
Appendix

In the appendix, we provide additional details, results
and visualization. In Appendix A, we provide details about
algorithm, high-parameters and implementation of patch se-
lecting strategy of other ranking methods. In Appendix B,
we provides more results complementing Fig. 5 . In Ap-
pendix C, we provide more visualization compared with
other methods on different datasets.

Algorithm 1: Pseudocode in Pytorch Style
me,md: encoder and decoder
networks of MAE
g: ranking model
b,n,d: batchsize,the number of
visible patches and dimention of
tokens
for x in loader:

s = [] # pseudo labels
xv, xm = RandomSplit(x)
zv = me(xv) # zv:[b, n, d]
xa = md(zv)
for i in zv:

remove i-th visible token
z = zv.remove(i)
x = md(z)
s.append((xa-x).abs().mean())

y = g(xv) # y:[b, 196]
Select predictions of visible
patchesy:[b, n]
y = y.Select()
loss = ListMLE(y, s)
loss.backward() # back-propagate
update(g) # AdamW

def ListMLE(y,s):
i=s.argsort(descending=True) # ⇡

y =y.gather(i,1)
Eq.(3)
t=y .exp().flip(1).cumsum(1).filp(1)
loss=torch.log(t)-y
return loss.sum(1).mean()

A. Implementation Details

A.1. Pre-training

Hyper-parameters for both pre-training and fine-tuning of
LTRP mostly follow MAE (all differences are listed in
Tab. 3). The ranking model outputs a 196-d vector cor-
responding to the semantic density scores of all patches.
Considering the sparse design, we only select the dimen-
sions corresponding to the visible patches from this output,

config value
masking ratio 0.9
epochs 400
weight decay 0.06
loss ListMLE
MAE model ViT-B
ranking model ViT-S

Table 3. Pre-training Setting

and compute the ranking loss. We also present pseudocode
implementation of the pre-training in Algorithm 1.

A.2. Patch Selection

For fairly comparing the leading methods, we only utilize
these methods to select patches and thus, their difference
lies solely in the patch selection stage. We present the se-
lected patches of different methods in Fig. 11. The detailed
implementation of these methods is presented below (as-
sume retaining k tokens):

GradCam. GradCam is a heatmap-based visualization
technique. It highlights image regions based on a given cat-
egory. We regard it as an image perception baseline of tra-
ditional supervised classification networks. The network in
our GradCam is ViT-S. Notably, the target category is de-
termined by the predicted category, rather than the label.
After getting the heatmap with size of 14⇥14, we preserve
patches with the highest values in the heatmap.

GFNet: The original GFNet with ResNet50 selects con-
tiguous region with size of 128⇥128. In our implement, we
select 8⇥8 patches around the predicted coordinates as in-
formative patches. We utilize the final decision coordinate
array from the original paper as our predicted coordinates.

IA-RED
2
: We select patches with top k scores by us-

ing its official interpretation tool 1. It predicts scores based
on the multi-head interpreter in the 2th group. It employs
DeiT-S as its model.

EViT: We preserve the patches corresponding to atten-
tive tokens outputted from the 4th layer of a pre-trained
EViT-DeiT-S, a variant of DeiT-S, according to the original
paper.

MoCo: We also introduce contrastive learning methods
into patch selection. Given the latest heatmap of MoCo with
ResNet50, we resize it to 14⇥14, and also retrain k patches
with the highest active values.

DGE: We apply ToMe to dig out the relationship among
tokens of DGE. Specifically, we use a dot product similar-
ity metric between the keys (K) of each token in the last
layer. Then we choose top-k tokens from the result of class
token. We pad images to 256x256 which is consistent with

1http://people.csail.mit.edu/bpan/ia-red/

the original input.
DynamicViT: The implementation of DynamicViT pro-

vides a list attribute base keep rate with length 3 in back-
bone. We first calculate the cube root of (k /196). Then
we append it, its square and its cube into this list. We can
get a decision after forwarding and get the most informa-
tiveness patches from the function get keep indics with this
decision.

AdaViT: We get the remained tokens according to the
token select attribute from outputs of backbone.

DINO: We utilize the original code 2 of attention’s vi-
sualization in the last layer. But we employ the summa-
tion result among six heads (ViT-S). Because all head have
their own interesting regions, thus summation can effec-
tively capture the overall content of the entire image. We
remain tokens with the largest activation value.

ToMe: We set the r value in the original code to our keep
ratio. Then we can get the clustering group from the source

attribute of backbone (ViT-S).
LTRP: We get predicted scores for all patches after di-

rectly feeding images into the trained ranking model. We
select the top-K patches according to different keep ratios.

Figure 9. Recall results on six classes of ADE20K. LTRP outper-
forms others in capturing things (such as screen, hood and sculp-
ture, see the upper row), but is slightly inferior in capturing stuff
(such as pavement, path and swimming pool, see the bottom row).

B. Patch-level Evaluation

We provide more experiments regarding the patch-level
evaluation in this part. First, we manually exclude cate-
gories overlapped with ImageNet-1K (learned categories).
For MS-COCO, we filter out 13 unseen classes from the
80 classes including person, traffic light, fire hydrant, stop

sign, giraffe, frisbee, surfboard, fork, sandwich, carrot,
toothbrush, sink, potted plant. For PASCAL VOC, we only
filter out person from the 20 classes. For ADE20K, we
do not filter any class because it has 2,693 classes. Alter-
natively, we provide results of a few representative classes
covering things and stuff.

2https://github.com/facebookresearch/dino/blob/main/visualize attention.py

In Fig. 12, we provide results on learned classes of MS-
COCO and PASCAL VOC. It has shown that LTRP has
highly competitive results compared to other methods in
evaluation based on object detection labels. However, it
performs worse than the leading methods evaluations based
on semantic segmentation masks. This can be interpreted
by the fact that LTRP needs to focus on other non-label re-
gions under the same krs. In Fig. 9, we notice that LTRP
performs well in capturing things categories and slightly
worse in capturing stuff. This can be explained as things
categories contain more high-level semantics.

Figure 10. Visualization comparison of self-supervised methods
(from top to bottom are MoCo, DINO and our LTRP).

C. More Visualization

We also visualize the results of choosing the most infor-
mative patches under an extremely low keep ratio by using
different self-supervised methods. As shown in the top of
Fig. 10, MoCo focuses on a few local parts and the focus of
DINO is more discrete, mainly due to using different back-
bones (CNN and ViT). Nevertheless, compared to DINO,
our LTRP can perceive even more discrete objects. We pro-
vide more visualization in Fig. 13 and ????.

Ori Grad-Cam DGE EViT DynamicViTIA-RED2 AdaViT ToMe MoCo DINO LTRP

Figure 11. More visualizations of redundancy reduction of the compared methods on validation set of MS-COCO. They are all pre-trained
(unsupervised) or trained (supervised) on ImageNet-1K. From left to right: raw image, GradCam, DGE, EViT, DynamicViT, IA-RED2,
AdaViT, ToMe, MoCo, DINO and LTRP. Supervised methods are located between the two red lines.

Figure 12. Experimental results on object detection and semantic segmentation datasets. For each dataset, only the learned categories are
considered.

Figure 13. More examples of patch removing on validation set of ImageNet-1K, using an MAE-B trained on ImageNet-1K. For each
quintuplet, we show the raw image, anchor image, two reconstructions with noticeable changes, and one with not detectable change. The
red patch denotes the further removed visible patch.

(a) ImageNet-1K

(b) MS-COCO

Figure 14. More samples of normalized score maps on validation set of ImageNet-1K and MS-COCO generated by using LTRP trained
on ImageNet-1K.

	. Introduction
	. Related Work
	. Image Redundancy Reduction
	. Learning to Rank

	. Method
	. Preliminary
	. Patch Informativeness Inference
	. Learning to Rank
	. Patch Selection

	. Experiments
	. Datasets and Experimental Setting
	. Performance Evaluation
	. Ablations
	. LTRP for Efficient ViT
	. Visualization

	. Conclusion
	. Implementation Details
	. Pre-training
	. Patch Selection

	. Patch-level Evaluation
	. More Visualization

