , (x, y),Mck

t )

end

Algorithm 2: Class-wise Reservoir (CW RSV )
Input: the class-wise seen number zci

the stream data (x, y)
the memory bufferMck

t

the class-wise maximum buffer size m
K

Output: the updated bufferMt

j = randint(0, zci );
if j ≤ m

K then
Mck

t [j]← (x, y)
end
return theMt;

*Corresponding author.

Table 1. Average ablation results of different combinations of
strategies in our devised diverse score guidance (DSG).

MNIST CIFAR10 CIFAR100
Methods FAA ↑ FF ↓ FAA ↑ FF ↓ FAA ↑ FF ↓
STG− PPP 89.25 1.48 48.44 0.67 30.55 2.54
STG− PPF 89.30 1.18 52.78 0.53 30.62 2.21
STG− PCP 89.91 1.38 56.34 0.58 32.22 4.05
STG− PCF (DSG) 90.20 1.17 57.36 0.51 33.07 4.40

2. Ablation on Strategies in DSG

In Section 3.4 of the main paper, we analyzed and demon-
strated the effectiveness of DSG’s specific design elements,
including CW RSV and the exclusive use of CW A.
However, we still need to evaluate the effectiveness of each
strategy — STG−P , STG−C, and STG−F — in DSG
and the improvements achieved by their combinations.

In Table 1, we present additional ablation results for var-
ious strategy combinations in DSG, tested on MNIST, CI-
FAR10, and CIFAR100. We use STG−PPP as our base-
line, which applies the sum of all class-wise scores for guid-
ing CP , CC , and CF . It can be observed that: (1) Com-
binations STG − PPF and STG − PCP both improve
the final performance of the model on three datasets, indi-
cating that either STG − F or STG − C make a positive
contribution to the critical coreset selection. (2) Compared
to STG − PCP , the combination STG − PPF makes a
more obvious effect in reducing the final forgetting, while
STG−PCP makes a more significant improvement to the
final average accuracy. (3) By combining all our designed
strategies, STG − PCF (i.e., DSG) reaches the highest
accuracy and lowest forgetting, which further proves that
all these strategies work well together and consistently im-
prove the final average accuracy and reduce the final forget-
ting of the model under the OBCIL. Overall, all these obser-
vations verify the effectiveness of each individual strategy
and their combined implementation in DSG.
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Figure 1. Average accuracy of the model in task-wise major
classes with RM and DVC on CIFAR10.

Table 2. Average ablation results of our method and other com-
petitors with different buffer sizes on MNIST.

|M | = 200 |M | = 500 |M | = 1000
Methods FAA ↑ FF ↓ FAA ↑ FF ↓ FAA ↑ FF ↓
Gdumb [7] 84.61 1.67 88.66 2.31 91.56 0.56
ER [4] 86.71 6.16 88.06 9.20 91.91 5.23
MIR [1] 86.83 4.02 88.76 6.30 91.92 4.50
OCS [8] 86.42 5.90 89.12 5.90 91.83 5.12
ER-ACE [3] 86.28 5.92 89.25 6.20 91.76 5.43
DVC [6] 86.68 6.41 88.90 6.93 91.32 5.76
RM† [2] 87.52 3.52 90.24 1.02 91.82 0.95
DECO 88.45 -0.15 90.89 0.72 92.55 0.48

3. Extra Experiment Results
3.1. Additional Task-wise Results

In Figure 5 of the main paper, we present the task-wise re-
sults of the model using our DECO and MIR methods to
clarify the reasons behind the significant differences in fi-
nal forgetting and to highlight the superiority of our DECO
in final task-wise average accuracy. For additional com-
parisons, we provide the task-wise results of the second-
best method RM (with balanced memory) and the third-best
method DVC (without balanced memory) in Figure 1.

Comparing the results in Figure 5 and Figure 1, it can be
observed that: (1) Although DVC effectively reduces final
forgetting and achieves higher final task-wise average accu-
racy than MIR, it still lags behind the final task-wise results
of RM and DECO. This indicates that a balanced memory is
the key to minimizing the final forgetting under the OBCIL
setting. (2) Although RM also enables continual learning
in all classes like our DECO, DECO reaches both higher
initial task-wise accuracy and higher final task-wise accu-
racy, which again demonstrates that our DECO is indeed
superior to any other competitor method. Overall, all these
results prove that our method is more effective than other
competitors under the OBCIL setting.

3.2. Additional Ablation on Buffer Size

In Table 3 of the main paper, we present the average ab-
lation results related to buffer size for all methods on CI-

Table 3. Average ablation results of our method and other com-
petitors with different buffer sizes on CIFAR100.

|M | = 500 |M | = 1000 |M | = 2000
Methods FAA ↑ FF ↓ FAA ↑ FF ↓ FAA ↑ FF ↓
Gdumb [7] 11.13 0.67 14.84 2.61 26.58 7.17
ER [4] 15.38 12.75 21.83 13.95 32.08 12.55
MIR [1] 16.02 13.11 22.53 14.83 33.06 13.58
OCS [8] 15.53 12.88 22.32 13.87 32.48 12.13
ER-ACE [3] 15.93 13.12 22.40 13.98 32.83 11.03
DVC [6] 16.04 14.80 22.42 14.04 32.98 13.97
RM† [2] 16.33 0.52 22.70 -0.27 32.89 3.59
DECO 16.84 1.07 23.32 -0.35 33.93 3.35

Table 4. Average ablation results of our method and other com-
petitors combined with augmentation strategy RandAug.

CIFAR10 CIFAR100 ImageNet
Methods FAA ↑ FF ↓ FAA ↑ FF ↓ FAA ↑ FF ↓
Gdumb [7] 54.13 1.68 27.60 7.69 27.86 3.98
ER [4] 64.71 11.59 36.01 16.75 42.56 14.93
MIR [1] 65.40 11.71 37.23 16.80 45.03 12.86
OCS [8] 66.23 11.31 37.33 15.31 45.74 12.53
ER-ACE [3] 65.73 11.66 37.46 15.37 46.89 11.10
DVC [6] 67.47 14.75 37.16 17.86 46.32 12.56
RM† [2] 68.03 -0.37 38.21 4.39 47.68 1.92
DECO 69.43 -0.60 38.93 3.96 50.67 1.30

FAR10. For a comprehensive analysis, we also include the
average ablation results on MNIST and CIFAR100 in Ta-
ble 2 and Table 3, respectively. It is obvious that our DECO
consistently reaches the highest final average accuracy and
also keeps the lowest final forgetting in most scenarios on
both datasets, regardless of buffer size variations. These re-
sults validate the good generalization ability of our DECO
across various coreset sizes.

3.3. Additional Ablation on Augmentation Effects

As data augmentation strategies are often used to enhance
training in many rehearsal-based methods, we examine the
impact of two types of data augmentation on all competi-
tors as well as on our DECO. According to the results
shown in Table 4 and Table 5, both RandAug [5] and “Cut-
Mix+AutoAug” [2] improve the performance of all meth-
ods. Notably, DECO not only achieves the best perfor-
mance but also surpasses other methods by a wider mar-
gin. Overall, these findings demonstrate the superiority of
DECO over other existing methods in generalization ability
when combined with various data augmentation strategies.
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