DiffMOT: A Real-time Diffusion-based Multiple Object Tracker with
Non-linear Prediction

Supplementary Material

A. Preliminary

The Diffusion Probabilistic Model (DPM) [5] has shown
great potential in modeling non-linear mapping, yet it suf-
fers from prolonged inference time caused by thousands of
sampling steps. DDM [6] attempts to speed up the inference
process by applying a decoupled diffusion process. Specif-
ically, the forward process of decoupled diffusion is split
into the analytic image attenuation process and the increas-
ing process of normal noise:
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where xo and x; are the clean and noisy signals respec-
tively, f; denotes the analytic function representing the at-
tenuation velocity of xq over time ¢ (¢ € [0, 1]), and I is the
identity matrix. In practice, the proposed D?MP uses the
specific form—constant function: f; = c. [6] has proved
that the corresponding reversed process supports sampling
with arbitrary time interval At and is expressed by:
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where z ~ A(0,1), is the noise added on x(. Actually, z
and f; are unknown in the reversed process, therefore, we
need to parameterize f; and z using a neural network ©.
In the training stage, the decoupled diffusion model uses 2
and f; to supervise the parameterized zg and fg simultane-
ously:
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The reversed process aims to generate xo from x; via
Eq. 2 iteratively. Due to the analyticity of the image at-
tenuation process, we can conduct one-step sampling when
At =t = 1, removing the low speed of iterative generation.

B. Pseudo-code of Diff MOT

The inference of DiffMOT consists of three parts: detection,
motion prediction, and association, and the pseudo-code is
shown in Alg. 1. For the f-th frame of the given video se-
quence, we use a detector to obtain the bounding boxes of
objects. The detections are divided into two groups accord-
ing to their confidence scores (det.conf). Specifically, we

Method HOTA? IDF11 AssATMOTA1DetAT

DiffusionTrack[8] 553 663 513 728 599
MotionTrack[10] | 59.7 713 56.8 764 -

ByteTrack[11] 613 752 59.6 778 634
OC-SORTJ1] 624 763 625 757 624
StrongSORT[4] 626 770 640 738 613
SparseTrack[7] 63.5 776 63.1 781 64.1
Deep OC-SORT[9] | 63.9 79.2 65.7 756 624
DiffMOT 61.7 749 60.5 767 632

Table 1. Comparison with SOTA MOT trackers on the MOT20
test sets under the “private detector” protocol. All methods use the
same YOLOX detector. T means the higher the better and | means
the lower the better. Bold numbers indicate the best result.

set two different thresholds 7445, and 74, and group the
detections by:

Dsecond = Dsecond U {det} Tlow <det~conf<7high-

“)
On the other hand, we use the proposed D>MP to obtain
the predicted boxes of objects in the previous trajectories.
During the association stage, we match the detected and
predicted bounding boxes twice since the detections are
divided into two groups. We first match D;,..; with the
predicted bounding boxes via the similarity of reid fea-
tures and IoU of bounding boxes. Afterwards, Dgccong 1S
matched with the predicted bounding boxes via IoU. The
matched detections will update the trajectories. The un-
matched tracks will be deleted. The unmatched detections
will be initialized as new tracks.

{ Dyirst = Dyirst U{det} det.conf>mhign

C. Benchmark Evaluation on MOT20

MOT20 [3] is also one of the commonly used pedestrian-
dominant datasets in MOT, characterized by higher den-
sity, and the motion is more closely approximated as lin-
ear. We conduct the experiment on the MOT20 test sets
under the "private detector” protocol to further demonstrate
the performance of DiffMOT on pedestrian-dominant sce-
narios. As shown in Tab. 1, DiffMOT achieves 61.7%
HOTA, 74.9% IDF1, 60.5% AssA, 76.7% MOTA, and
63.2% DetA. The results indicate that even in pedestrian-
dominant scenarios, DiffMOT, designed specifically for
non-linear motion scenarios, can achieve comparable per-
formance.



Algorithm 1: Pseudo-code of DiffMOT.

Input

: A video sequence V; the detector D
HMINet model M; detection score
threshold 7,5, Tiow; tracking score
threshold ¢

Parameter: Detections Dy; predicted boxes Py;

Output

pure noise z; objects motion M ;
conditions C'y

: Tracks 7 of the video

s

Train Dataset

Test Dataset ‘HOTAT IDF1T MOTA?T

1 Initialization: 7 + 0
2 for frame f in'V do

3 Dfirst — (Z); Dsecond — @
4 /* Detection */
s | Dy« D(/f)
6 for det in D; do
7 if det.conf>Tpiq4n then
8 ‘ Dfirst — Dfirst U {det}
9 end
10 else if 7., <det.con f <Tp;gn then
1 ‘ Dsecond < Dsecond U {det}
12 end
13 end
14 /+ Motion Prediction */
15 for trk in T do
16 trk.C'y < motion information from trk
17 trk.My < M(z,trk.Cy)
18 trk.Py < trk.My + trk.last_location
19 end
20 /+ Association */
21 Match Py and D ¢, using reid feature and IoU
22 Pprem™ « remaining predicted boxes from Py
23 D;}em“m <+ remaining detected boxes from
Dfirst )
24 Match P;™*™ and Dsecond using IoU
25 P}e_Ten”“i" <+ remaining predicted boxes from
Premain
26 /+ Delete unmatched tracks */
27 | Jummatched o remaining unmatched tracks
from P'r"efremain
28 T — T\Tunmatched
29 /* Initialize new tracks */
30 for det in D7 do
31 if det.con f>e then
3 | T« T U{det}
33 end
34 end
35 end
36 Return: T

SportsMOT SportsMOT 76.2 76.1 97.1
DanceTrack SportsMOT 75.6 75.1 97.1
MOT17 MOT17 64.5 79.3 79.8
DanceTrack MOT17 61.8 74.4 79.1
MOT20 MOT20 61.7 74.9 76.7
DanceTrack  MOT20 61.2 73.8 76.2
Table 2. Generalization experiments for D*MP.
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Figure 1. The architecture of D*MP-TB. The distinction from
D2MP-OB is enclosed within the red dashed box.

D. Generalization of D>MP

To demonstrate the generalization of our D2MP, we directly
use the model trained on the DanceTrack dataset to test the
performances on other datasets. The results are shown in
Tab. 2. As we can see in the table, on SportsMOT, the
model trained on DanceTrack is only 0.6% and 1.0% lower
than the model trained on SportsMOT in HOTA and IDF1.
On MOT17 and MOT20, the model trained with Dance-
Track is 2.7% / 0.5% and 4.9% / 1.1% lower than the
model trained on MOT17 / 20 in HOTA and IDF1. Com-
pared with Tab. ??, Tab. ??, and Tab. 1, the model trained
solely on DanceTrack has already achieved performance
comparable to the state-of-the-art methods. Especially on
SportsMOT, the model trained solely on DanceTrack has
achieved SOTA performance, which outperforms previous
SOTA MixSort-OC [2] by 1.4% in HOTA, 0.7% in IDFI,
and 0.6% in MOTA. The above observation indicates that
D2MP possesses strong generalization capabilities, as it di-
rectly learns the distribution of all objects’ motion using the
diffusion model rather than learning individual object tra-
jectories. Our model can be applied to new scenarios with-
out retraining, demonstrating the advantage of using the dif-
fusion model for motion prediction.



ID Switch

ID Switch
(a) case 1: KF

(g) case 4: KF

(h) case 4: D2MP

Figure 2. Qualitative comparison between using KF or D2MP as the motion model on the DanceTrack test set. (a), (c), (), and (g) represent
the results using KF as the motion model. (b), (d), (f), and (h) represent the results using D*?MP as the motion model. Each pair of rows
shows the comparison of the results for one sequence. Boxes of the same color represent the same ID. Best viewed in color and zoom-in.

E. Architecture of D°MP-TB

We have conducted experiments on different architectures
of D2MP in the ablation study. The architecture of D2MP-
OB can be observed in Figure 3 in the manuscript. As
shown in in Fig. 1, D?MP-TB is a two-branch structure
and predicts zg and cg respectively. The distinction from
D2?MP-OB is enclosed within the red dashed box in the fig-
ure.

F. More Visualization
F.1. Qualitative Comparison on DanceTrack

Fig. 2 shows some samples on the test set of DanceTrack
where trackers with KF suffer from discontinuous trajecto-
ries and high ID switches while Diff MOT with D®MP has
strong robustness in non-linear motion scenes. For exam-
ple, the issue happens on the tracking results by trackers
with KF at: (a) ID1298 — ID1315, and ID1282 — ID1316;
(c) ID212 — ID213; (e) ID426 being lost and then switch to
1D436; (g) ID1736 — ID1766 — ID1769. The visual com-

parison indicates that when the objects exhibit non-linear
motions in dance scenarios, trackers with KF are unable
to predict the accurate trajectories’ position, resulting in a
large ID switch. In contrast, D2MP exhibits greater robust-
ness in handling these non-linear motions.

F.2. Qualitative Comparison on SportsMOT

Fig. 3 depicts more qualitative comparisons between em-
ploying KF and D2MP as the motion model on the test set
of SportsMOT. We select samples from diverse scenes, in-
cluding football, volleyball, and basketball scenes. The is-
sue happens on the tracking results by trackers with KF at:
(a) ID2854 — ID2900; (c) ID8820 — ID8834; (e) ID switch
between ID9724 and ID9725. The visual comparison in the
figure highlights that when the objects exhibit non-linear
motions such as acceleration or deceleration in sports sce-
narios, KF often hard to provide accurate predictions, while
DiffMOT demonstrates the ability to predict the objects’ po-
sition accurately in such scenarios.
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F.3. Visual Results on MOT17/20

Fig. 4 and Fig. 5 show several tracking results of our Diff-
MOT on the test set of MOT17 and MOT?20, respectively. It
can be observed that Although the proposed DiffMOT is de-
signed specifically for non-linear motion scenes, it can still
achieve appealing results.

G. INlustration of Failure Cases

We visualize two failure cases in Fig. 6. For the first case,
when different objects are passing through each other, ob-
jects with ID 71 and “2”, as well as objects with ID “4*
and “5”, underwent an exchange of identities. This is due
to the absence of velocity direction constraints in the mo-
tion model. We believe that incorporating velocity direc-
tion constraints to restrict the generation of predicted boxes
could help address this issue.

In the second case, the object with ID ”3” disappears in
“Frame 2” and reappears in “Frame 3 as ID ”7”. Simul-
taneously, the object with ID ~4” disappears in “Frame 2”
and reappears in “Frame 4” as ID ”’1”, while the object with
original ID 1" becomes a new ID ”8”. This phenomenon
occurs due to the difficulty in recovering long-term lost ob-
jects of our motion model. When an object is lost for an
extended period, it becomes challenging to re-associate the

(f) Basketball case: D2MP

Figure 3. Qualitative comparison between using KF or D?MP as the motion model on the SportsMOT test set. (a), (c), and (e) represent
the results using KF as the motion model. (b), (d), and (f) represent the results using D2MP as the motion model. Each pair of rows shows
the comparison of the results for one sequence. All of the cases are in scenarios with a moving camera. Boxes of the same color represent
the same ID. Best viewed in color and zoom-in.

object accurately, leading to the generation of new IDs or
ID switches. In our future work, we intend to explore the
generation of multi-frame trajectories to improve the mo-
tion model’s capacity for long-term matching.
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Figure 4. The visualization of DiffMOT tracking results on the test set of MOT17. Boxes of the same color represent the same ID. Best
viewed in color and zoom-in.
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Figure 5. The visualization of DiffMOT tracking results on the test set of MOT20. Boxes of the same color represent the same ID. Best
viewed in color and zoom-in.



Frame 1 Frame 2 Frame 3 Frame 4

Figure 6. Illustration of two failure cases. We show the two most common failure cases of our approach. In the first row, due to the absence
of velocity direction constraints, ID switches have occurred. In the second row, due to the difficulty in recovering long-term lost objects,
the new ID is generated.

coupled diffusion models with explicit transition probability.
arXiv preprint arXiv:2306.13720, 2023. 11

[7] Zelin Liu, Xinggang Wang, Cheng Wang, Wenyu Liu, and
Xiang Bai. Sparsetrack: Multi-object tracking by performing
scene decomposition based on pseudo-depth. arXiv preprint
arXiv:2306.05238,2023. 11

[8] Run Luo, Zikai Song, Lintao Ma, Jinlin Wei, Wei Yang, and
Min Yang. Diffusiontrack: Diffusion model for multi-object
tracking. arXiv preprint arXiv:2308.09905, 2023. 11

[9] Gerard Maggiolino, Adnan Ahmad, Jinkun Cao, and Kris
Kitani. Deep oc-sort: Multi-pedestrian tracking by adaptive
re-identification. arXiv preprint arXiv:2302.11813,2023. 11

[10] Changcheng Xiao, Qiong Cao, Yujie Zhong, Long Lan, Xi-
ang Zhang, Huayue Cai, Zhigang Luo, and Dacheng Tao.
Motiontrack: Learning motion predictor for multiple object
tracking. arXiv preprint arXiv:2306.02585, 2023. 11
[11] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng

Weng, Zehuan Yuan, Ping Luo, Wenyu Liu, and Xinggang
Wang. Bytetrack: Multi-object tracking by associating every
detection box. In ECCV, pages 1-21. Springer, 2022. 11



	. Preliminary
	. Pseudo-code of DiffMOT
	. Benchmark Evaluation on MOT20
	. Generalization of D2MP
	. Architecture of D2MP-TB
	. More Visualization
	. Qualitative Comparison on DanceTrack
	. Qualitative Comparison on SportsMOT
	. Visual Results on MOT17/20

	. Illustration of Failure Cases

