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8. Readout Guidance

8.1. Guidance Hyperparameters

For all tasks, we use 100 sampling timesteps, which we find
produces results that are faithful to the input control while
still maintaining a reasonable runtime. Our guidance up-
date is rescaled by 2e�2 to allow the user-defined guidance
weight to occupy a more intuitive range of [0.0, 1.0], where 0
is no additional guidance, and 1 is very strong guidance (val-
ues > 1 are also valid, but typically not desirable). Below,
we describe the set of hyperparameters that vary between
applications shown in the paper. For each of these, the values
used for generating our results are shown in Table 1.
text weight: the weight of text classifier-free guidance [21],
which ranges between [0,1].
rg weight: the weight of our guidance signal, which ranges
between [0,1]. As mentioned above and demonstrated
in Figure 13, values much larger than 1.0 can result in visual
artifacts. The effects of varying this weight in can be seen
in Figure 6 of the main text.
rg ratio: the span of timesteps [start, end] to apply our
guidance to, expressed as a fraction of the total number of
timesteps. These values range between [0, 1.0]. We find that
early diffusion steps generally determine structure and com-
position, while late diffusion steps determine high frequency
detail and photorealism. For the appearance preservation
and identity consistency tasks, we find it helpful to set the
start value > 0.0 to retain structural diversity from a random
seed (setting start = 0.0 can cause the reference image’s
structure to be copied in addition to the subject’s identity).
For all tasks, we set end < 1.0, to avoid the guidance signal
competing with photorealism.
eta (⌘): the stochasticity of the sampling process, which
ranges between [0, 1.0]. Setting ⌘ = 0.0 is traditional deter-
ministic DDIM sampling [54] and ⌘ = 1.0 is highly stochas-
tic. Empirically we also find that using ⌘ = 1.0 is especially
critical for the spatially aligned control task, where using
⌘ = 0.0 can result in visual artifacts, which we show in Fig-
ure 13. We hypothesize that stochasticity is required when
regressing against a user input control, which is more out of
domain compared to a reference set of diffusion features.

8.2. Update Rule

We observe that our guidance process is sensitive to the
magnitude of the gradient signal at each sampling step. In
this section, we explore different mechanisms for scaling the
gradient signal, inspired by common practices in gradient
descent optimization. First, recall that our method derives
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Figure 11. Update Rule Comparison: For the same pose control,
we compare outputs when using timestep rescaling as was done in
original classifier guidance [13], removing the timestep rescaling
factor, and normalizing the gradient with the L2-norm.

from the original classifier guidance (CG) update rule [13],
which is written as follows:

✏̂t  ✏✓(xt)�
p
1� ↵̄trxt log p�(y|xt)

where, in our case, we replace the gradient term log p�(y|xt)
with a distance function over the readout d(r, f (xt)). For
simplicity, we can rewrite this update rule as a standard
optimizer update:

wt  wt�1 � ↵ · ⌧t ·rL,

where w represents the input/output noise, ⌧t is a timestep-
dependent rescaling, ↵ is a configurable learning rate, and L
is the loss or distance function. Following this formulation,
we explore a couple of alternative update rules for apply-
ing guidance, with qualitative comparisons shown in Fig-
ure 11. First, since our readout heads are already timestep-
conditional, we ablate the necessity of timestep rescaling:

wt  wt�1 � ↵ ·rL,

We use the learning rate ↵ = 200 for both this variant and
the one with ⌧t. We also experiment with normalizing the



Task text weight rg weight rg ratio ⌘

Drag-Based Manipulation (Real Images) 3.5 1.0 [0.0, 0.5] 0.0
Drag-Based Manipulation (Generated Images) 7.5 1.0 [0.0, 0.5] 0.0
Appearance Preservation (Generated Images) 7.5 1.0 [0.05, 0.5] 0.0
Identity Consistency (Generated Images) 7.5 1.0 [0.05, 0.8] 1.0
Spatially Aligned Control (Generated Images) 7.5 0.5 [0.0, 0.5] 1.0

Table 1. Guidance Hyperparameters: We recommend the following hyperparameter settings for each task when using Readout Guidance.

gradient by the L2-norm, as might be done in an Adam [30]
update (without the historical moving average):

wt  wt�1 � ↵ · rLp
rL2 + ✏

,

where ✏ is a small positive constant to prevent division by
zero. For this variant, we use ↵ = 2e�2. Unlike the other
two update rules, the normalized gradient variant has an
effective step size bounded only by the learning rate ↵, and is
therefore invariant to the magnitude of the gradientrL [30].

Empirically, we find that when using our readout heads,
timestep rescaling in the update rule has a negligible effect,
often producing outputs that are extremely similar to those
without rescaling (Figure 11b and Figure 11c). We further
notice that making the readout heads timestep-conditional
is very important—removing this conditioning results in
improbable outputs that respect the input control but quickly
fall off the manifold of natural imagery. A similar failure
mode occurs if the magnitude of the loss rL is too large.
For this reason, we find that the normalized gradient update
rule (Figure 11d) produces the highest fidelity results, as it
causes the update step size to be agnostic to gradient scale.
Note the difference between Figure 11c and 11d, where
the un-normalized update rules sometimes exhibit contrast
and saturation artifacts. All the results in our paper use the
normalized variant, although our method is also effective
with the other two update rules.

8.3. Sampling Compute

Here we report the runtime and memory consumption on
an Nvidia A100 GPU. For the pose control task, sampling
with Readout Guidance takes 32.7s on SDv1-5 (vs. 10.7s
with only text guidance) and consumes 11.9GB of VRAM
(vs. 8.5GB). On SDXL, sampling with Readout Guidance
takes 44.0s (vs. 14.2s) and consumes 27.7GB of VRAM (vs.
15.6GB). For the drag-based manipulation task, sampling
with Readout Guidance takes 55.4s (vs. 16.6s) on SDv1-5
and consumes 19.2GB of VRAM (vs. 8.3GB). On SDXL,
Readout Guidance takes 75.0s (vs. 23.4s) and consumes
37.6GB of VRAM (vs. 15.8GB).

It is important to note that we use a naive initial implemen-
tation that has not been optimized for memory usage—i.e.,
we retain all relevant buffers in memory: all features, gra-
dients, target control signals. A number of optimizations

would likely reduce memory consumption to less than half
the reported numbers, e.g., not batching the conditional and
unconditional inputs together, pre-computing and caching
reference features for pairwise tasks, among others. Using
the current implementation, the most memory-efficient set-
ting is able to run on readily accessible GPUs such as an
Nvidia T4 (16GB VRAM) available via Google Colab, and
we anticipate further memory optimization should enable
our method’s use on even lower-end GPUs.

8.4. Training Compute

Here we share the training time for each readout head on an
Nvidia A100 GPU. We train the pose head on PascalVOC
with a batch size of 8 image / control pairs for at most 5k
steps, which takes 37 min for SDv1-5 and 2 hr 25 min for
SDXL. The depth head takes 41 min for SDv1-5 and 2 hr 40
min for SDXL. The edge head takes 41 min for SDv1-5 and
2 hr 38 min for SDXL. We train the appearance similarity
head on DAVIS with a batch size of 1 anchor / positive /
negative triplet for at most 1k steps, which takes 08 min for
SDv1-5 and 24 min for SDXL. We train the correspondence
feature head on DAVIS with a batch size of 1 frame / frame
pair for at most 10k steps, which takes 48 min for SDv1-5
and 2 hr 15 min for SDXL.

8.5. Readout Head Architecture

In Figure 12 we depict a detailed architecture diagram of
our readout heads. We share a common architecture for all
readout heads, building off of the aggregation network pro-
posed in Diffusion Hyperfeatures [36]. For each raw decoder
feature map, Diffusion Hyperfeatures uses bottleneck lay-
ers [19] to standardize the channel count (left column), then
aggregates these standardized feature maps with a learned
weighted sum (middle column). Our main modification to
adapt this architecture for guidance is to make the bottleneck
layers timestep-conditional, implemented as the blue linear
layer shown in the left column of Figure 12. More specif-
ically, we use the U-Net’s pre-trained timestep embedding
layers to get a timestep embedding, learn a projection layer,
and add this projected embedding to the feature map during
the standardization process. Our design was inspired by the
Stable Diffusion implementation of timestep conditioning
in their ResNet blocks [24]. For the case of the spatially
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Figure 12. Architecture Diagram: We share a common architecture across all readout heads, where we first convert the raw feature map to
a feature map of a standardized channel count and spatial resolution (left), aggregate feature maps from all decoder layers (middle), and
optionally convert the aggregated feature map into an RGB readout (right).

aligned heads (right column), we make another modification
where we add convolutional layers (yellow) that convert the
multi-channel aggregated feature map into a three-channel
RGB image. Our design was inspired by the output convolu-
tions used in MiDaS [41, 49] and the SiLU (a soft version
of ReLU) activations used in ControlNet [70]. We use Tanh
for our final activation function to ensure that the output is
bounded between [�1, 1], rather than unbounded.

8.6. Improbable Images

In Figure 13 we show a few failure cases. Although these
images fully respect the input pose control, they start to
diverge from the natural image manifold, tending towards
cartoonish colors or surreal imagery with relatively texture-
less scenes. These types of artifacts are likely the result of
a trade-off between the guidance target and photorealism
(as defined by the base model’s log-likelihood)—and can be
resolved by lowering the readout guidance weight, stopping
our guidance earlier in the diffusion process, or starting from
a different initial seed.

9. Relative Control

9.1. Identity Consistency

In this task, we seek to generate an image (or set of images)
of the same person or character. Given an input image, a
sampling process (otherwise guided by a text prompt describ-
ing a different scene) is encouraged to produce an image that
contains a person with the same identity as the input image.
To accomplish this, we use a specialized version of the ap-
pearance head trained on a dataset of face photographs [27].
Since this dataset consists of mostly tight crops around the
face, we apply our guidance constraint only at pixels which
we determine to belong to a face (i.e., using an off-the-shelf
face detector [58, 64]). While we only apply guidance within
the face region, this can cause the overall sampling trajectory
to change, which can in turn change the appearance of the
background. To counteract this, we also apply our (standard,
i.e., not identity-specialized) appearance guidance on the rest
of the image, but towards the original sampling trajectory,
allowing the background to remain unchanged. In Figure 14
we ablate the effect of removing this appearance similar-
ity guidance (col. 4), showing that the background drifts
more in appearance but often the identity is more closely
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Figure 13. Improbable Images: We show images generated with our pose head using a deterministic sampler (⌘ = 0.0), rather than the
recommended stochastic sampler (⌘ = 1.0). These types of generations also arise when the guidance weight is set too high.

Method Added Training Data Added Params / Size PCK↵=0.05 (") PCK↵=0.1 (") PCK↵=0.2 (")

SDv1-5

No Control - - 0.49 1.55 5.42
RG8.5k 8.5k Images 8.5M / 49MB 19.91 36.10 50.71
ControlNet [70] 200k Images 361M / 1.4GB 42.34 60.22 73.38
ControlNet + RG8.5k 200k + 8.5k Images 370M / 1.4GB 55.82 77.47 86.93

SDXL

No Control - - 1.19 2.94 10.40
RG100 100 Images 5.9M / 35MB 15.24 28.19 41.62
RG1k 1k Images 5.9M / 35MB 19.65 29.41 43.17
RG8.5k 8.5k Images 5.9M / 35MB 24.29 37.07 46.21
T2IAdapter [40] 3M Images 79M / 302MB 24.06 35.92 49.49
T2IAdapter+RG8.5k 3M + 8.5k Images 85M / 337MB 54.54 72.04 82.18

Table 2. Pose Control Comparison: We compute the percentage of correct keypoints (PCK) at varying thresholds ↵ between the input pose
and the pose of the generated image on 100 random images of humans from the MSCOCO [34] validation set.

Method CMMD (#)

SDXL

No Control 1.374
RG100 1.305
RG1k 1.243
RG8.5k 1.134
T2IAdapter 0.817
T2IAdapter + RG8.5k 0.766

Table 3. Pose Control Image Quality: We also compute the
CLIP Maximum Mean Discrepancy (CMMD) [25] between the
distribution of real images and generated images on the same set of
100 MSCOCO images described in Table 2.

matched. We also compare to the result of the concurrent
work IP-Adapter [31, 67] (col. 5), which trains an adapter to
condition on the CLIP image embedding [47] of a reference
image. Although IP-Adapter can also be used to borrow a

reference identity (face), unlike our method, it cannot inject
this identity into a particular sampled image.

10. Spatially Aligned Control

10.1. Readout Evolution

In Figure 15 we visualize the evolution of our readouts over
the sampling process. The typical visualization of the denois-
ing process, or the evolution of xt (row 1), can be relatively
uninterpretable across a majority of the process. A more
informative visualization is typically the intermediate pre-
diction of the clean image (row 2). Our readouts (row 3-5)
offer an additional tool for probing the diffusion process, de-
rived from the features themselves rather than the sampling
formulation. We find that the image composition is largely
determined early in the diffusion process, where our read-
outs show a central figure in the foreground within the first
step of sampling and a coarse silhouette within the first 10%.



Identity Consist. 
Guidance Only

Identity Consist. 
+ App. Sim. Guidance IP-AdapterReference Identity Original Sample

Figure 14. Identity Consistency Ablation: Our full method uses the identity consistency head on the face and appearance similarity head
to preserve the background. We also ablate using only the identity consistency head. Concurrent work IP-Adapter [67] does not support
injecting identity into a specific sampled image.

Evidently, our readouts are useful for guidance because they
are informative across the entire diffusion process, even at
early noisy timesteps.

10.2. Quantitative Comparison

In Table 2 we compare against fine-tuned conditional models
on the task of pose control. We opt for using SDXL as
our base model, since it significantly outperforms SDv1-
5 in visual quality. Unfortunately, ControlNet [70] only
has officially released weights on SDv1-5, so our SDXL
comparisons are only with officially released checkpoints
from T2IAdapter [40]. We do, however, provide additional
supplementary comparisons to ControlNet on SDv1-5. In
this evaluation, we use OpenPose [8] to extract the pose
of the generated images from each method then compute
the percentage of correct keypoints (PCK) against the input
control. When a pose prediction has multiple instances, we
take the highest scoring PCK across all combinations of
instances between the input and synthesized image. We then
average the PCKs across all samples. We compute the PCK
at varying error thresholds, ↵ 2 {0.05, 0.1, 0.2}. We also
report the amount of added training data that was used to
fine-tune the control method, as well as the added parameter
count. Note that the parameter count of our method scales
with the number of decoder layers (SDXL has 9 vs SDv1-
5 has 12 layers), so our SDXL heads are actually more
parameter-efficient than our SDv1-5 heads. SDXL trades off
fewer decoder blocks with additional mid blocks, which we
found in early experiments did not improve the quality of
our spatially-aligned readouts. Finally, we see that our pose
head trained on the vanilla base model can be transferred to
guide a fine-tuned conditional model, further improving the
performance of ControlNet [70] and T2IAdapter [40] by 13%
and 30% PCK (↵ = 0.05) respectively. The compatibility
between Readout Guidance and these fine-tuned conditional
models derives from the fact that all methods keep the base
model frozen, and therefore operate on the same common
feature space as the original base model.

We also calculate image quality as measured by the CLIP

Maximum Mean Discrepancy [25]. We compare the dis-
tributions of the real MSCOCO images, from which we
derived the pose control and text prompt, with the generated
images from each method. We opt to use CMMD as it is
unbiased with respect to the evaluation sample size, unlike
FID which is not meaningful on small image sets. As seen
in Table 3, our method actually slightly improves image
quality when compared to the base model (No Control vs.
RG8.5k, T2IAdapter vs. T2IAdapter + RG8.5k). We also
see that training on more data leads to increasingly better
image quality (RG100 vs. RG1k vs. RG8.5k). This likely
explains why there is a leap in image quality when also using
T2IAdapter, as it was trained on orders of magnitude more
data (⇠3M images).

10.3. Additional Examples

We show additional examples of spatially aligned con-
trol from our full method trained on all images in Pas-
calVOC [16]. We show additional examples of pose control
in Figure 16 and Figure 17, depth control in Figure 18 and
Figure 19, and edge control in Figure 20 and Figure 21.
In Figure 17, we see that our pose readout can sometimes
hallucinate extra detail, for example detecting fingers (col 2,
row 4) or detecting the dog (col 1, row 2), even when they
are not covered by the pose representation. Similarly, in Fig-
ure 18, while our depth readout can reliably distinguish the
foreground and background, it can struggle with producing a
smooth and uniform depth across the entire object. We show
additional qualitative examples using our guidance on top
of ControlNet [70] (Figure 22) and T2I-Adapter [40] (Fig-
ure 23). We also compare the variants of our model trained
on 100, 1k, and 8.5k images in Figure 24. For simpler poses
(col 1, row 8), all models perform equally well whereas for
more difficult examples (col 1, row 4) our method trained on
all 8.5k images performs the best.



11. Text Prompts

We provide the text prompts used to generate the images in
the main text below.
• Figure 2: “professional headshot of a woman with the

eiffel tower in the background”, “photo of a squirrel with

a hamburger at its feet”, “photo of a beagle hovering

mid-air”, “a bear dancing on times square”

• Figure 4: “two men on a tennis court shaking hands over

the net ”, “a group of people playing with Frisbee’s on

the grass”, “a giraffe standing in a straw field next to

shrubbery”, “two birds standing next to each other on a

branch”, “a mountain goat stands on top of a rock on a

hill”, “a man riding a horse followed by a dog”

• Figure 6: “A dog is walking down the street”, “An astro-

naut is skiing down the hill”

• Figure 7: “oil painting half body portrait of a man on

a city street in copenhagen”, “portrait of a man and his

dog”, “photo of a female firefighter in the forest”, “photo

of a woman at the zoo with a seal”

• Figure 5: “a photo of a tiger”, “a photo of a raccoon”, “a

photo of a rabbit”, “a photo of a man holding a crocodile”,
“an alpine ibex with horns” [1], “wolf looking around” [2]

• Figure 8: “a woman that is sitting on a couch holding a

remote”, “a young lady is playing a baseball bat game”,
“a man wearing an apron peering into the bottom of an open

fridge”, “a person on a surfboard on the water”

• Figure 9: “a person riding a scooter with folded card-

board”, “a group of people in a field playing frisbee”



t=0 t=10 t=20 t=30 t=40 t=100

Figure 15. Readout Evolution: We synthesize an image with the prompt “painting of man standing outdoors in the style of magritte”, and
show (from top to bottom) the xt, predicted clean image [54], pose readout, depth readout, and edge readout across the diffusion process. A
large portion of the image composition is already determined in the first 10% of the diffusion process (t = 10), as reflected by the crispness
of our readouts which become further refined over time.
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Figure 16. Pose Control: Additional examples with our pose head.
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Figure 17. Pose Control: Additional examples with our pose head.
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Figure 18. Depth Control: Additional examples with our depth head.
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Figure 19. Depth Control: Additional examples with our depth head.
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Figure 20. Edge Control: Additional examples with our edge head.
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Figure 21. Edge Control: Additional examples with our edge head.
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Figure 22. Control Refinement: Additional examples of Readout Guidance combined with ControlNet [70].
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Figure 23. Control Refinement: Additional examples of Readout Guidance combined with T2IAdapter [40].
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Figure 24. Limited Data: Additional examples after training our pose head on varying numbers of images.


