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A. Construction of Knowledge Base
The knowledge base consists of two components: 1) Cat-
egory descriptions, generated by large language models
(LLMs). 2) Multi-modal data descriptions produced by
multi-modal large language models (multi-modal LLMs).

Illustrating with ImageNet-1k [2] as an example, we ini-
tially generate descriptive texts for 1,000 categories using
GPT-4 [11] and LLaMA [17]. For each category, we gen-
erate 1,000 descriptive texts, limiting the output sequence’s
maximum length to 77 tokens. Specific instances are de-
tailed in Sec.A.1. Subsequently, we generate descriptions
for the visual data. In the case of ImageNet-1k[2], we gen-
erate descriptions for each image in the dataset using BLIP-
2 [9], ensuring the sequence length remains below 77 to-
kens. Concrete examples are provided in Sec.A.2. Finally,
the organizational structure of our knowledge base is delin-
eated in Sec.A.3.

A.1. Cases of Generation via LLMs

We employ GPT-4 [11] and LLaMA [17] to generate
category descriptions. Illustrated in Fig 1, we generate
1,000 descriptions for the category [water snake].
To achieve this, we utilize the prompt ["Please gen-
erate 1,000 sentences related to this
sentence <A photo of a water snake>"] as
input, facilitating the generation of effective descriptions
for the localization of the embedding center.

A.2. Cases of Generation via Multi-modal LLMs

For the image, event, and thermal modalities, we produce
multi-modal data descriptions using BLIP-2 [9]. Specifi-
cally, we employ paired RGB images from event and ther-
mal data to generate these descriptions. The process of gen-
erating descriptions for image data is illustrated in Fig. 2.
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Please generate 1,000 sentences related to 
this sentence <A photo of a {water snake}>

The water snake in the photo appears to 
be swimming gracefully.

Prompt:

Max Output Length : 77 tokens

Models : GPT-4 / LLaMA

Des_1 :

The water snake slithers silently, 
showcasing its stealthy movements.

Des_2 :

The water snake in the photo appears to 
be swimming gracefully.

Des_3 :

A photo of a water snake, and the water 
snake raises curiosity about its 
species and behavior.

Des_4 :

The photo of the water snake serves as 
a reminder of the diverse wildlife 
found in water ecosystems.

Des_5 :

The water snake in the photo appears to 
be swimming gracefully.

Des_6 :

A photo of a water snake, in the photo, 
water snake offers a glimpse into the 
hidden world beneath the water's 
surface

Des_1000 :
…

LLMs

User

Figure 1. The case of description generation via LLMs. We show
the generated descriptions for the category [water snake].

We utilize the prompt [Generate a detailed de-
scription of this photo] as the text input, while
the visual inputs consist of RGB images.

For the audio, video, and point cloud modalities, we em-
ploy the LLaMA-adapter [20] to generate descriptions for
multi-modal data. Illustrated in Fig. 3, we present a case
of generating descriptions for point cloud data. In this in-
stance, we utilize the prompt [Generate a detailed
description of this 3D object] as the text in-
put, with the visual inputs consisting of point cloud data.

A.3. Organizational Structure

Lastly, we present the organizational structure of our knowl-
edge base in Fig. 4. The knowledge base arranges descrip-
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Generate a description of this photo in
detail.

In the photo, the Christmas stocking 
was surrounded by shimmering ornaments 
and twinkling lights.

Prompt:

Max Output Length : 77 tokens

Models : BLIP-2

Des_1 :

Des_2 :

Des_3 :

Des_4 :

Des_5 :

Des_6 :

Des_n :

User

Multi-modal
LLMs a red and white crocheted stocking 

hanging from a christmas tree.

three knitted christmas stockings 
hanging on a wooden wall", "a red 
christmas stocking hanging on a green 
door.
a pair of christmas stockings with 
teddy bears and gifts.

The photo perfectly captured the 
festive red and green colors of the 
Christmas stocking..

a christmas stocking card with a candy 
cane and a teddy.

…

Input data : Images

Figure 2. The case of generation via BLIP-2 [9]. We present the
generated descriptions for ImageNet-1k [2].

Generate a description of this 3D object
in detail.

The 3D object is a small airplane, 
which is flying in the sky. It is a 
white and blue airplane, with a white 
and blue tail. .

Prompt:

Max Output Length : 77 tokens

Models : LLaMA-adapter

Des_1 :

Des_2 :

Des_3 :

Des_4 :

Des_n :

User

Multi-modal
LLMs

The plane is positioned in the middle 
of the image, with the sky in the 
background.

The 3D object is a large airplane, 
specifically a jumbo jet, which is 
white in color.

The 3D object is a flower, specifically 
a white daisy, which is rendered in a 
3D computer-generated format. 

The 3D object is a large propeller 
plane, likely a vintage aircraft, with 
a white and black color scheme.

…

Input data : Point clouds

Figure 3. The case of generation via LLaMA-adapter [20]. We
show the generation descriptions for ModelNet-40 [18]

tions generated from the same dataset in a table, with each
table featuring four keys: ID, Category, Description, and
Source. Descriptions with the same Category key value are
selected to localize embedding centers for categories. Dur-
ing training, we retrieve paired descriptions of input visual
data using the ID key.

ImageNet-1K

ModelNet-40

N-ImageNet-1K

SourceDescriptionCategoryID

LLMsThe water snake in the photo appears to be ...water snake00000000

LLMsThe water snake slithers silently, showcasing…water snake00000001

MLLMsA water snake is sitting in water near some…water snake00000002

LLMsThe photo captures a tray filled with perfectly...cup00130000

MLLMsA table with a lot of different glass cups.cup00130001

……

Figure 4. The organizational structure of our knowledge base.

B. Implementation Details

B.1. Datasets and Metrics

We experiment with our method on 13 datasets. Next, we
show the details and metrics of these benchmark datasets.
ImageNet-1K (IN-1K) [2]. It is a standard image dataset
designed for recognition tasks encompassing 1,000 cate-
gories. It serves the dual purpose of both training and evalu-
ation. In the zero-shot setting, we assess both baseline mod-
els and our proposed method on the test set without training.
Accuracy is employed as the metric for evaluation.
Places-Stanford-365 (P365) [10]. The Stanford-365
dataset is designed for scene recognition, comprising 365
categories. The evaluation setting for this dataset mirrors
that of ImageNet-1K [2].
Caltech-101 (cal) [3]. The Caltech-101 dataset is a well-
established benchmark dataset within the domain of com-
puter vision, tailored specifically for object recognition
tasks. Comprising images from 101 distinct object cate-
gories, it captures diverse scenes from real-world settings.
In this study, we employ the dataset for evaluating models
in the context of object recognition. Additionally, we utilize
both the Caltech-101 and N-Caltech-101 datasets for cross-
modal retrieval tasks. Accuracy is employed as the metric
for the recognition task, while recall serves as the metric for
the cross-modal retrieval task.
ModelNet-40 (ModelNet40) [18]. ModelNet-40 serves as
a widely adopted benchmark dataset within the realm of 3D
object recognition. Encompassing 40 object categories, it
includes items such as chairs, tables, airplanes, cars, and
various household objects. Each category is adequately rep-
resented with a substantial number of instances, ensuring a
comprehensive and representative sample. In the evaluation
of recognition, accuracy is employed as the metric.
ShapeNet-part (ShapeNet) [1]. ShapeNet-part stands as a
prominent benchmark dataset extensively employed for 3D



Modalities Dataset batch size lr total epochs

Image
ImageNet-1K (IN-1K) [2] 1,024 5e-4 15
Places-Stanford-365 (P365) [10] 1,024 5e-5 20
Caltech-101 (cal) [3] 128 1e-4 20

PointCloud ModelNet-40 (ModelNet40) [18] 128 5e-5 10
ShapeNet-part (ShapeNet) [1] 128 5e-5 10

Audio ESC 5-folds (ESC) [13] 64 1e-4 10
Urban-Sound-8K (Urban-S) [15] 64 1e-4 10

Thermal LLVIP (LLVIP) [7] 64 1e-3 20
RGB-T Selected (RGB-T) [6] 64 5e-3 20

Video MSR-VTT (MSR-VTT) [19] 128 5e-4 20
UFC-101 (UFC-101) [16] 128 5e-4 20

Event N-Caltech-101 (N-cal) [12] 128 1e-4 20
N-ImageNet-1K (N-IN-1K) [8] 1,024 5e-4 15

Table 1. The hyperparameters of experiments with PointBind [5].

segmentation tasks. Within the scope of this work, we delin-
eate the evaluation task on ShapeNet-part as a recognition
task. The dataset comprises 16 categories of 3D objects.
The evaluation metric employed for this task is accuracy.
ESC 5-folds (ESC) [13]. The dataset comprises 2,000
audio clips of 5 seconds each, classified into 50 distinct
classes. In the zero-shot setting, we employ the entire au-
dio dataset to assess both baseline models and our proposed
method. Conversely, in the fine-tuning setting, models are
trained exclusively on the training set and subsequently
evaluated on the test set. The metric employed for evalu-
ation in both settings is accuracy.
Urban-Sound-8K (Urban-S) [15]. The UrbanSound8K
dataset is a widely used collection of audio data designed
for research in the field of urban sound recognition. Urban-
Sound8K consists of 8,732 audio clips, each lasting 4 sec-
onds. These clips are extracted from longer field recordings
and are labeled with specific sound classes. The dataset is
annotated with 10 sound classes and we evaluate models on
the test set with accuracy metric.
LLVIP (LLVIP) [7]. The LLVIP dataset consists of RGB
image and Thermal image pairs. We follow ImageBind [4]
to process it for a binary classification task. We crop out
pedestrian bounding boxes and random bounding boxes
(same aspect ratio and size as a pedestrian) to create a bal-
anced set of 15,809 total boxes (7,931 ‘person’ boxes). The
metric used is top 1 accuracy.
RGB-T Selected (RGB-T) [6]. We follow the processing
methodology employed for LLVIP [7] in handling the RGB-
T dataset. For a binary classification task, we specifically
select 10,000 total bounding boxes, out of which 5,131 are
labeled as ’person.’ The top-1 accuracy is designated as the
evaluation metric.
MSR-VTT (MSR-VTT) [19]. MSR-VTT contains a di-
verse set of videos covering a wide range of topics and sce-
narios. The dataset consists of 10,000 video clips from 20
categories. In this work, we evaluate multi-modal methods
on the recognition task with these 20 categories. The metric
used is accuracy.

UFC-101 (UFC-101) [16]. The UFC-101 dataset is a preva-
lent benchmark in the domain of action recognition. It en-
compasses a total of 13,320 video clips, portraying 101 dis-
tinct human action categories. For evaluation, accuracy is
employed as the metric.
N-Caltech-101 (N-cal) [12]. N-Caltech-101 comprises
paired event data associated with the Caltech-101 [3]
dataset. This dataset is employed for tasks encompassing
event recognition, event-to-image retrieval, and image-to-
event retrieval. The evaluation metric for the recognition
task is accuracy, while for retrieval tasks, we utilize recall.
N-ImageNet-1K (N-IN-1K) [8]. N-ImageNet-1K encom-
passes paired event data derived from the ImageNet-1K [2]
dataset. The evaluation focuses on assessing the event
recognition capabilities of models within this dataset. Ac-
curacy is employed as the metric for this evaluation.

B.2. Experiment Details

B.2.1 Zero-shot Recognition

In the zero-shot setting, we evaluate all baseline models and
our UniBind without training. For all baseline models, we
use the default templates from CLIP [14], and we use our
localized embedding centers for our UniBind.

B.2.2 Fine-tuning Recognition

For the fine-tuning setting, our experiments were done on
80GB A800 GPUs, and we detail the hyperparameters used
for training with PointBind [5] reported in Tab 1

C. Additional Ablation Study

C.1. LLM-augmented Contrastive Learning

We present additional visualization results are shown in
Fig. 5. We show the comparison of the PointBind [5] repre-
sentation space and our UniBind representation space. In
the representation space built by PointBind, embeddings
from different modalities tend to cluster around their respec-
tive modalities. Thereby, with LLM-augmented contrastive
learning, multi-modal embeddings cluster around the same
semantic label in our unified modality-agnostic representa-
tion space.

We additionally present additional results pertaining to
the cross-modal retrieval task. Our experimentation in-
volves E-CLIP [21] and PointBind [5], and we subsequently
present the outcomes for both event-to-image retrieval and
image-to-event retrieval in Table 2. The observed improve-
ment in recall scores incrementally rises from the top 1 to
the top 20, highlighting the effectiveness of our approach in
aligning modalities with semantics.
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Figure 5. Representation space visualization of PointBind [5] and our UniBind.

Model Image-to-Event Event-to-Image

R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

E-CLIP [21] 79.52 90.11 93.08 95.51 76.29 89.97 91.80 94.61
E-CLIP w LCL 78.95 89.79 94.32 97.06 77.04 91.51 93.62 96.70
∆ -0.57 -0.32 +1.24 +1.55 +0.75 +1.54 +1.82 +2.09

PointBind (+Event) [5] 14.07 31.40 40.79 49.46 9.00 22.23 29.32 37.70
PointBind w LCL 14.12 31.91 41.25 50.98 14.29 33.65 44.34 55.66
∆ +0.05 +0.51 +0.46 +1.52 +5.29 +11.42 +15.02 +17.96

Table 2. Multi-modal retrieval result with/without LLM-augmented contrastive Learning. We evaluate E-CLIP and PointBind in
Image-to-Event and Event-to-Image tasks.

C.2. Embedding Center Localization

We show more visualization results from image, point
cloud, event, audio, video, and thermal modalities in Fig. 6.
Our embedding centers result in more distinct semantic
boundaries between different categories, effectively en-
hancing recognition accuracy and reducing interference
from other categories.
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Figure 6. Embedding centers.
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