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Overview

In this appendix, we provide additional descriptions of the

following contents:

• Fundamental principles of AGCD are discussed in Ap-

pendix A, including the relationship to some similar set-

tings and the main concern of this paper.

• More details of the proposed sampling strategy are elab-

orated in Appendix B.

• We provide more experimental details in Appendix C.

• Additional quantitative and qualitative results are pro-

vided in Appendix D and Appendix E, respectively.

A. Fundamental Principles of AGCD

In this section, we compare several related settings, and dis-

tinguish between sample selection strategies and training

methods, to clarify the positioning of our contribution.

Comparisons to related settings. We compare conven-

tional Active Learning (AL), Generalized Category Discov-

ery (GCD) and the proposed Active Generalized Category

Discovery (AGCD):

• AL aims to greatly improve models’ performance with

affordable labeling budgets. The spirit of AL is to select

valuable and informative samples for labeling and incor-

porate newly annotated samples into the training set for

subsequent training, which helps disambiguate confusing

samples and correct previous errors. AL principally fol-

lows a closed-world setting, where unlabeled data con-

tains the same set of classes as the labeled data.

• GCD is an open-world task, which aims to classify old

classes and discover novel classes in the unlabeled data,

given some labeled samples from old classes. However,

GCD itself is not a fully learnable task in that the knowl-

edge from old classes is not fully transferable to new

classes and new classes are purely unlabeled, resulting in

intractable problems including imbalanced accuracy and

confidence between old and new classes, as in Sec. 3.2.

• AGCD is proposed to address the intractable problems

and largely enhance the performance of GCD with mini-

mal annotation costs. AGCD adopts a similar spirit to AL.

Additionally, AGCD is a more general setting and gen-

eralizes AL to the open-world setting. We could refer to

GCD as an extrapolated version of AL, where new classes

could exist in unlabeled data, and models are required to

classify both old and new classes. With additional labeled

data, especially those from new classes, models could rec-

tify previously inevitable errors and biases, and clarify the

decision boundaries. Unlike GCD, models in AGCD are

evaluated in inductive settings with disjoint test datasets.

Sample selection strategies and training methods.

AGCD mainly involves two components, including sample

selection strategies and training methods. They are com-

plementary to each other. Models first select informative

samples to obtain annotations from the oracle, and are sub-

sequently trained on them using specific training methods.

Main concern and focus of this paper. In this paper,

our main concern is how to select valuable samples from

the data perspective and why conventional AL strategies

are not applicable to the task of AGCD, and we propose

a sample selection strategy called Adaptive-Novel. To

validate its effectiveness, we compare Adaptive-Novel

with various strategies in the literature of AL, as elabo-

rated in Appendix B. For training methods, we directly em-

ploy the off-the-shelf method SimGCD [19] for all strate-

gies for fair comparison, considering that SimGCD [19] is

the SOTA method in GCD and it employs parametric clas-

sifiers which are efficient for training and convenient for

evaluation including accuracy and confidence. By contrast,

non-parametric methods [11, 16] require independent K-

Means [7] clustering, which is inefficient and non-trivial to

analyze confidence and evaluate in inductive settings.

Although the training methodology, i.e., the loss func-

tion, is not the focus of this paper, we still need to ad-

dress specific issues over the course of AGCD training,

i.e., different ordering of label indices in clustering prob-

lems. Specifically, in GCD, we implement clustering on

new classes, the core is to cluster samples of the same novel

class together and separate samples from different classes.

The specific assignment of the labels to each cluster is not

crucial. As a result, the label indices of new classes dif-

fer across various experiments and are unpredictable. That

is the reason why it is common to employ the Hungarian

algorithm [6] to evaluate the performance of GCD, as in

Eq. (6). For example, the model might assign “8” and “9”

to “birds” in two runs. This brings about a challenging is-

sue in AGCD, i.e., the queried ground truth labels could not

be directly used by the model due to the different ordering

between the model’s predictions and ground truth labels.

As a result, it is necessary to obtain a mapping function to

convert the ground truth labels to the label space of the clas-

sifier in advance, as discussed in Sec. 4.4. Considering that

the labeled data Dt
l is limited, especially for new classes,

this would introduce instability to the computation of la-

bel mapping Mt. To overcome this issue, we propose a

stable labeling mapping method. Specifically, we perform

Hungarian optimal assignment algorithm [6] between the

EMA model’s predictions ŷema
i and the ground truth labels



yi over the accessible labeled data of the current round, i.e.,

Dt
l = Dt−1

l ∪ Dt
q , as in Eq. (11). The EMA model could

offer more stable predictions during training. Additionally,

label mapping Mt is computed in every iteration, so do the

mapped ground truth labels M(yi) and Dt−1

l,map ∪ Dt
q,map,

because the model’s parameters are continuously updated,

especially at the beginning of each round, we should also

keep the label mapping up-to-date to fit the changing model.

B. More Details about Adaptive-Novel

Adaptive sampling mechanism. In Adaptive-Novel

strategy, we propose an adaptive mechanism, i.e., at early

rounds, we sample confident novel samples to stabilize new

clusters while informative novel samples at later rounds to

refine decision boundaries. We propose to transfer from the

former to the latter when the clusters of new classes are

stable. Technically, we compare the label mapping at the

initial Mt
init and final epochs Mt

final of current round t,

when the difference is lower than a pre-defined threshold

δ, the clusters are deemed stable, and we transfer to seek

for informative novel samples at the next round t + 1, the

difference is computed as follows:

diff =

∑K

i=1
1(Mt

init[i] ̸= Mt
final[i])

K
(S1)

where K = Kold + Knew denotes the total number of

classes, and Mt[i] denotes the mapping Mt from the i-th

label index of the ground truth labels to the Mt[i]-th classi-

fier’s predictive label index. In all our experiments, we set

δ = 0.1 for all six datasets.

Uncertainty metrics. We mainly consider three uncer-

tainty/confidence metrics, including maximum softmax

probability (MSP [5]) p(ŷ1|x), margin p(ŷ1|x) − p(ŷ2|x)

and entropy −
∑K

i=1
p(y = i|x) log p(y = i|x), where

ŷ1 = argmaxy p(y|x) and ŷ2 = argmaxy ̸=ŷ1
p(y|x) rep-

resent two most likely labels of sample x. Informative sam-

ples refer to those with maximum uncertainty, i.e., mini-

mum MSP value, minimum margin value and maximum

entropy value. In the setting AGCD, we found that mar-

gin is more robust and could select more novel samples,

as a result, we choose margin as the uncertainty metric in

Adaptive-Novel. We further provide results of differ-

ent metrics in Appendix D.

Adaptive-Novel sampling algorithm. Here we give

the exact algorithm of Adaptive-Novel as in Algo-

rithm 1. We highlight three aspects for sample selection,

including novelty, informativeness and diversity, with red

colors. Note that the label mapping is performed in each

iteration when the model is updated.

C. More Experimental Details

Comparative strategies. We compare the proposed

Adaptive-Novel with various query strategies in the

literature of conventional AL, including uncertainty-based

and diversity/representative-based methods:

• Random: a baseline that randomly selects samples from

the unlabeled dataset.

• Entropy [18]: an uncertainty-based method that se-

lects samples with the highest entropy over all classes

−
∑K

i=1
p(y = i|x) log p(y = i|x).

• LeastConf [18]: an uncertainty-based method that se-

lects samples with the lowest MSP [5] p(ŷ1|x).
• Margin [12]: an uncertainty-based method that selects

samples with the lowest margin p(ŷ1|x)− p(ŷ2|x).
• KMeans [7]: a diversity-based method that selects sam-

ples closest to the centroids of K-Means, which is imple-

mented in the embedding space in a cluster-wise manner.

• CoreSet [13] picks up unlabeled samples with the

greatest distances to their nearest labeled neighbor, and

obtains representative samples of unlabeled data.

• BADGE [1] is short for Batch Active learning by Diverse

Gradient Embeddings and could be viewed as a hybrid

method to query centroids from K-Means clustering over

the gradient embeddings.

Other implementation details. We adopt all training pa-

rameters from SimGCD [19]. The weight of supervised loss

λ is 0.35, and the weight λe depends on specific datasets, we

set λe = 1 for CIFAR10, Aircraft and Stanford Cars, and

2 for ImageNet-100 and CUB, while 4 for CIFAR100. The

temperature τc, τp are 0.07 and 0.1 respectively. The sharp-

ened temperature in self-distillation in Eq. (4) is the same as

SimGCD [19], i.e., ramp-up schedule from 0.07 to 0.04. As

for the hyper-parameters related to Adaptive-Novel,

the EMA decay rate β = 0.9, and we set the threshold δ

for justification stability of label mapping function to be

0.1 for all datasets. We first train models with SimGCD

for 200 epochs as the base training stage to initialize mod-

els for subsequent AGCD. At each round of AGCD, we

train models for 15 epochs. The default setting is to query

100 samples per round, and five rounds in total, CIFAR10

is an exception with only one round. During AGCD, we

separately train all the queried data till the current round

Dall,t
q,map = D1

q,map∪D2
q,map∪· · ·∪Dt

q,map and the original

data D0
l ,D

0
u. We choose a smaller batch size 8 for Dall,t

q,map

to acquire more update iterations and keep batch size 128

for the original dataset. The parameters above are applied

to all query strategies for fair comparisons. All labeled data

including D0
l and Dall,t

q,map are trained with supervised ob-

jectives Ll
con Eq. (1) and Ll

cls in Eq. (5). We also employ

unsupervised loss Lu
con in Eq. (2) and Lu

cls in Eq. (4) on

both labeled and unlabeled data, which is consistent with

SimGCD.



Algorithm 1 Adaptive-Novel Sampling Strategy for AGCD

Input: Initial labeled dataset D0

l and unlabeled dataset D0

u.

Input: Total rounds N and labeling budget per round b.

Input: Total class number K = Kold +Knew (The ground truth or estimated).

Input: Stable mapping threshold δ, initial transfer scalar T = False.

Input: Total epochs E of each round.

Input: EMA decay parameter β.

1: Initialize D0

l and D0

u as in Table 1.

2: for current round t = 1 → N do

3: for c = 1 → Knew do # Class-wise sampling for Diversity

4: if T then # Adaptive Informativeness: informative sampling at later rounds

5: ▷ Select ⌊b/Knew⌋ samples with minimum margin from the c-th predictive novel class (ŷ = Kold + c) # Novelty

6: and query their labels to obtain Dt
q,c

7: else # Adaptive Informativeness: confident sampling at early rounds

8: ▷ Select ⌊b/Knew⌋ samples with maximum margin from the c-th predictive novel class (ŷ = Kold + c) # Novelty

9: and query their labels to obtain Dt
q,c

10: end if

11: end for

12: ▷ All the queried data of the current round:

13: Dt
q = Dt

q,1 ∪ Dt
q,2 · · · ∪ Dt

q,Knew

14: ▷ Update labeled and unlabeled datasets:

15: Dt
l = Dt−1

l ∪ Dt
q

16: Dt
u = Dt−1

u \ Dt
q

17: for current epoch e = 1 → E do # Training at the current round

18: ▷ Obtain label mapping function Mt between ground truth labels yi and the EMA model predictions ŷema
i in Eq. (11) on Dt

l

19: ▷ Perform label mapping on Dt
l :

20: Dt
l,map = Dt−1

l,map ∪ Dt
q,map = Mt(Dt−1

l ) ∪Mt(Dt
q)

21: ▷ Train the model on Dt
l,map with supervised loss Ll

con in Eq. (1) and Ll
cls in Eq. (5) and unsupervised loss,

22: and on Dt
u with purely unsupervised loss

23: ▷ Update the EMA model with decay rate β
24: end for

25: ▷ Compute the difference between Mt
init and Mt

final of this round as in Eq. (S1)

26: if diff < δ then # Mapping is stable and we transfer to informative sampling from round t+ 1
27: T = True

28: end if

29: end for

Output: The trained model and datasets DN
l , DN

u after N AGCD rounds.



D. Additional Quantitative Results

In this section, we provide additional quantitative results be-

yond the main text.

Details of AGCD performance across five rounds. In

the main text, we mainly report the performance after all

rounds of AGCD in Table 2 and Table 3. Here, we provide

more detailed results performance over the course of differ-

ent AGCD rounds, as shown in Fig. S1, where mean results

over three runs are plotted.
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(a) CIFAR100.
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(b) ImageNet-100.
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(c) CUB.
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(d) Stanford Cars.
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(e) Aircraft.

Figure S1. All accuracy of different strategies over 5 rounds.

Results of transfer rounds. As discussed in Sec. 4.3 and

Appendix B, when label mapping function is stable at round

t, i.e., diff < δ, we transfer from confident novel sampling

to informative novel sampling from round t+ 1. Results of

the transfer round t + 1 are shown in Table S1, including

five datasets CIFAR100 (C-100), ImageNet-100 (IN-100),

CUB, Stanford Cars (SCars) and FGVC-Aircraft (Air). As

for CIFAR10, the default setting has only one round, and

we adopt informative novel sampling on it.

Table S1. Transfer round t + 1 from confident novel sampling to

informative novel sampling on various datasets.

Datasets C-100 IN-100 CUB SCars Air

Round t + 1 2 2 4 2 2

Adaptive-Novel with different uncertainty metrics.

As introduced in Sec. 4.3, we choose margin as the metric

for uncertainty/confidence for Adaptive-Novel, owing

to the fact that margin is more robust in the task of AGCD

and could select more sample from new classes when com-

pared with MSP and entropy. From Fig. 4 we can observe

that there are more samples from novel categories in the

low confidence regime of Margin compared with Entropy

and MSP. The results in Table 4 also show that we could

select more new samples when using Margin as a metric

for uncertainty-based methods. Here, we also conduct ex-

periments using our Adaptive-Novel strategy but with

different uncertainty metrics, as shown in Table S2. Results

indicate the superiority of Margin benefiting from selecting

more samples from novel categories.

Table S2. Results of Adaptive-Novel when applying different

uncertainty metrics, including Entropy, MSP and Margin.

Metrics
CIFAR100 CUB

All Old New All Old New

Ours w/ Entropy 67.30 76.94 57.66 63.75 69.22 58.34

Ours w/ MSP 67.63 75.18 60.08 63.70 67.37 60.07

Ours w/ Margin 71.25 75.72 66.78 66.62 66.54 66.70

Unknown class number scenarios. SimGCD [19] is a

parametric classifier, it requires the number of classes K or

Knew is known a-prior before training, here it could be the

ground truth or estimated with off-the-shelf methods. In this

paper, we adopt the off-the-shelf method Max-ACC [16]

to estimate the number of the new classes. Max-ACC per-

forms K-Means clustering on the entire dataset with var-

ious number of new classes, and choose the value as an

estimation corresponding to the maximum clustering ac-

curacy of labeled data. The estimation results on several

datasets are shown in Table S3. Then we directly use

the estimated number K̂ to set the prototypical classifier

C = {c1, c2, · · · , cK̂}. In our main text, we have provided

results on ImageNet-100 and CUB as in Table 8. Here we

show results on more datasets in Table S4.

Table S3. Estimation of total class number K̂ = Kold + K̂new

using Max-ACC [16].

Datasets CIFAR100 ImageNet-100 CUB Stanford Cars

Ground Truth 100 100 200 196

Estimated 100 109 231 230

Results about novelty metrics. In the main text, results

about novelty metrics on CIFAR100 and Stanford Cars are

shown in Table 4. Here we provide the results on all six

datasets as in Table S5 and Table S6. Our method consis-

tently selects more samples evenly distributed across novel

categories, leading to better AGCD performance.



Table S4. Results of AGCD with unknown class number (estimated class number) on various datasets.

Strategies
CIFAR100 ImageNet-100 CUB Stanford Cars

All Old New All Old New All Old New All Old New

Random 67.28 74.52 60.04 77.86 90.34 65.38 60.68 63.31 58.08 42.22 55.24 29.66

Entropy 64.59 73.94 55.24 76.12 71.52 60.72 60.48 64.84 56.15 41.77 56.36 27.71

Ours 71.25 75.72 66.78 82.46 89.84 70.64 64.14 66.09 62.20 43.92 58.05 30.30

Table S5. Novelty metrics of selected data on generic datasets.

AL Strategies
CIFAR10 CIFAR100 ImageNet-100

Nov-C Nov-R Nov-U Nov-I Nov-C Nov-R Nov-U Nov-I Nov-C Nov-R Nov-U Nov-I

Random 1.00 0.84 0.96 0.81 1.00 0.52 0.97 0.50 1.00 0.56 0.97 0.54

Entropy 1.00 0.62 0.90 0.56 0.90 0.44 0.91 0.40 0.88 0.40 0.90 0.36

Margin 1.00 0.89 0.90 0.80 0.96 0.63 0.95 0.60 0.98 0.78 0.95 0.74

CoreSet 1.00 0.83 0.96 0.80 0.96 0.61 0.94 0.57 0.98 0.56 0.96 0.54

BADGE 0.88 0.77 0.87 0.67 1.00 0.63 0.98 0.62 1.00 0.71 0.97 0.69

Ours 1.00 0.90 0.97 0.87 1.00 0.71 0.98 0.70 1.00 0.82 0.98 0.80

Table S6. Novelty metrics of selected data on fine-grained datasets.

AL Strategies
CUB Stanford Cars FGVC-Aircraft

Nov-C Nov-R Nov-U Nov-I Nov-C Nov-R Nov-U Nov-I Nov-C Nov-R Nov-U Nov-I

Random 0.95 0.63 0.96 0.60 0.93 0.57 0.96 0.55 0.96 0.53 0.98 0.52

Entropy 0.78 0.58 0.91 0.53 0.85 0.64 0.92 0.59 0.92 0.57 0.92 0.52

Margin 0.87 0.59 0.95 0.56 0.90 0.66 0.93 0.61 1.00 0.66 0.98 0.65

CoreSet 0.93 0.71 0.95 0.67 0.89 0.69 0.94 0.65 0.94 0.58 0.95 0.55

BADGE 0.98 0.57 0.97 0.55 0.95 0.64 0.97 0.62 1.00 0.59 0.98 0.58

Ours 1.00 0.75 0.98 0.74 0.98 0.69 0.97 0.67 1.00 0.76 0.99 0.75

Performance on the long-tailed dataset. In the real

world, the class distributions often follow a long-tailed dis-

tribution, where the head classes have significantly more

samples than the tail classes. Several methods [2, 20] have

explored this issue in the task of GCD. In the long-tailed

settings, the uniform constraint H(p) of the SimGCD [19]

training procedure could be less applicable, as a result, we

assign a small value to the weight λe to balance between

addressing imbalanced class distribution and avoiding triv-

ial solutions. In this paper, we also test our methods in this

realistic scenarios. Specifically, we conduct experiments on

the long-tailed Herbarium19 [14] dataset. Table S7 shows

that our strategy outperforms other competitors, demon-

strating the strong applicability of our method.

Table S7. Performance on the long-tailed Herbarium19 dataset.

Strategies All Old New

w/o AGCD 46.55 62.67 29.49
Entropy 52.44 65.36 38.79
BADGE 53.31 61.53 44.62

Ours 54.50 63.33 45.16

Performance under other GCD training procedures.

In the main manuscript, we compare different sam-

ple selection strategies with the GCD training procedure

SimGCD [19]. Here we present results under two recent

GCD training methods, i.e., µGCD [17] and PIM [3]. As

shown in Table S8, Adaptive-Novel works across vari-

ous GCD training methods, indicating the superiority of our

strategy consistency.

Table S8. Performance with another two GCD training proce-

dures, µGCD and PIM.

Strategies
µGCD PIM

All Old New All Old New

w/o AGCD 48.69 57.00 40.45 48.84 55.34 43.64
Entropy 59.04 65.36 52.78 60.96 67.79 54.19
BADGE 61.08 62.66 59.52 62.32 68.94 55.77

Ours 63.00 65.88 60.14 63.74 65.50 61.99

Comparison with more recent and open-set AL strate-

gies. We adapt recent methods to AGCD, including

LfOSA [8], MQ-Net [9], ConAL [4], and one additional



Table S9. Comparison with open-set and standard AL methods.

Methods Venue
CUB SCars

All Old New All Old New

LfOSA CVPR’22 59.39 62.34 56.46 42.66 53.60 32.10

ConAL T-PAMI’22 62.00 64.25 59.76 46.54 58.89 34.62

MQ-Net NIPS’22 64.69 66.75 62.65 45.21 55.12 36.65

ALFA-Mix CVPR’22 63.32 66.64 60.03 46.81 54.67 39.22

Ours This Work 66.62 66.54 66.70 48.36 57.73 39.34

standard AL method ALFA-Mix [10], results are shown in

Table S9. Because open-set AL merely cares about ‘Old

ACC’, and treats new classes as noise/outliers, it aims to

detect/filter them and mainly query old classes. Instead, our

approach further clusters new classes. As a result, open-set

AL generally selects fewer samples from new classes, re-

sulting in even worse performance than standard AL base-

lines in AGCD.

E. Visualization of Feature Spaces

We visualize features of CIFAR10 using t-SNE [15] in

Fig. S2. Original GCD (Left) suffers from severe confu-

sion classes (e.g., “deer” and “horses”), while Random and

Entropy struggle to select informative samples, resulting

in overlapped cluster boundaries. Instead, our approach

achieves clear inter-class separation. We further visualize

the feature space on CIFAR100 and CUB using t-SNE [15].

For CIFAR100, we randomly selected 10 classes (5 old

classes and 5 new classes), while for CUB, 20 classes in

total (10 old classes and 10 new classes) for visualization,

results are shown in Fig. S3 and Fig. S4. As in Fig. S3,

there are many confusing classes on which the model be-

haves ambiguously before AGCD, e.g., “beaver”, “squirrel”

and “bear”. When the model is trained on the newly labeled

data queried by our method, it could achieve relatively more

separated clusters among the classes. Additionally, it is ob-

servable in Fig. S3 and Fig. S4 that our method could gen-

erally bring about more compact class-wise clusters on both

datasets.



Figure S2. t-SNE [15] feature visualization of different strategies on CIFAR10.

Figure S3. t-SNE [15] feature visualization of different strategies on CIFAR100.

Figure S4. t-SNE [15] feature visualization of different strategies on CUB.
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