
Supplementary Materials for “Real-Time Simulated Avatar from Head-Mounted
Sensors”

Zhengyi Luo1,2 Jinkun Cao2 Rawal Khirodkar1 Alexander Winkler1 Jing Huang1

Kris Kitani1,2,∗ Weipeng Xu1,∗

1Reality Labs Research, Meta; 2Carnegie Mellon University
https://zhengyiluo.github.io/SimXR/

A. Introduction 1

B. Supplementary Site & Videos 1

C. Implementation Details 1
C.1. Synthetic Data Generation 1
C.2. Details about SimXR 2
C.3. Details about Pretrained Imitators 2
C.4. Details about KinPoly-v 3
C.5. Details about UnrealEgo 4

D. Additional Ablations and Failure Cases 4

A. Introduction
In this supplement, we provide additional details about
SimXR that are left out of the main paper due to space con-
straints. Specifically, in Sec. B, we describe the contents
of our supplementary site and videos. In Sec. C, we dis-
cuss the implementation details of our proposed synthetic
dataset (Sec C.1), our proposed method SimXR (Sec C.2),
pretrained imitators that act as teachers (Sec C.3), KinPoly-
v (Sec C.4), and UnrealEgo (Sec C.5). Finally, in Sec. D,
we provide some additional ablations (such as using recur-
rent networks) and analysis of failure cases. Since motion
is best seen in videos, we strongly encourage our readers
to view the provided videos for a qualitative analysis of our
method. All data and models will be released.

B. Supplementary Site & Videos
In the supplement site, we provide an extensive qualitative
evaluation of our method. We visualized all three subjects
and full sequences of our real-world Quest 2 data capture, as
well as results from the synthetic dataset. From the videos,
we can see that our end-to-end method can follow the head-
set wearer’s body motion closely in a physically plausible

∗Equal advising.

Figure 1. The two human models we use, their rendered mesh,
simulated humanoid, and kinemaitc structure. (Top): our in-house
humanoid with 24 DOF. (Bottom): SMPL humanoid with 23 DOF.

fashion. We also show results on AR/Aria glasses and com-
pare with SOTA vision-based and physics-based methods.
Last but not least, we visualize failure cases of our method.

C. Implementation Details
C.1. Synthetic Data Generation

Humanoid Kinematic Structure. To create the synthetic
egocentric data, we use an internal human mesh model sim-
ilar to SMPL [3]. Given kinematic body rotations and scale
parameters, we can create its corresponding mesh as shown
in Fig. 1. We use a process similar to that of the SMPL hu-
manoid to create an IsaacGym compatible humanoid for the
in-house human mesh model.

MoCap Dataset. To generate synthetic data, we use a
large-scale internal MoCap dataset consisting of 130 sub-
jects and > 1300 capture sessions. The motion capture
dataset contains a large number of daily activities (walking,
running, gesturing, yoga, dancing, balancing, sitting, inter-
action with objects etc.). We remove sequences that contain

1

https://zhengyiluo.github.io/SimXR/

Figure 2. Self-occlusion visualization; blue dots are keypoints.

human-object interactions that are not possible to mimic
without simulating the objects (such as sitting on chairs).
Since each capture session contains a long sequence of mo-
tion, we further divide the sessions into sequences that con-
tain around ∼450 frames of motion, resulting in a total of
5169 sequences for training and testing.

Rendering Pipeline. As mentioned in the main paper, ren-
dering is done using the exact placement, intrinsic, and dis-
tortion of the cameras as the Quest 2 headset. The Unity [1]
game engine is used for rendering. In Fig. 3, we show ex-
amples of raw RGB images rendered using our pipeline. In
each frame, we randomize the clothing, lighting, and back-
ground of the subjects as domain randomization. The back-
ground is rendered using a random image projected onto
a skybox. We render each frame of motion from the Mo-
Cap dataset in 30 FPS. Each RGB image is rendered in a
640 × 480 × 3 resolution, and we convert the images to
monochrome and shrink them to 160× 120× 1 for training
and testing SimXR.

Synthetic-Test, Epa-mpjpe ↓
Head L Shoulder L Elbow L Wrist R Shoulder R Elbow

In-frame % 0.0% 4.0% 61.3 % 92.4 % 18.1 % 75.8%
In-frame / Out-frame - / 30.2 28.0 / 25.0 30.7 / 33.2 42.7 / 86.3 25.6 / 24.3 30.4 / 34.3

R Wrist L Knee L Ankle R Knee R Ankle

In-frame % 96.5 % 99.0 % 98.4 % 99.4% 98.9%
In-frame / Out-frame 41.1 / 94.2 43.9 / 39.9 60.4 / 74.4 43.7 / 45.5 60.3 / 72.7

Table 1. Error analysis based on joint in-frame status. “In-frame”
is not equivalent to “visible” due to self-occlusion.

Visibility Analysis. Here we conduct a visibility analysis
on our generated synthetic data. As accounting for self-
occlusion involves reprocessing the synthetic dataset and
conducting ray-marching for each joint on the clothed mesh
to ascertain visibility, we opt to use the “in-frame” (whether
the joint is in one of the camera frames) statistics to approxi-
mate visibility. This measure is a reliable visibility indicator
for upper body joints, but less so for the lower body, where
self-occlusion and extreme viewpoints are more prevalent
(see Figure 2). From Table 1 we can see that the shoul-
der and elbow joints are frequently outside the frame, while
the wrist and leg joints often remain within the frame. For
the shoulder, elbow, and knee joints, their in-frame and out-
frame results are similar, since they are closer to the torso.
For the body extremities (wrists and ankles), there is a clear
gap, as the largest errors occur out of the frame.

C.2. Details about SimXR

Body Shape Used for Evaluation. We conduct all our
training and evaluation using a fixed body shape for both of

Batch Size Learning Rate # of samples image size Image-latent

SimXR 1024 5× 10−4 ∼ 108 160× 120 512

Batch Size Learning Rate # of samples

PHC 3072 2× 10−5 ∼ 1010

Table 2. Hyperparameters for SimXR and PHC. Due to the in-
crease in input size, SimXR is trained with significantly less sam-
ples than PHC and requires distillation.

our humanoids (SMPL and in-house). In other words, we
use the mean body shape for SMPL and a fixed body shape
for our internal humanoid and do not vary bone lengths be-
tween different motion sequences or subjects. Since our
framework does not involve any intermediate representa-
tions such as 3D keypoints or poses, SimXR is scale invari-
ant. When conducting real-world evaluations, we simply
adjust the height of the headset pose to match the standing
head positions of the mean body shape. This is done in a
calibration phase in which the subject is standing still. This
process is effective as SimXR can estimate the pose for the
three subjects who have different heights. Notice that our
imitator can be trained to handle different body shapes, but
we opt out of this option as estimating body shape from the
distorted egocentric views is still an unsolved problem.

Training Process. The training process for SimXR is sim-
ilar to training a motion imitator, with the distinction be-
ing that we provide images and headset pose as input in-
stead of full-body reference pose. To better learn harder
motion sequences, we use the same hard-negative mining
process proposed in PHC [7] and PULSE [6]. Concretely,
during training, given the full motion and image dataset Q̂,
we evaluate the current policy on the full dataset and pick
the sequences that the policy fails to form Q̂hard. We keep
updating Q̂hard at intervals until the success rate no longer
increases. The hyperparameters for training SimXR can be
found in Table 2.

C.3. Details about Pretrained Imitators

For the SMPL humanoid (AR / Aria glass experiments), we
use an off-the-shelf motion imitator, PHC [7], trained on the
AMASS dataset. We do not make any additional modifica-
tions to PHC, since the motion in the ADT dataset is rela-
tively simple. For the in-house humanoid and VR / Quest
experiments, we train an imitator using the same training
procedure and hyperparameters provided in the PHC im-
plementation. We train the imitator using the training se-
quences from the internal MoCap dataset, achieving the im-
itation performance shown in Table 3. We can see that the
imitator has a high success rate and a low joint error on the
training data, which means that it is suitable to be used as a
teacher for downstream tasks.

Figure 3. Sample synthetic data with various poses. Here we include the original rendered RGB images for demonstration purposes. We
randomize the actor’s clothes, background, lighting at every frame.

Synthetic-Train

Method Succ ↑ Eg-mpjpe ↓ Empjpe ↓ Epa-mpjpe ↓ Eacc ↓ Evel ↓
PHC 99.8% 25.6 20.4 15.5 2.4 3.5

Table 3. Motion imitation result by the pretrained imitator on the
in-house MoCap dataset.

C.4. Details about KinPoly-v

We adapt KinPoly [4] to also consume images as input for
egocentric pose estimation. In KinPoly, a policy is learned

to produce kinematic full-body poses q̃t+1 based on the
pose of the headset, which is then fed to an external force
based motion imitator (UHC) for physics-based imitation.
Comparing KinPoly to previous methods that use both an
imitator and a pose estimator (e.g. SimPOE [10]), the main
difference is whether the pose estimator is aware of the sim-
ulated humanoid state. In prior art, the pose estimator is not
conditioned on the simulation state and operates indepen-
dently from the physics simulation. This creates an open-
loop system where the pose estimator can estimate a pose
that drifts far away from the simulation state, leading the

Figure 4. KinPoly-v’s network architecture. Different from distill-
ing from a pretrained imitator, KinPoly-v outputs kinematic pose
to the pretrained imitator for physcis-based motion imtiation.

imitator to fall. KinPoly aims to create a closed-loop sys-
tem where the pose estimator also takes the simulation state
into consideration. This methodology is also used in Em-
bodiedPose [5]. However, the main problem with KinPoly
is that, while it is relatively easy to output the correct refer-
ence kinematic pose q̃t+1 for the current timestep, it is dif-
ficult to compute the correct velocities ˜̇qt+1. Due to the ex-
ceptional capabilities of the non-physical forces, UHC does
not require reference velocities as input. Concretely, UHC’s
goal state is defined as sg-mimic

t ≜ (θ̂t+1 ⊖ θt, p̂t+1 − pt),
which does not contain any velocity information. As a re-
sult, KinPoly’s kinematic policy only needs to predict body
pose, but not velocity, which simplifies the learning prob-
lem. However, since PHC does not use any external forces
[9], it requires accurate reference velocities as input.

To remove the dependency on external forces (change
from UHC to PHC), we experimented with two forms of
velocity prediction. The first approach is to compute the
velocity as a finite difference between consecutive frames
of the predicted reference poses: ˜̇qt+1 = q̃t+1 − q̃t. This
formulation is problematic as large jumps in predicted poses
can result in large velocities, which in turn lead to the im-
itator falling. Another approach is to directly predict the
velocity as an output, which turns out to be more stable. We
use this version as our implementation for KinPoly-v. How-
ever, this approach still suffers from inaccurate velocity pre-
diction, as can be seen in the supplement videos: when the
motion becomes faster and more dynamic (such as sports
movement or jogging), it becomes difficult to predict the
correct velocities for the motion imitator. This can also be a
result of the image input, which can be noisy and detrimen-
tal to the network learning a good velocity prediction.

Network Architecture. KinPoly-v shares the same input
and network architecture as SimXR, with the only distinc-
tion being the output: KinPoly-v outputs the kinematic pose
q̃t+1 rather than the PD targets at for the joints. KinPoly-
v’s architecture can be found in Fig.4

C.5. Details about UnrealEgo

We use the official UnrealEgo implementation, and pick
the ResNet18 version with imagenet initialization for a

Synthetic-Test

Method Succ ↑ Eg-mpjpe ↓ Empjpe ↓ Epa-mpjpe Eacc ↓ Evel ↓
Ours (GRU) 91.6% 78.2 73.7 52.8 8.8 10.4
Ours 96.2% 69.0 65.2 43.2 6.8 8.7

Table 4. Additional ablation on using recurrent architecture

fair comparison with SimXR. To be compatible with
monochrome images, we replace the CNN layer with a
single-channel convolutional layer and keep the Siamese
network structure. We follow the official implementation
and first train the 2D heatmap estimation network. Then,
using the frozen heatmap estimation network, we train a 3D
pose estimator based on the 2D heatmap input. We train
the networks for three days to convergence, using a similar
compute budget as training SimXR.

D. Additional Ablations and Failure Cases

Recurrent Networks. Currently, SimXR is a per-frame
model without using any temporal model architecture.
SimXR does rely on temporal information in the form of
a simulation state and estimates temporally coherent mo-
tion by jointly considering humanoid state and input im-
ages. Based on the intuition that incorporating recurrent
networks is essential to help robots complete tasks [11], we
also tried recurrent architecture in our early experiments.
We tested a simple GRU-based [2] architecture with 512
hidden units, and forms a lightweight Conv-LSTM [8]. Ta-
ble 4 shows that the use of a recurrent network does not
offer an immediate performance increase. We hypothesize
that, for a pose estimation task with dense per-frame input, a
recurrent network may not be necessary to ensure good per-
formance. Further investigation is needed to better leverage
the temporal coherence in videos.
Additional Failure Cases. In our supplementary videos,
we visualize the common failure cases of SimXR. Being
one of the first methods to drive simulated avatars from
images and headset pose input from XR headsets, SimXR
shows the feasibility of training such a network, but it is still
far from perfect.
• We can observe that the humanoid stumbles and drags

its feet to stay balanced when moving around, which is
caused by ambiguity in movement signals. Since our hu-
manoid has no information about the future movements
of the camera wearer, it adopts the foot-dragging behav-
ior to be cautious and stay balanced.

• Accurate foot movement can still be challenging: while
SimXR can estimate kicking and raising feet, it can also
miss raised feet due to the challenging viewing angle. The
foot can be barely visible even when raised, and the color
of the garment can create additional ambiguities.

• We can observe that when the hands are held perfectly

still, the humanoid can have micro movements due to in-
accuracy in inferring the body poses. Tackling this is-
sue is challenging, as the movement of the headset can
cause the hands to move in the camera space but not in
the global space, and differentiating between the two re-
quires further investigation.

• The humanoid can also have erroneous hands movement
from time to time, erecting the hand quickly and putting
them down due to image noise and occlusion.

• Another source of inaccuracy is fast and sporty move-
ment, where the humanoid can lag behind in performing
the actions or fall down.
In the future, our aim is to incorporate a larger MoCap

and synthetic datasets to improve the robustness of the con-
troller. Introducing auxiliary pose estimation losses during
training could also improve SimXR.

Acknowledgement. We thank Zihui Lin for her help in
making the plots in this paper. Zhengyi Luo is supported by
the Meta AI Mentorship (AIM) program.

References
[1] Beta Program. Unity real-time development platform.

https://unity.com/. Accessed: 2023-11-18. 2
[2] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre,

Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using rnn
encoder–decoder for statistical machine translation. In Con-
ference on Empirical Methods in Natural Language Process-
ing, 2014. 4

[3] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J Black. Smpl: A skinned multi-
person linear model. ACM Trans. Graph., 34, 2015. 1

[4] Zhengyi Luo, Ryo Hachiuma, Ye Yuan, and Kris Kitani.
Dynamics-regulated kinematic policy for egocentric pose es-
timation. NeurIPS, 34:25019–25032, 2021. 3

[5] Zhengyi Luo, Shun Iwase, Ye Yuan, and Kris Kitani. Em-
bodied scene-aware human pose estimation. NeurIPS, 2022.
4

[6] Zhengyi Luo, Jinkun Cao, Josh Merel, Alexander Winkler,
Jing Huang, Kris Kitani, and Weipeng Xu. Universal hu-
manoid motion representations for physics-based control.
arXiv preprint arXiv:2310.04582, 2023. 2

[7] Zhengyi Luo, Jinkun Cao, Alexander W. Winkler, Kris Ki-
tani, and Weipeng Xu. Perpetual humanoid control for real-
time simulated avatars. In International Conference on Com-
puter Vision (ICCV), 2023. 2

[8] Tara N. Sainath, Oriol Vinyals, Andrew W. Senior, and
Hasim Sak. Convolutional, long short-term memory, fully
connected deep neural networks. 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 4580–4584, 2015. 4

[9] Ye Yuan and Kris Kitani. Residual force control for agile
human behavior imitation and extended motion synthesis.
arXiv preprint arXiv:2006.07364, 2020. 4

[10] Ye Yuan, Shih-En Wei, Tomas Simon, Kris Kitani, and Jason
Saragih. Simpoe: Simulated character control for 3d human
pose estimation. CVPR, 2021. 3

[11] Ziwen Zhuang, Zipeng Fu, Jianren Wang, Christopher Atke-
son, Soeren Schwertfeger, Chelsea Finn, and Hang Zhao.
Robot parkour learning. arXiv preprint arXiv:2309.05665,
2023. 4

https://unity.com/

	. Introduction
	. Supplementary Site & Videos
	. Implementation Details
	. Synthetic Data Generation
	. Details about SimXR
	. Details about Pretrained Imitators
	. Details about KinPoly-v
	. Details about UnrealEgo

	. Additional Ablations and Failure Cases

