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1. Additional Implementation Details
For VSOD and VCOD tasks, we follow the common practice of utilizing Flownet2.0 [19] as the optical flow extractor due
to its consistently strong performance. It is worth noting that our results for the VSOD task may differ significantly from
previous studies. This discrepancy is due to our adoption of a PyTorch-based toolbox for evaluating all tasks, whereas previous
methods relied on a MATLAB-based toolbox which has different implementation details*.

·

Channel-concatenation Prompt

W
/SW

-M
SA

L
inear

Feature-addition Prompt

W
/SW

-M
SA

+ +

Feature-multiplication Prompt

+ +

+ +

+ +

W
/SW

-M
SA

·

· Element-wise 
multiplication

··

··

··

Figure 1. Proposed channel-concatenation prompt, feature-addition prompt, and feature-multiplication prompt.

2. Prompt Design Variants
We further investigate different types of prompts and conduct an analysis of their parameter counts. For computational
efficiency, we limit our design to simple learnable prompts based on attention mechanism in the encoder, as shown in Figure 1.

2.1. Channel-concatenation Prompt

To maintain consistency in the fusion technique across RGB and other modalities, we suggest using learnable channel-
concatenation prompt pc

i ∈ R1×ci . We concatenate the pc
i with the image feature fE

i along the channel dimension and utilize
a linear projection to project them back to the original channel number. The entire process is expressed as follows:

fE
i = Linear([fE

i ;pc
i ]), (1)

*Corresponding author: Nian Liu (liunian228@gmail.com)
*The reference link of the PyTorch-based toolbox is https://github.com/zzhanghub/eval-co-sod, and the link of MATLAB-based toolbox is

https://github.com/DengPingFan/DAVSOD.
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https://github.com/DengPingFan/DAVSOD


Settings Params RGB SOD RGBD SOD RGBT SOD VSOD
DUTS[65] NJUD[25] VT5000[61] SegV2[29]

(M) Sm ↑ Fm ↑ Em ↑ Sm ↑ Fm ↑ Em ↑ Sm ↑ Fm ↑ Em ↑ Sm ↑ Fm ↑ Em ↑
channel-concatenation prompt 57.22 .798 .744 .852 .881 .870 .917 .846 .799 .898 .822 .744 .911

feature-addition prompt 54.09 .892 .875 .935 .924 .922 .956 .890 .854 .930 .899 .860 .945
feature-multiplication prompt 54.09 .732 .657 .793 .870 .858 .910 .792 .720 .847 .811 .706 .915
token-concatenation prompt 54.09 .902 .890 .945 .931 .932 .962 .909 .877 .947 .931 .917 .975

Table 1. Ablation studies of different prompt design variants on the Swin-T backbone [42] with 224× 224 image size. We conduct
evaluations on one representative dataset for each task.

Settings Params RGB SOD RGBD SOD RGBT SOD VSOD RGB COD VCOD
DUTS[65] NJUD[25] VT5000[61] SegV2[29] CAMO[26] CAD[1]

(M) Sm ↑ Fm ↑ Em ↑ Sm ↑ Fm ↑ Em ↑ Sm ↑ Fm ↑ Em ↑ Sm ↑ Fm ↑ Em ↑ Sm ↑ Fm ↑ Em ↑ Sm ↑ Fm ↑ Em ↑
margin = 0.2 54.09 .908 .897 .948 .933 .934 .961 .911 .880 .949 .937 .927 .979 .811 .786 .889 .734 .616 .817
margin = 0.1 54.09 .907 .897 .948 .931 .933 .960 .911 .881 .949 .935 .920 .976 .810 .781 .884 .725 .588 .800
margin = 0 54.09 .909 .899 .948 .935 .938 .965 .912 .882 .950 .943 .930 .984 .811 .782 .884 .736 .614 .797

Table 2. Ablation studies of the prompt discrimination loss settings with different margins using 224× 224 image size.

where [; ] indicates the concatenation operation and Linear means linear projection. Since the parameters of the linear operation
can be expressed as 2ci ∗ ci + ci = 2c2i + ci, and the parameters for the channel-concatenation prompt are 1 ∗ ci. Therefore,
the total number of parameters for the channel-concatenation prompt becomes

∑
i 2c

2
i + 2ci.

2.2. Feature-addition Prompt

In ViPT [40], prompts are introduced by incorporating carefully designed layers and added to the inputs. To emphasize simple
and learnable prompt, we refer to these addition computational forms and introduce feature-addition prompt pa

i ∈ R1×ci for
the image features fE

i :
fE
i = fE

i + pa
i . (2)

The feature-addition prompt can capture domain- or task-specific details for pixels. The total parameters for the feature-addition
prompt amount to ci.

2.3. Feature-multiplication Prompt

In segmentation tasks, masks are commonly employed to consolidate object information and extract distinct features [3].
Expanding on this concept, we utilize feature-multiplication prompt pm

i ∈ R1×ci as the mask query and apply them to the
image features. This operation is computed as follows:

fE
i = fE

i ⊙ pm
i . (3)

The feature-multiplication prompt selectively extracts domain-specific or task-specific information from image features. In the
case of the feature-multiplication prompt, the total number of parameters is also ci.

We conduct experiments on domain-specific prompts using the aforementioned prompt forms, as shown in Table 1. Our
token-concatenation prompt uses fewer parameters while delivering superior results, demonstrating the efficiency of our design.
This also underscores that the concatenation design maximizes feature variations for different tasks and domains compared to
addition and multiplication.

3. Further Ablation Study
3.1. Effectiveness of the Prompt Discrimination Loss

In fact, our prompt discrimination loss can be viewed as a specific instance of the hinge loss with a margin set to 0. To further
evaluate its effectiveness, we present a more general expression

Ldis =
∑
m

ln(1 + max{|CSm|,margin}). (4)

When the margin is greater than 0, it indicates that the loss doesn’t impose any constraints on prompts when the correlation
is below the margin. In other words, it signifies a higher degree of shared knowledge among different domains and tasks.



Summary Task NJUD [25] NLPR[52] DUTLF-Depth[54] ReDWeb-S[38] STERE[46] SIP[7]
Sm Fm Em Sm Fm Em Sm Fm Em Sm Fm Em Sm Fm Em Sm Fm Em

CMINet[75] RGB-D .929 .934 .957 .932 .922 .963 .912 .913 .938 .725 .726 .800 .918 .916 .951 .899 .910 .939
VST[39] RGB-D .922 .920 .951 .932 .920 .962 .943 .948 .969 .759 .763 .826 .913 .907 .951 .904 .915 .944
VST-T++ [36] RGB-D .928 .929 .958 .933 .921 .964 .944 .948 .969 .756 .757 .819 .916 .911 .950 .903 .914 .944
SPSN[27] RGB-D - - - .923 .912 .960 - - - - - - .907 .902 .945 .892 .900 .936
CAVER[51] RGB-D .920 .924 .953 .929 .921 .964 .931 .939 .962 .730 .724 .802 .914 .911 .951 .893 .906 .934
VSCode-T ZS RGB-D .910 .912 .941 .912 .887 .940 .931 .936 .956 .746 .733 .809 .908 .904 .937 .925 .939 .963
VSCode-T RGB-D .941 .945 .967 .938 .930 .966 .952 .959 .974 .766 .771 .831 .928 .926 .957 .917 .936 .955

Table 3. Quantitative comparison of our proposed VSCode with other 5 out-performing RGB-D SOD methods on six benchmark
datasets.“ZS” indicates zero-shot.

Summary Task COD10K[6] NC4K[44] CAMO[26]
Sm Fm Em Sm Fm Em Sm ↑ Fm Em

UJSC[28] RGB .817 .750 .902 .856 .835 .920 .803 .775 .867
SegMar[24] RGB .833 .755 .907 .841 .827 .907 .816 .803 .884
FEDER[15] RGB .822 .768 .905 .847 .833 .915 .802 .789 .873
VSCode-T ZS RGB .836 .778 .916 .870 .850 .926 .830 .805 .904
VSCode-T RGB .847 .795 .925 .874 .853 .930 .838 .821 .909

Table 4. Quantitative comparison of our proposed VSCode with other SOTA RGB COD methods on three benchmark datasets.“ZS”
indicates zero-shot.

Since the correlation between different domains and tasks ranges from 0 to 0.26 when prompt discrimination loss is not
applied, as shown in Figure 5 in the main text, we set margins of 0.1 and 0.2 to illustrate the effectiveness of our design. The
results can be found in Table 2. Overall, the results obtained with a margin of 0 outperform other designs, providing evidence
of the effectiveness of fully disentangling different domain and task knowledge in our joint learning approach.

However, setting the margin as 0 shows a decrease in COD tasks. This can be attributed to the significantly fewer training
data available for COD tasks (7915 training images) compared to SOD tasks (30450 training images), which means COD
tasks need more shared knowledge learned from the SOD data. Hence, attempting to completely separate SOD and COD
knowledge might further compromise performance in COD tasks. In our future work, we will explore methods to balance the
relationship between tasks and ensure comprehensive training for all tasks.

4. Deeper Analysis of Generalization Capacity
To further investigate our model’s zero-shot generalization, we reserved separate tasks for zero-shot evaluation and retrained
our model on other tasks. Recognizing the risk of overfitting when training with limited data, we evaluated the zero-shot
capability using the RGB COD task and the RGB-D SOD task for single-modality task and SOD task, respectively (10553
training images for RGB SOD v.s 4040 for RGB COD, 4040 training images for RGB-D COD v.s 2985 for RGB-D SOD).

As depicted in Table 4, even without training with the RGB COD task, our VSCode model still outperforms state-of-the-art
task-specific RGB COD models, although it works in a zero-shot way. This indicates that our model relies not only on the
effectiveness of domain-specific prompts in segregating domain knowledge, but also on the accuracy of our task-specific
prompts in integrating task-related knowledge. However, for the RGB-D SOD task, the performance of our zero-shot VSCode
lags behind that of state-of-the-art task-specific training methods, as shown in Table 3. We hypothesize that this is because
the depth maps of RGB-D COD datasets are generated using an off-the-shelf depth estimation model [55], which is different
from most RGB-D SOD datasets that use real depth maps captured by Microsoft Kinect (e.g. NLPR [52]), light field cameras
(e.g. DUTLF-Depth [54]), and smartphones (e.g. SIP [7]). The estimated depth maps of RGB-D COD might lack certain
high-quality geometric cues for real scenarios, leading to incomplete depth knowledge for depth prompts. Despite our zero-shot
performance in the RGB-D SOD task not outperforming state-of-the-art methods, the comparable performance still highlights
the generalization ability of our VSCode when encountering unseen tasks.

5. More Comparison Results
To conserve space, we focus on presenting state-of-the-art methods from 2021 in the main text. In this section, we provide
a more comprehensive comparison of state-of-the-art methods dating back to 2018, as shown in Table 5, Table 6, Table 7,
Table 8, Table 9, and Table 10. We also introduce an additional evaluation metric, the mean absolute error (M ), to assess model
performance. Furthermore, we include various versions of our VSCode with different backbones for comparison with other
models. For instance, VSCode-B utilizes the Swin-B backbone [42] and demonstrates exceptional performance compared to



Summary Backbone Params DUTS[65] ECSSD[71] HKU-IS[32] PASCAL-S[34] DUT-O[73] SOD[45]
(M) Sm Fm Em M Sm Fm Em M Sm Fm Em M Sm Fm Em M Sm Fm Em M Sm Fm Em M

PiCANet[35] ResNet50 47.22 .863 .840 .915 .040 .916 .929 .953 .035 .905 .913 .951 .031 .846 .824 .882 .071 .826 .767 .865 .054 .813 .824 .871 .073
AFNet[10] VGG16 35.95 .867 .838 .910 .045 .914 .924 .947 .042 .905 .910 .949 .036 .849 .824 .877 .076 .826 .759 .861 .057 .811 .819 .867 .085
TSPOANet[41] VGG16 - .860 .828 .907 .049 .907 .919 .942 .047 .902 .909 .950 .039 .841 .817 .871 .082 .818 .750 .858 .062 .802 .809 .852 .094
EGNet-R[79] ResNet50 111.64 .887 .866 .926 .039 .925 .936 .955 .037 .918 .923 .956 .031 .852 .825 .874 .080 .841 .778 .878 .053 .824 .831 .875 .080
ITSD-R[83] ResNet50 26.47 .885 .867 .929 .041 .925 .939 .959 .035 .917 .926 .960 .031 .861 .839 .889 .771 .840 .792 .880 .061 .835 .849 .889 .075
MINet-R[50] ResNet50 162.38 .884 .864 .926 .037 .925 .938 .957 .034 .919 .926 .960 .029 .856 .831 .883 .071 .883 .769 .869 .056 .830 .835 .878 .074
LDF-R[68] ResNet50 25.15 .892 .877 .930 .034 .925 .938 .954 .034 .920 .929 .958 .028 .861 .839 .888 .067 .839 .782 .870 .052 .831 .841 .878 .071
CSF-R2[13] Res2Net50 36.53 .890 .869 .929 .037 .931 .942 .960 .033 - - - - .863 .839 .885 .073 .838 .775 .869 .055 .826 .832 .883 .079
GateNet-R[80] ResNet50 128.63 .891 .874 .932 .038 .924 .935 .955 .038 .921 .926 .959 .031 .863 .836 .886 .071 .840 .782 .878 .055 .827 .835 .877 .079
VST[39] T2T-ViTt-14 44.48 .896 .877 .939 .037 .932 .944 .964 .034 .928 .937 .968 .030 .873 .850 .900 .067 .850 .800 .888 .058 .854 .866 .902 .065
ICON-R[86] ResNet50 33.09 .890 .876 .931 .037 .928 .943 .960 .032 .920 .931 .960 .029 .862 .844 .888 .071 .845 .799 .884 .057 .848 .861 .899 .067
VST-T++ [36] Swin-T 53.60 .901 .887 .943 .033 .937 .949 .968 .029 .930 .939 .968 .026 .878 .855 .901 .063 .853 .804 .892 .053 .853 .866 .899 .065
MENet[67] ResNet50 27.83 .905 .895 .943 .028 .927 .938 .956 .031 .927 .939 .965 .023 .871 .848 .892 .062 .850 .792 .879 .045 .841 .847 .884 .065
VSCode-T Swin-T 54.09 .917 .910 .954 .027 .945 .957 .971 .024 .935 .946 .970 .024 .878 .852 .900 .062 .869 .830 .910 .045 .863 .879 .908 .056
EVP[40] SegFormer-B4 64.52 .917 .910 .956 .027 .936 .949 .965 .029 .935 .945 .971 .024 .880 .859 .902 .061 .864 .822 .902 .047 .854 .873 .901 .065
VSCode-S Swin-S 74.72 .926 .922 .960 .024 .949 .959 .974 .022 .940 .951 .974 .021 .887 .864 .904 .058 .877 .840 .912 .043 .870 .882 .910 .054
VSCode-B Swin-B 117.41 .932 .930 .965 .022 .949 .961 .974 .022 .941 .951 .974 .021 .890 .866 .906 .056 .880 .846 .913 .043 .871 .882 .910 .056

Table 5. Quantitative comparison of our proposed VSCode with other 14 SOTA RGB SOD methods on six benchmark datasets.
“-R”,“-R2”, “-T”, “-S”, and “-B” mean the ResNet50 [16], Res2Net [12], SwinT-1k, SwinS-22k, and SwinB-22k[42] backbones, respectively.
‘-’ indicates the code is not available. The best performance under all settings is bolded, and the best results under each setting are labeled in
bold.

Summary Backbone Params NJUD [25] NLPR[52] DUTLF-Depth[54] ReDWeb-S[38] STERE[46] SIP[7]
(M) Sm Fm Em M Sm Fm Em M Sm Fm Em M Sm Fm Em M Sm Fm Em M Sm Fm Em M

ATST[76] VGG19 32.17 .885 .893 .930 .047 .909 .898 .951 .027 .916 .928 .953 .033 .679 .673 .758 .155 .896 .901 .942 .038 .849 .861 .901 .063
CMW[30] VGG16 85.56 .870 .871 .927 .061 .917 .903 .951 .029 .797 .779 .864 .098 .634 .607 .714 .195 .852 .837 .907 .067 .705 .677 .804 .141
Cas-Gnn[43] VGG16 - .911 .916 .948 .036 .919 .906 .955 .025 .920 .926 .953 .030 - - - - .899 .901 .944 .039 - - - -
HDFNet[48] ResNet50 44.15 .908 .911 .944 .039 .923 .917 .963 .023 .908 .915 .945 .041 .728 .717 .804 .129 .900 .900 .943 .042 .886 .894 .930 .048
CoNet[23] ResNet50 43.66 .896 .893 .937 .046 .912 .893 .948 .027 .923 .932 .959 .029 .696 .693 .782 .147 .905 .901 .947 .037 .860 .873 .917 .058
BBS-Net[9] ResNet50 49.77 .921 .919 .949 .035 .931 .918 .961 .023 .882 .870 .912 .058 .693 .680 .763 .150 .908 .903 .942 .041 .879 .884 .922 .055
JL-DCF[11] VGG16 143.52 .877 .892 .941 .066 .931 .918 .965 .022 .894 .891 .927 .048 .581 .546 .708 .213 .900 .895 .942 .044 0.885 .894 .931 .049
SPNet[84] Res2Net50 67.88 .925 .928 .957 .029 .927 .919 .962 .021 .895 .899 .933 .045 .710 .715 .798 .129 .907 .906 .949 .037 .894 .904 .933 .043
CMINet[75] ResNet50 188.12 .929 .934 .957 .029 .932 .922 .963 .021 .912 .913 0938 .038 .725 .726 .800 .121 .918 .916 .951 .032 .899 .910 .939 .040
DCF[22] ResNet50 53.92 .904 .905 .943 .039 .922 .910 .957 .024 .925 .930 .956 .030 .709 .715 .790 .135 .906 .904 .948 .037 .874 .886 .922 .052
VST[39] T2T-ViTt-14 53.83 .922 .920 .951 .035 .932 .920 .962 .024 .943 .948 .969 .024 .759 .763 .826 .113 .913 .907 .951 .038 .904 .915 .944 .040
VST-T++ [36] Swin-T 100.51 .928 .929 .958 .031 .933 .921 .964 .022 .944 .948 .969 .024 .756 .757 .819 .114 .916 .911 .950 .037 .903 .914 .944 .039
SPSN[27] VGG16 - - - - - .923 .912 .960 .023 - - - - - - - - .907 .902 .945 .036 .892 .900 .936 .043
CAVER[51] ResNet50 55.79 .920 .924 .953 .032 .929 .921 .964 .022 .931 .939 .962 .028 .730 .724 .802 .121 .914 .911 .951 .034 .893 .906 .934 .043
VSCode-T Swin-T 54.09 .941 .945 .967 .025 .938 .930 .966 .020 .952 .959 .974 .019 .766 .771 .831 .105 .928 .926 .957 .030 .917 .936 .955 .032
VSCode-S Swin-S 74.72 .944 .949 .970 .022 .941 .932 .968 .018 .960 .967 .980 .015 .777 .776 .829 .100 .931 .928 .958 .028 .924 .942 .958 .029
VSCode-B Swin-B 117.41 .944 .950 .969 .023 .944 .939 .971 .017 .959 .967 .978 .017 .772 .771 .828 .101 .933 .931 .960 .028 .913 .936 .950 .034

Table 6. Quantitative comparison of our proposed VSCode with other 14 SOTA RGB-D SOD methods on six benchmark datasets.

the VSCode-T and VSCode-S versions. Here, we compare our VSCode-B with FSPNet [17] in the RGB COD task, which
employs a backbone with similar parameters to Swin-B [42], i.e. DeiT-B [59].

It’s worth noting that we omit comparisons with some state-of-the-art methods for RGB COD. For example, DCOFD [82]
employs a significantly larger image size of 416, which exceeds our approach’s specifications. ZoomNet [49] and MFFN [81]
use multi-scale input images. All these settings lead to an unfair comparison with our method.

6. Visual Comparison with State-of-the-art Methods
In this section, we provide visual comparison results alongside state-of-the-art methods for four SOD tasks (RGB SOD,
RGB-D SOD, RGB-T SOD, and VSOD) and three COD tasks (RGB COD, VCOD, and RGB-D COD). The results, as
depicted in Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, and Figure 8, showcase the exceptional capabilities of
our VSCode model across a variety of challenging scenarios. These scenarios include handling significantly small and large
objects, multiple objects, occluded objects, and situations with uncertain boundaries, where existing methods often encounter
difficulties.



Summary Backbone Params VT821[63] VT1000[62] VT5000[61]
(M) Sm Fm Em M Sm Fm Em M Sm Fm Em M

FCMF[78] VGG16 - .760 .667 .810 .081 .873 .851 .921 .037 0.814 .758 .866 .055
ADF[61] VGG16 - .808 .749 .841 .077 .909 .908 .950 .034 .863 .837 .911 .048
ECFFNet[85] ResNet34 - .877 .835 .911 .034 .924 .919 .959 0.021 .876 .850 .922 .037
CGFNet[64] VGG16 69.92 .881 .866 .920 .038 .923 .923 .959 .023 .883 .852 .926 .039
CSRNet[18] ESPNetv2 1.01 .885 .855 .920 .037 .919 .901 .952 .027 .868 .821 .912 .045
MGAI[57] Res2Net50 87.09 .891 .870 .933 .030 .929 .921 .965 .024 .884 .846 .930 .037
MIDD[60] VGG16 52.43 .871 .847 .916 .044 .916 .904 .956 .030 .868 .834 .919 .045
TNet[5] ResNet50 87.41 .899 .885 .936 .030 .929 .921 .965 .024 .895 .864 .936 .036
CGMDRNet[2] Res2Net50 - .894 .872 .932 .035 .931 .927 .966 .020 .896 .877 .939 .032
VST-T++ [36] Swin-T 100.51 .894 .861 .923 .034 .941 .931 .972 .020 .895 .854 .933 .037
CAVER[51] ResNet50 55.79 .891 .874 .933 .033 .936 .927 .970 .021 .892 .857 .935 .035
VSCode-T Swin-T 54.09 .921 .906 .951 .021 .949 .944 .981 .017 .918 .892 .954 .028
VSCode-S Swin-S 74.72 .926 .910 .954 .021 .952 .947 .981 .016 .925 .900 .959 .026
VSCode-B Swin-B 117.41 .928 .915 .956 .021 .953 .949 .984 .016 .930 .907 .962 .025

Table 7. Quantitative comparison of our proposed VSCode with other 11 SOTA RGB-T SOD methods on three benchmark datasets.

Summary Backbone Params DAVIS [53] FBMS[47] ViSal[66] SegV2[29] DAVSOD-Easy[8] DAVSOD-Normal[8]
(M) Sm Fm Em M Sm Fm Em M Sm Fm Em M Sm Fm Em M Sm Fm Em M Sm Fm Em M

PDB[56] ResNet50 - .880 .851 .949 .030 .850 .821 .882 .072 .926 .922 .970 .024 .871 .820 .867 .024 - - - - - - - -
FGRN[31] VGGNet - .839 .786 .918 .043 .822 .783 .871 .084 .867 .852 .954 .041 .737 .660 .904 .037 - - - - - - - -
RCRNet[70] ResNet50 53.79 .884 .845 .947 .028 .873 .850 .902 .055 .933 .925 .971 .020 .829 .747 .901 .038 .726 .601 .773 .078 0.692 .550 .760 .102
SSAV[8] ResNet50 - .891 .857 .945 .029 .880 .856 .922 .043 .944 .940 .983 .018 .934 .797 .922 .024 - - - - - - - -
PCSA[14] MobileNetV3 2.63 .901 .878 .961 .023 .874 .847 .914 .043 .946 .941 .984 .016 .887 .850 .940 .019 .725 .590 .759 .077 - - - -
DCFNet[77] ResNet101 71.66 .914 .899 .970 .016 .883 .853 .910 .041 .952 .953 .990 .010 .903 .870 .953 .013 .729 .612 .781 .065 .708 .601 .791 .077
FSNet[21] ResNet50 102.3 .922 .909 .972 .019 .875 .867 .918 .048 - - - - .849 .773 .920 .023 .760 .637 .796 .063 .732 .623 .789 .088
CoSTFormer[37] ResNet50 - .923 .906 .978 .014 - - - - - - - - .874 .813 .943 .018 .779 .667 .819 .060 .730 .614 .777 .082
UFO[58] VGG16 55.92 .918 .906 .978 .015 .858 .868 .911 .051 .926 .917 .969 .020 .888 .850 .951 .014 .747 .626 .799 .063 .711 .605 .773 .088
VSCode-T Swin-T 54.09 .930 .913 .970 .014 .891 .880 .923 .037 .952 .954 .989 .010 .943 .937 .984 .008 .792 .696 .831 .053 .738 .631 .797 .078
VSCode-S Swin-S 74.72 .936 .922 .973 .013 .905 .902 .939 .029 .955 .957 .991 .009 .946 .937 .984 .008 .800 .710 .835 .052 .758 .666 .815 .071
VSCode-B Swin-B 117.41 .936 .923 .974 .014 .900 .901 .940 .031 .957 .948 .991 .009 .947 .937 .984 .008 .812 .728 .847 .047 .769 .690 .845 .069

Table 8. Quantitative comparison of our proposed VSCode with other 9 SOTA VSOD methods on six benchmark datasets.

Summary Backbone Params COD10K[6] NC4K[44] CAMO[26]
(M) Sm Fm Em M Sm Fm Em M Sm Fm Em M

SINet[6] ResNet50 48.95 .771 .676 .868 .051 .808 .775 .883 .058 .752 .706 .831 .100
CRLS[44] ResNet50 - .805 .732 .892 .037 .840 .815 .907 .048 .787 .753 .854 .080
MGL[74] ResNet50 63.60 .814 .738 .890 .035 - - - - .776 .741 .842 .089
UJSC[28] ResNet50 121.63 .817 .750 .902 .033 .856 .835 .920 .040 .803 .775 .867 .071
SegMar[24] ResNet50 56.21 .833 .755 .907 .034 .841 .827 .907 .046 .816 .803 .884 .071
FEDER[15] ResNet50 44.13 .822 .768 .905 .032 .847 .833 .915 .044 .802 .789 .873 .071
VSCode-T Swin-T 54.09 .847 .795 .925 .028 .874 .853 .930 .038 .838 .821 .909 .060
EVP[40] SegFormer-B4 64.52 .845 .794 .926 .029 .874 .855 .933 .039 .849 .833 .918 .058
VSCode-S Swin-S 74.72 .869 .827 .942 .024 .891 .878 .944 .032 .873 .861 .938 .047
FSPNet DeiT-B 274.24 .851 .794 .931 .026 .879 .859 .937 .035 .856 .846 .928 .050
VSCode-B Swin-B 117.41 .876 .838 .947 .022 .902 .892 .952 .029 .882 .875 .940 .044

Table 9. Quantitative comparison of our proposed VSCode with other 8 SOTA RGB COD methods on three benchmark datasets.

Summary Backbone Params CAD [1] MoCA-Mask[4]
(M) Sm Fm Em M Sm Fm Em M

PNS-Net[20] Res2Net50 26.87 .671 .473 .787 .054 .514 .068 .599 .030
RCRNet[70] ResNet50 53.79 .664 .405 .786 .051 .559 .170 .593 .025
MG[72] VGG - .608 .378 .673 .069 .500 .138 .514 .078
SLT-Net[4] PVT 164.68 .715 .542 .823 .036 .624 .327 .768 .019
VSCode-T Swin-T 54.09 .757 .659 .808 .034 .650 .339 .787 .013
VSCode-S Swin-S 74.72 .790 .680 .853 .026 .665 .386 .796 .012
VSCode-B Swin-B 117.41 .791 .678 .852 .027 .678 .430 .832 .011

Table 10. Quantitative comparison of our proposed VSCode with other 4 SOTA VCOD methods on two benchmark datasets.
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Figure 2. Qualitative comparison of our model against state-of-the-art RGB SOD methods. (GT: ground truth.)
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Figure 3. Qualitative comparison of our model against state-of-the-art RGB-D SOD methods. (GT: ground truth.)
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Figure 4. Qualitative comparison of our model against state-of-the-art RGB-T SOD methods. (GT: ground truth.)
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Figure 5. Qualitative comparison of our model against state-of-the-art VSOD methods.(GT: ground truth.)
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Figure 6. Qualitative comparison of our model against state-of-the-art RGB COD methods.(GT: ground truth.)
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Figure 7. Qualitative comparison of our model against state-of-the-art VCOD methods.(GT: ground truth.)
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[69]

Figure 8. Qualitative comparison of our model against state-of-the-art RGB-D COD methods.(GT: ground truth.)
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