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Supplementary Material

1. Experimental Setup
1.1. Pre-Training

We use the widely-adopted VL methods — CLIP [7] and
BLIP2 [4] — for our analysis. For the natural pre-trained
variants, we use the official checkpoints provided by CLIP
and BLIP2. For the medical pre-trained variants, we pre-
train both methods on our Harvard-FairVLMed dataset af-
ter initializing from the official checkpoints. We fine-tune
CLIP for 10 epochs using the Adam [3] optimizer, with a
learning rate (Ir) of le-5. The hyperparameters 5; and (s
are configured at 0.1, along with a weight decay of 6e-5
and batch size of 32. These specific hyper-parameters were
selected after extensive tuning to achieve optimal perfor-
mance with CLIP. FairCLIP uses the same aforementioned
hyper-parameters, leveraging a batch size |B,| of 32 to draw
samples from each group. The Sinkhorn loss is integrated
with CLIP’s original loss function, using a weight of le-
7. For BLIP2, we primarily focus on the vision-language
representation learning stage (i.e., Stage 1) and use the offi-
cial ViT-L/14 model from CLIP with FP32 precision as the
frozen vision encoder. Following the official implementa-
tion, we use AdamW [5] as the optimizer, with 51, 82, and
weight decay set to 0.9, 0.98, and 0.05, respectively. We
also use a cosine Ir decay with a max, min, and warmup
Ir of le-4, le-5, and le-6, respectively. Moreover, we ap-
ply random resized cropping (224 x224) and random hor-
izontal flipping to the fundus images, whereas we utilize
the BLIP caption augmentations to pre-process the clinical
notes, with maximum words set to 50. Finally, all mod-
els are pre-trained on the paired fundus images and clinical
notes from Harvard-FairVLMed using a batch size of 32 for
50 epochs on a single V100 GPU. These pre-trained CLIP
and BLIP2 models are then used for the subsequent linear
probing and zero-shot evaluation.

1.2. Metrics

To comprehensively understand the balance between model
performance and fairness, we use multiple metrics for eval-
uation, including Demographic Parity Difference (DPD) [1,
2], Difference in Equalized Odds (DEOdds) [1], Area Un-
der the Receiver Operating Characteristic Curve (AUC),
Equity-Scaled AUC [6], and Group-wise AUC. Particularly,
DPD and DEOdds are widely used fairness metrics that fo-
cus on the fairness of the model’s predictions, ensuring that
no group is systematically advantaged or disadvantaged. In
contrast, AUC is a mainstream performance metric used in
medical scenarios. Group-wise AUC is an intuitive and
straightforward metric to reveal the discrepancy between

groups. In safety-critical medical applications, neither fair-
ness nor performance alone is sufficient as the sole mea-
surement criterion. Hence, ES-AUC is an effective metric
that efficiently balances both performance and fairness. It
offers a holistic evaluation, facilitating the analysis of the
trade-off between these two essential criteria. ES-AUC is
defined as:

AUC

ES-AUC = .
1+ 37 |AUC — AUC, |

where A can be {Asian, Black, White}, {Female, Male},
{Non-Hispanic, Hispanic}, or {English, Spanish, Others}.
A higher ES-AUC score indicates that the model achieves
not only greater performance but also simultaneously im-
proves model equity.

2. Results
2.1. CLIP vs. FairCLIP

In addition to the zero-shot comparison of CLIP and Fair-
CLIP presented in Section 5.3, Table S1 demonstrates their
end-to-end fine-tuning results, further validating the effec-
tiveness of FairCLIP. Once again, the performance is evalu-
ated using the metrics DPD, DEOdds, AUC, ES-AUC, and
group-wise AUC.

In terms of the racial subgroups, both CLIP and Fair-
CLIP show varied performance. For instance, in the ViT-
B/16 setting, CLIP achieves a lower DPD (5.85) compared
to FairCLIP (11.38), indicating a better balance in outcomes
across races. However, FairCLIP (ViT-L/14) outperforms
CLIP in AUC and group-wise AUC for the Asian and Black
groups, suggesting a more equitable performance across
these racial categories. For the gender subgroups, FairCLIP
consistently outperforms CLIP in both DPD and DEOdds,
indicating a more balanced performance between the male
and female subgroups. The AUC scores are also higher for
FairCLIP, with the ViT-B/16 achieving an AUC of 81.88
and a higher group-wise AUC for both genders. In terms of
ethnicity, FairCLIP generally achieves higher AUC scores
than CLIP. Notably, FairCLIP (ViT-L/14) shows a signifi-
cant improvement in ES-AUC (79.08) and group-wise AUC
for Hispanic groups. Lastly, for the language subgroups,
FairCLIP shows a slightly better performance in terms of
AUC and group-wise AUC for English and Spanish speak-
ers. However, both models struggle with the “Others” lan-
guage group, with FairCLIP (ViT-L/14) showing a notable
improvement in ES-AUC (74.44).

Overall, similar to the results presented in Section 5.3,
we observe that our proposed method FairCLIP consistently



Table S1. End-to-end fine-tuning results of CLIP vs. FairCLIP, reporting the mean and standard deviation across three random seeds.

Attribute Model DPD | DEOdds | AUC T ES-AUC 1 Group-wise AUC 1
Asian Black White
CLIP (ViT-B/16) 5.85 +3.39 10.68 + 3.75 81.19 £ 044  75.07 £+ 1.36 84.82 + 1.77 77.15 £ 1.17 81.73 + 0.61
Race FairCLIP (ViT-B/16) 11.38 £4.23 10.53 £ 3.10 81.70 £ 0.34  76.85 £+ 0.64 83.30 + 1.09 77.35 £ 0.87 82.07 +0.28
CLIP (ViT-L/14) 7.39 +1.98 10.59 £ 1.64 8021 £1.43 7537+ 1.03 82.04 +2.26 7629 £ 1.73 80.89 + 1.42
FairCLIP (ViT-L/14) 8.67 £4.32 8.84 524 81.80 £0.19  76.70 + 1.74 84.87 £ 1.05 78.52 £ 1.37 8217 £ 041
Female Male
CLIP (ViT-B/16) 1.89 &+ 1.65 6.78 £+ 2.88 81.19+0.44 7747 £0.51 78.96 £ 0.30 83.78 + 0.96
Gender FairCLIP (ViT-B/16) 1.72 £ 0.36 5.59 +£0.12 81.88 £ 0.30  78.46 + 0.31 79.84 £ 0.25 84.20 £ 0.33
CLIP (ViT-L/14) 1.85 £0.95 6.73 £ 1.39 80.21 £ 143  76.39 &+ 1.60 77.92 £ 1.56 8293 +1.25
FairCLIP (ViT-L/14) 226 +£1.28 7.58 +£2.59 81.07 £ 0.78  77.36 £ 0.27 78.86 £ 0.44 83.66 + 1.27
Non-Hispanic Hispanic
CLIP (ViT-B/16) 9.57 +£2.34 11.35 +5.03 81.19 £ 044  76.09 &+ 1.44 81.43 +0.53 74.68 £ 2.07
Ethnicit: FairCLIP (ViT-B/16) 12.80 £ 2.01 1449 £3.15 8147 £0.15 7822+ 144 81.61 £ 0.21 7742 £ 1.86
Y CLIP (ViT-L/14) 12.15 £ 3.21 15.08 £ 3.18 80.21 + 143 7579 £1.45 80.45 + 145 74.61 £ 1.59
FairCLIP (ViT-L/14) 10.47 £ 0.96 13.62 £ 2.15 81.47 £0.58  79.08 £ 1.16 81.57 + 0.64 78.52 £ 1.54
English Spanish Others
CLIP (ViT-B/16) 13.12 £ 3.49 22.10 +3.77 81.19+ 044  70.12 + 1.71 81.64 +0.43 80.59 £5.00 70.62 +3.25
Lan: FairCLIP (ViT-B/16) 1529 £ 1.83 21.14 £ 4.88 81.71 £ 028 71.74 £1.26 82.21 £ 0.30 7936 £1.89  70.63 £ 0.29
ANEUASE  CLIP (VIT-L/14) 1095+592 2658 +9.41 8021+ 143 7077+ 1.64  80.61 + 142 78.12+3.96  71.00 £ 1.48
FairCLIP (ViT-L/14) 15.81 £449 2518 +£11.78 8122+042 7444 +1.22 81.41 +0.36 80.59 +£4.38  75.65 + 0.88
outperforms CLIP.
2.2. Dataset Analysis
To supplement the details for our Harvard-FairVLMed
dataset presented in the main paper, here we provide addi-
tional analyses representing the distribution of words in the
clinical notes (Figure S1a), and the prevalence of subjects
across the race and gender attributes (Figure S1b and Slc),
respectively.
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In addition to the ablation studies presented in Section 5.4,
we also study the effect of |B,| in FairCLIP on model per-
formance. From the results in Figure S2a, we observe that
|B,| = 32 achieves desired performance.

Moreover, we also present detailed results for the clin-
ical note summarization, vision vs. multimodal features,
and natural vs. medical vision encoder ablation studies in
Tables S2, S3, and S4, respectively. For a comprehensive
discussion of these ablation studies, please refer to Section
5.4 in the main paper.

Furthermore, we present an ablation study on the effects
of € on model performance in Figure S2b. Also, we in-
clude additional fairness results based on marital status in
Figure S2c. Lastly, we provide a comparison of FairCLIP
against other fairness algorithms in Figure S2d.

Married

Single  Divorced Widowed Leg-Sep Race
Marital Status

(c) d
Figure S2. (a) Ablation study of using various || in FairCLIP,
(b) Ablation study on the effects of ¢ on model performance, (c)
Fairness results based on marital status, (d) Comparison of Fair-
CLIP against other fairness algorithms.
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Table S2. Impact of various LLM summarizations on the performance-fairness trade-oft of BLIP2.

Attribute Clinical Notes DPD| DEOdds| AUCT ES-AUC 1 Group-wise AUC 1
Asian Black White
Original 8.36 11.28 80.13 73.76 82.08 74.35 81.03
Race PMC-LLAMA  4.38 12.71 80.11 72.63 83.77 74.20 80.84
MED42 6.26 14.49 80.36 73.59 82.93 74.60 81.23
GPT-4 5.30 6.24 79.34 74.39 82.45 76.15 79.70
Female Male
Original 2.34 6.56 80.13 75.22 77.13 83.66
Gender PMC-LLAMA  1.72 7.92 80.11 74.20 76.43 84.39
MED42 0.72 420 80.36 76.19 77.84 83.31
GPT-4 3.18 9.51 79.34 73.49 75.67 83.64
Non-Hispanic  Hispanic
Original 16.26 20.59 80.13 77.18 80.28 76.46
Ethnicity PMC-LLAMA  14.96 16.17 80.11 76.24 80.24 75.17
MED42 16.32 18.25 80.36 76.98 80.49 76.11
GPT-4 16.55 15.83 79.34 76.40 79.44 75.59
English Spanish Others
Original 11.47 39.13 80.13 69.88 80.64 83.52 69.36
Language PMC-LLAMA  9.15 34.78 80.11 71.71 80.60 78.13 70.88
MED42 21.78 22.28 80.36 69.76 80.70 72.16 73.71
GPT-4 14.65 39.13 79.34 69.52 79.89 77.27 67.84

Table S3. Impact of vision-only and (vision + language) features on the performance-fairness trade-off of linear probing via BLIP2.

Attribute V L DPD| DEOdds| AUC?T ES-AUC*?T Group-wise AUC 1
Asian Black White
Race v X 6.26 14.49 80.36 73.59 82.93 74.60 81.23
v v/ 178 5.35 82.16 79.20 80.84 80.27 82.68
Female Male
Gender v oxX 0.72 4.20 80.36 76.19 77.84 83.31
v v 112 3.87 82.16 79.56 80.66 83.93
Non-Hispanic ~ Hispanic
Ethnicit v o oX 16.32 18.25 80.36 76.98 80.49 76.11
y v 7/ 16.19 15.69 82.16 78.98 82.29 78.26
English Spanish Others
Lansuage v X 21.78 22.28 80.36 69.76 80.70 72.16 73.71
suag v /1508 21.73 82.16 66.27 82.76 68.18 72.77

Table S4. Impact of using pre-trained vision encoders from natural (CLIP) and medical (PMC-CLIP) domains on the performance-fairness
trade-off of BLIP2.

Attribute Encoder Type DPD | DEOdds|, AUCT ES-AUC1T Group-wise AUC 1
Asian Black White
Race CLIP 6.26 14.49 80.36 73.59 82.93 74.60 81.23
PMC-CLIP 8.12 7.15 81.23 76.04 83.27 77.09 81.87
Female Male
Gend CLIP 0.72 4.20 80.36 76.19 77.84 83.31
ender PMC-CLIP 3.66 11.07 8123 7642 78.24 84.54
Non-Hispanic  Hispanic
Ethnicit CLIP 16.32 18.25 80.36 76.98 80.49 76.11
Y PMC-CLIP 15.20 15.33 81.23 77.28 81.43 76.32
English Spanish Others
CLIP 21.78 22.28 80.36 69.76 80.70 72.16 73.71
Language

PMC-CLIP 10.31 22.28 81.23 70.53 81.73 76.70 71.08
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