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In this document, we provide a list of supplemental ma-
terials to support the main paper.

Calculation details of physical metrics. In Section 1,
we provide the detailed calculation process of our physical
metrics.

Choices of physical properties. In Section 2 we discuss
our choice of the physical properties such as object mass
and friction coefficient.

Additional ablation study. We show results from an ad-
ditional ablation experiment in Section 3. In this experiment
we explore how the data distribution of the dataset used to
train the neural physical losses affect their performance.

Implementation details. In Section 4 we provide the
implementation details of our work.

Failure cases. In Section 5 we discuss the failure cases
of our method.

Limitations In Section 6, we discuss the limitations of
our work.

1. Calculation details of physical metrics
To train the manipulation feasibility loss Lmanip, we first cal-
culate the FE and ME metrics as hard and soft training
targets for hand poses in the dataset.

For the force error metric FE, given object surface nor-
mal at the M contact points {n⃗j}Mj=1 and the target force=
F⃗ , to obtain the force error defined as:

FE({n⃗j}Mj=1, F⃗ ) = min
f⃗j

||f⃗j ||
·(−n⃗j)≥

√
1

1+µ2

||
M∑
j=1

f⃗j − F⃗ ||

we first simplify the optimization problem by using tri-
angular pyramids to approximate the friction cones. To
be specific, for the M contact points, we pick {Vj =
[v⃗1j , v⃗

2
j , v⃗

3
j ]}Mj=1 as the normalized force basis. The angle

between each column in [v⃗1j , v⃗
2
j , v⃗

3
j ] and −n⃗j is equal to

the angle of friction computed with µ. v⃗1j , v⃗
2
j and v⃗3j form

the three lateral edges of a regular triangular pyramid, as
shown in Figure 1. The positive span of v⃗1j , v⃗

2
j and v⃗3j ap-

proximates the possible space of force f⃗j exerted at the j-
th contact point. With this parametrization, we denote the

Figure 1. We parametrize the force applied at each contact point
for computing the force error metric, θ is the friction angle.

force parameters at the j-th contact point as pj ∈ R3, the
optimization problem is then simplified as:

FE′({n⃗j}Mj=1, F⃗ ) = min
{pj}M

j=1

||
M∑
j=1

Vjpj − F⃗ ||,

s.t. p1j , p
2
j , p

3
j ≥ 0, j = 1, 2, . . .M

We solve for {pj}Mj=1 through an optimization with non-
negative least square. Ideally, for hand poses that can ma-
nipulate the object feasibly, the objective will be optimized
to 0. We threshold the FE value at cFE = 0.1||F⃗ || to ver-
ify whether a given frame from a hand-object interaction
sequence is feasible.

For the manipulation expense metric ME, we solve the
constrained optimization using the penalty method. Given
the object normal {n⃗j}Nj=1 at N points sampled on the
object surface and {dj}Nj=1 that denotes the signed dis-
tance between these object points and their corresponding
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hand points, we first obtain an intermediate representation
u ∈ R256, which fuzzily depict the plausibility of apply-
ing forces to the object in 256 discrete directions. We sam-
ple 256 directions on the unit sphere and denote them using
matrix W = [w⃗1, w⃗2, . . . , w⃗256] ∈ R3×256. The cosine
similarity distances between these directions and the object
normal directions are depicted by a matrix Q ∈ RN×256.
The (j, k) element of Q is defined as:

Qjk =

{
1 if (−n⃗j) · w⃗k ≥

√
1

1+µ2

0 otherwise

The k-th element uk of u is then defined as:

uk = min
j=1,2,...,N

Qjk=1

(|dj | − ccontact)
+

where ccontact = 2mm denotes the contact threshold. Intu-
itively, the value uk reflects how implausible it is to apply
force in the direction of w⃗k to the object for the given hand
pose. With this representation u, let q ∈ R256 denote the
magnitude of forces applied in the 256 directions, then an
approximation of the ME metric can be expressed as:

ME′ = min
qk≥0

Wq=F⃗

u · q

We use penalty method to solve for q. To be specific, we
turn the constrained optimization problem into an uncon-
strained one with penalties:

ME′ = min u ·q+Me||Wq− F⃗ ||+Mc

256∑
k=1

max(0,−qk)

where Me and Mc are large constants to force q to follow
the constraint conditions. This unconstrained optimization
problem can be solved with gradient descent.

2. Choices of physical properties
Object mass. Essentially, telling whether the given hand
poses can feasibly manipulate the object along its trajectory
doesn’t require the absolute values of forces exerted at each
contact point, and it’s actually practically impossible to ob-
tain the absolute values without sensors due to force ambi-
guity, i.e., different force combinations can have the same
result. The force calculation process in the two metrics is
more of an intermediate means for evaluating whether the
given hand pose can possibly supply force in a certain direc-
tion (in force error), and if not, how far it is from the closest
plausible hand pose (in manipulation expense). Our ulti-
mate goal is to train a neural loss that differentiably quanti-
fies the manipulation feasibility, with the knowledge of the
two metrics.

Therefore, setting the mass to a fixed value doesn’t in-
fluence our de-noising process since the object mass is only
a relative value for solving forces, and doesn’t affect resul-
tant force distribution of the optimization process. Differ-
ent mass values will result in the same force error since this
metric reflects the relative error. The manipulation expense
would be scaled proportional to the mass, but as long as we
use the same mass value for the whole dataset, the relative
values of manipulation expense can still reflect the plausi-
bility of different hand poses.

Friction coefficient. Setting a fixed friction coefficient
is a common practice in previous works [1], [5] though it
could theoretically influence the denoising process (for ex-
ample if we set the friction coefficient to zero it would be
very hard to support the manipulation anymore). In prac-
tice, we find our method to be quite robust. Our early obser-
vation reveals that as long as the selected friction coefficient
isn’t too off, the result of force error and manipulation ex-
pense can align well with human perception concerning the
manipulation feasibility. A better solution might be training
neural losses with different friction coefficients and using
system identification to adapt the method to different ob-
jects, yet that would be out of this work’s scope.

3. Additional ablation study

Data variation in training neural physical loss. To im-
prove the generalization ability and the smoothness of the
loss landscape of our neural physical losses, we use interpo-
lation of the MANO [4] parameters to assure the data vari-
ation in the dataset used to train the losses. To verify the
effectiveness of this design, we use two different schemes
to generate two other training datasets. For a given HOI
dataset containing ground truth data {(Hi, Oi)}Di=1, we i)
add (m − 1) different sets of Gaussian noise with a fixed
standard deviation σ to the hand MANO parameters of each
HOI frame, and ii) add Gaussian noise with standard devi-
ations of { j

m−1σ}
m−1
j=1 to the MANO parameters of each

frame to get the perturbed version of the HOI dataset. The
perturbed poses generated in these two ways are mixed with
the ground truth poses to form two training datasets for the
neural loss terms respectively. Notice that both these two
dataset have the same size as the dataset obtained with in-
terpolation. The performance of loss terms trained on all
three datasets is shown in Table 2.

P

Adding object acceleration as the network input. We
evaluate the influence of adding object acceleration as the
network input. As the results in 1 show, the information of
object acceleration helps with producing physically plausi-
ble manipulation, while whether to include that information
in stage I makes little difference.



Table 1. Acc- denotes the network that doesn’t consume acceleration in either training stage, Acc I+ II denotes the network that consumes
acceleration in both stage I and stage II, while Acc II only takes acceleration as input in stage II.

MPJPE MPVPE contactIoU IV pd plausible rate

Acc- 7.56 6.89 22.15 1.11 0.43 0.85
Acc I + II 7.40 6.76 23.90 1.13 0.45 0.91

Acc II 7.39 6.78 23.94 1.13 0.44 0.91

Table 2. We train the two neural physical loss terms on perturbed
datasets with different noise distribution. Fixed SD refers to the
dataset obtained by adding Gaussian noise of a single fixed stan-
dard deviation to ground truth hand poses, while various SD refers
to the dataset obtained by adding noise of various standard devia-
tion to the ground truth. The dataset in our method contains paths
from noisy poses to clean ones obtained by interpolation. Neural
physical losses trained on this dataset exhibit better performance
when exploited.

(a) Distribution of noise in the perturbed dataset used when training grasp
credibility loss.

PD IV

fixed SD 0.51 1.72
various SD 0.45 1.15

interpolation 0.44 1.13
(b) Distribution of noise in the perturbed dataset used when training ma-
nipulation feasibility loss.

plausible rate

fixed SD 0.84
various SD 0.89

interpolation 0.91

4. Implementation details

Our pipeline is implemented on Python 3 and PyTorch. We
use the Adam optimizer [2] and the cosine annealing warm
restart [3] learning rate scheduler for training of the neural
loss terms and the de-noising network. At inference time,
our pipeline runs at approximately 1 fps on Intel Xeon Plat-
inum 8358 CPU @ 2.60GHz.

5. Failure Cases

We observe that when the noisy input deviates largely from
the correct pose, e.g. large translation error, our method
occasionally fails to recover the correct pose, but rather falls
into other plausible results. Besides, as our method only
considers one-hand scenario currently, it cannot well handle
the cases of two-hand manipulation which involve object-
hand interaction and hand-hand interaction.

6. Limitations
We only consider the setting of in-hand manipulation of
rigid objects. However, in real human-object interaction,
it’s common that the object being manipulated also receive
forces from the environment beside human hand. For in-
stance, in the scenario of dragging a chair, the chair also
receive a supporting force from the ground. Besides, to
obtain physically plausible interaction sequences between
hand and articulated objects, more sophisticated dynamic
model should be used to consider the interaction between
different articulated parts.
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