PTQ4SAM: Post-Training Quantization for Segment Anything

Supplementary Material

This supplementary document is organized as follows:
1) section A: more details on Bimodal Integration (BIG); 2)
section B: more quantitative studies of Adaptive Granularity
Quantization (AGQ); 3) section C: more qualitative results
for instance segmentation.

A. More Details on BIG
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Figure S1. Three typical examples in BIG strategy.

A.1. Bimodal Discovery

As we mentioned in the main paper, we utilize the contin-
uous probability density function to characterize the peaks.
However, merely using the naive local maxima will induce
an over-detection issue. We summarize the issue in two sit-
uations: 1) Two neighboring bumps in one peak are recog-
nized as two peaks (Figure S1(a)). 2) Wrongly consider the
small bump as a peak (Figure S1(b)). To address it, we im-
pose constraints stipulating that both the peak height and the
distances between two peaks must exceed a predetermined
threshold in Figure S1(c). Smaller peaks are removed first
until the condition is fulfilled for all remaining peaks.

A.2. Effect of Sign Operation

To verify the effectiveness of our BIG strategy, we show the
representative real distributions of query and key activations
before and after sign operation. As shown in Figure S2, af-
ter sign operation, the bimodal post-Key-Linear distri-
bution will be transferred to a normal distribution, narrow-
ing the range from -13~14 to 3~14 (row 1). Meanwhile,
the query activations remain normal distribution invariantly,
slightly reducing the range from -843~848 to -848~296
(row 2). Intuitively, our BIG is beneficial for quantization
and the sign operation can be performed in advance.

B. Quantitative Studies of AGQ

We complete the discussion related to the suitable granu-
larity (optimal 7) for different scenarios. As mentioned
in Section 3.3, a smaller 7 can better quantize lower at-
tention scores. Conversely, with an increment in 7, the
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Figure S2. The distribution of query and key activations before
and after BIG strategy.
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Figure S3. Pie charts depicting the optimal 7 across various atten-
tion mechanisms in SAM-L.

higher attention scores can be quantized in a more fine-
grained fashion. For simplicity, we conduct a statis-
tical analysis of optimal 7 across diverse post-Softmax
distributions at W4A4. As illustrated in Figure S3, in
token-to-image, our AGQ uniformly favors 7=1 because
there are more low attention scores (see Figure 1 in the
main paper). In image-to-token, 7=2 is prominently
selected to accurately quantize more high scores. And in
self-attention, there is a coexistence of 7=1 and 7=2
for the combination of both high and low attention scores.

Model SAM-B SAM-L SAM-H
#bits WO6A6 W4A4 WO6A6 W4A4 WO6A6 W4A4

MSE?® 30.2 14.4 35.7 28.3 36.5 32.6
MSE°  30.3 16.0 35.8 28.7 36.5 33.5

Table S1. Objective test for instance segmentation. ° represents
quantization error for post-Softmax activations and ° means quan-
tization error for output activations of matrix multiplication.



Figure S4. Visualization of instance segmentation on 4-bit SAM-L.

Therefore, our AGQ adopts suitable granularity solutions
towards the post-Softmax distribution across diverse atten-
tion mechanisms. Additionally, we compare the loss func-
tion in Eq. 14 (row 2) with local quantization errors of the
attention map A (row 1). Table S1 indicates that Eq. 14

addresses the inconsistent issue and achieves stable perfor-
mance, especially at low-bit.



C. More Qualitative Results

More instance segmentation results are given in Figure S4
produced by 4-bit BRECQ [1], QDrop [2], PTQ4SAM and
full-precision SAM-L. Notably, our model demonstrates su-
perior performance in terms of both completeness and clar-
ity when compared to other methodologies. In a simple sce-
nario with a single object, such as the person in row 1 and
the kite in row 2, our method is capable of providing a
more comprehensive description of the object boundaries,
without missing any pixels. In cases where objects overlap,
as observed in rows 3 and 4, our quantized model accurately
distinguishes each individual object and successfully sepa-
rates them from complex backgrounds. Conversely, other
methods often struggle to segment occluded objects accu-
rately, capturing unnecessary details. Particularly when rec-
ognizing background objects like the dining table, as
depicted in row 5, the results obtained from alternative ap-
proaches exhibit notable incompleteness. Conversely, our
approach excels in effectively identifying the entire object,
showcasing a significant advantage over other methods.
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