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Supplementary Material

A. More Details

Proposal Setting Details. To generate a bag of initial hori-
zontal proposals from each point label, a set of basic scales
{s1, s2, ..., sG} and a set of basic ratios {r1, r2, ..., rR} are
employed, where G and R are the numbers of scales and
ratios, respectively. Specifically, the basic scales are set
to {4, 8, 16, 24, 32, 48, 64, 72, 80, 96} and the basic ratios
are set to {1/3, 1/2, 1/1.5, 1.0, 1.5, 2.0, 3.0}. In the refined
Multiple Instance Learning (MIL) head, we follow the set-
tings in [2], employing shake and random jitter to refine the
selected horizontal proposals or rotated proposals from the
first MIL head, with the shake ratio set to 0.1 and jitter ra-
tios set to {1, 1.2, 1.3, 0.8, 0.7}. It is important to note that
during the reproduction of P2BNet [2], all parameters re-
mained consistent with the aforementioned.
Framework Structure Details. For the self-supervised an-
gle learning branch in the angle acquisition module, we con-
struct 4 parameter-shared 3x3 convolutional layers to pro-
cess the dense features from the neck (e.g., FPN [5]). Ad-
ditionally, when employing the Dense-to-Dense assignment
strategy for positive sample selection, for each level of fea-
ture maps, we set a circular region with a radius of 1.5 times
the corresponding stride. All grid points within this region
are selected as positive samples. To extract features from
rotated proposals generated after Dense-to-Sparse matching
or random rotation, rotated RoI extractors are employed to
perform rotated RoI alignment.
Detailed Ablation Result. Tab. 1 presents the detailed re-
sults of Tab. 3 in the main paper.

B. Detailed Analysis of SSC Loss

In this section, we further analyze the inconsistency present
in the MIL approach and the impact of SSC loss, providing
additional visual analysis.
Inherent Instability of MIL. As mentioned in the main pa-
per, the MIL fashion tends to focus on the most discrimina-
tive part of an object instead of its exact scale and boundary.
This phenomenon is referred to as local focus. We have fur-
ther observed that in aerial scenes, MIL fashion not only
suffers from the local focus but also encounters the back-
ground prediction issues, the latter means that the predicted
boxes may encompass the surrounding background of the
object. As shown in Fig. 1, we visualize the prediction re-
sults of our method under the original MIL fashion without
employing SSC loss. It can be observed that the confidence
scores of candidate proposals closest to the ground truth
boxes may not be the highest, resulting in inconsistencies
between confidence scores and positional precision.

Figure 1. Local focus and background prediction problems in MIL
fashion. The red bounding boxes indicate the ground-truth boxes.
Bounding boxes with other different colors and the corresponding
scores represent the top-k candidate proposals, along with their
confidence scores (the product of class scores and instance scores).
It can be observed that the candidate proposals with the highest
confidence scores may not necessarily be the ones closest to the
ground-truth boxes.

More Analysis of SSC Loss. To better showcase the score
distributions before and after employing the SSC loss, we
employ two-dimensional line charts in addition to the con-
tour plot graph in the main paper.

Specifically, we visualize the score distributions grouped
by scale and grouped by ratio, as shown in Fig. 2 and Fig. 3,
respectively. From these two figures, we can observe that
whether grouping the score distributions by scale or ratio for
calculating the SSC loss, the consistency of score distribu-
tions between the original view and resized view (indicated
by peaks of the same color) is enhanced.

Moreover, the visualization results align with the cor-
responding experimental results in the main paper. In the
ablation study of the grouping type used in the SSC loss,
the two grouping types (i.e., ratio and scale) exhibit rela-
tively close results (36.71% and 38.08% in mAP50 metric).
This indicates that grouping by scale and ratio can both re-
flect consistency based on the variations in the distribution,
whereas grouping by proposal results in a significant per-



SSC DS PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP50

28.60 59.36 2.75 52.95 63.75 35.89 28.73 1.44 7.73 15.91 1.38 45.50 18.61 36.86 27.20 28.44

✓ 28.91 71.89 4.55 65.79 68.96 46.88 33.05 1.52 10.09 25.29 0.58 44.38 30.01 39.37 23.50 32.98

✓ 29.41 60.36 4.13 58.76 65.33 39.01 30.93 3.76 7.24 17.88 2.61 46.42 26.12 38.22 29.21 30.63

✓ ✓ 28.29 70.71 1.52 64.94 68.82 46.75 33.85 9.09 9.98 20.06 0.16 47.02 29.72 38.23 30.55 33.31

Table 1. Detailed ablation result on the DOTA-v1.0 testing set.

Figure 2. Line graphs of instance score distributions from the original and the resized views before and after employing the proposed SSC
loss, the distributions are grouped by scales.

formance decline (30.42% in mAP50 metric). We believe
that grouping by proposal implies forcibly aligning the con-
fidence scores, neglecting the inherent differences between
the two views. In short, grouping by ratio or scale repre-
sents that the discrete distribution of confidence scores from
a specific dimension is beneficial for performance.

C. Impact of Different Pre-trained Models
In this section, we explore the impact of using different pre-
trained models. To investigate whether increasing the vol-
ume of data can effectively enhance the MIL network’s per-
ceptual ability for object scales, we employ MS COCO [4]
as the pre-training dataset and train our model on the gen-
eral object detection task.
Experiment Settings. MS COCO is a large-scale dataset
for common object detection with horizontal bounding
boxes. Throughout the pre-training process, we don’t cre-

ate additional enhanced views (i.e., resized view and ro-
tated/flipped view), solely employing the original view for
training in the horizontal object detection task. As the
parameters in the MIL heads are shared among the three
views, the overall network can acquire fundamental per-
ceptual capabilities from the pre-training. During pre-
training on the MS COCO dataset, we follow the ”1x” train-
ing schedule in MMDetection [1], setting the learning rate
to 0.02, while keeping the remaining hyper-parameter un-
changed.

Experiment Results. As illustrated in Tab. 2 and Tab. 3, af-
ter employing the COCO pre-trained model, our approach
demonstrates improved performance, reaching 42.50% on
the DIOR-R dataset and 46.22% on the DOTA-v1.0 dataset,
surpassing the ImageNet pre-trained model by +4.42% and
+12.91%, respectively. This demonstrates the immense po-
tential of our approach.



Figure 3. Line graphs of instance score distributions from the original and the resized views before and after employing the proposed SSC
loss, the distributions are grouped by scales.

Method APL APO BF BC BR CH ESA ETS DAM GF GTF HA OP SH STA STO TC TS VE WM 8-mAP50 mAP50

Ours (Oriented R-CNN) [3] 58.2 15.3 70.5 78.6 0.1 72.2 69.6 1.8 3.7 0.3 77.3 16.7 4.0 79.2 39.6 51.7 44.9 16.8 33.6 27.7 57.38 38.08

Ours* (Oriented R-CNN) [4] 57.9 8.7 86.1 57.1 0 74.7 69.6 13.5 2.5 68.5 85.7 15.0 1.0 68.8 55.6 55.6 68.5 6.1 43.4 12.3 60.31 42.50

Table 2. Results of employing different pre-trained models on the DIOR-R testing set. ‘Ours” indicates employing backbone pre-trained
on the ImageNet. “Ours*” indicates employing the basic network pre-trained on the MS COCO.

Figure 4. The visual detection results. “Ours*” indicates employing the pre-trained weights on the MS COCO dataset.

Visual Results. For the experimental results employing
COCO pre-trained weights, we supplement additional vi-
sualization results to illustrate the improvements it brings
to prediction accuracy, as shown in Fig. 4.
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