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Supplementary Material

In Appendix, we provide proof of theorems and more
experimental results for MEKD. We also visualize the real
and generated distributions of MEKD with DCGAN to ver-
ify the effectiveness of our method.

1. Proofs
The success of deep learning can be attributed to the dis-
covery of intrinsic structures of data, which is defined as
the manifold distribution hypothesis [13]. The data is con-
centrated on a manifold Σ ∈ Rn, which is embedded in
the image space X , and data distribution can be abstracted
as a probability distribution µ over the data manifold. The
encoding-map φ : Σ → Ω maps the data manifold Σ to
the label manifold Ω ∈ RC in a label space Y which is
also called latent space, while mapping the data distribu-
tion µ to latent distribution υ = φ#µ. Each sample x is
mapped from the image space into the latent space, and its
result φ(x) is called a latent code. The decoding-map φ−1

remaps latent codes to the data manifold. Both φ and φ−1

are strongly nonlinear functions, which can be simulated
with different neural networks [7, 8]. Meanwhile, the well-
known Kolmogorov Theorem [2, 6] indicates that any mul-
tivariate continuous function can be represented as the sum
of continuous real-valued functions with continuous one-
dimensional outer and inner functions Φq and Ψq,p.

The teacher function fT ∈ φ can be considered as a kind
of encoding map, and the generator function fG ∈ φ−1 can
be considered as a kind of decoding map. Let X ∈ Rn

be the image space, where data x is sampled from. For a
C-way classification task, let Y ∈ RC be the latent space,
where |Y| = C. Defining the model as a complex mapping
function from the image distribution to the latent distribu-
tion, we can consider the teacher model as fT : X → Y pa-
rameterized by θT ∈ ΘT , whose outputs indicate the proba-
bilities (e.g., logits) of what category the samples belong to.
The same for the student model fS : X → Y parameterized
by θS ∈ ΘS .

Definition 1. (Function Equivalence) Giving the student
and teacher model fS and fT , for a data distribution µ ∈ X
in image space which is mapped to PS ∈ Y and PT ∈ Y
in latent space. If the Wasserstein distance between PS and
PT equals zero,

W (PS ,PT ) = inf
γ∈Π(PS ,PT )

E(yS ,yT )∼γ [ ∥yS − yT ∥ ] = 0,

(1)
the student and teacher model are equivalent, i.e., fS =
fT , where Π(PS ,PT ) is the set of all joint distributions

γ(yS , yT ) whose marginals are PS and PT , respectively.

Definition 2. (Inverse Mapping) Giving a prior distribu-
tion p ∈ RC , for a data distribution µ ∈ Rn, if the Wasser-
stein distance between generated distribution µ′ = (fG)#p
and µ equals zero,

W (µ′, µ) = inf
γ∈Π(µ′,µ)

E(x′,x)∼γ [ ∥x′ − x∥ ] = 0, (2)

then the generator fG : RC → Rn is the inverse mapping of
the teacher function fT : Rn → RC , denoted as fG = f−1

T ,
where Π(µ′, µ) is the set of all joint distributions γ(x′, x)
whose marginals are respectively µ′ and µ.

1.1. Proof of Theorem 1

Theorem 1. (Empirical Approximation) For any 0 < ϵ <
1/2 and any integer m > 4, let g : RC → Rn be the
mapping function of generator G with n ≤ 20 logm

ϵ2 . For
two sets VS = {yS : yS ∈ PS} and VT = {yT : yT ∈
PT }, both of which have m points in RC , if the empirical
Wasserstein distance between g(VS) and g(VT ) equals zero,

Ŵ (g(VS), g(VT )) =
1

m

m∑
i=1

∥g(yiS)− g(yiT )∥ = 0, (3)

then W (PS ,PT ) = 0.

Proof. According to Johnson-Lindenstrauss theorem, for
yS ∈ VS and yT ∈ VT , we have

∥yS − yT ∥ ≤ (1 + ϵ)∥g(yS)− g(yT )∥. (4)

For set VS and VT , we can get the empirical Wasserstein
distance between them:

Ŵ (VS , VT ) =
1

m

m∑
i=1

∥yiS − yiT ∥

≤ 1

m

m∑
i=1

(1 + ϵ)∥g(yiS)− g(yiT )∥

=
1 + ϵ

m

m∑
i=1

∥g(yiS)− g(yiT )∥

= (1 + ϵ)Ŵ (g(VS), g(VT )) = 0.

(5)

Because the Wasserstein distance between PS and PT

is the expectation of the empirical Wasserstein distance be-
tween VS and VT , i.e.,

W (PS ,PT ) = E(VS ,VT )∼Π(PS ,PT )

[
Ŵ (VS , VT )

]
, (6)



so we can get

W (PS ,PT ) ≤ Ŵ (VS , VT ) = 0. (7)

Since

W (PS ,PT ) = inf
γ∈Π(PS ,PT )

E(yS ,yT )∼γ [ ∥yS − yT ∥ ] ≥ 0,

(8)

then the result W (PS ,PT ) = 0 is derived.

1.2. Proof of Theorem 2

Theorem 2. (Optimization Direction) Let µ ∈ X be any
distribution. fS , fT , fG are the mapping functions of the
student, teacher, and generator, respectively. fS is parame-
terized by θS ∈ ΘS . Then, when

min
θS∈ΘS

Ex∼µ [∥fG ◦ fS(x), fG ◦ fT (x)∥] → 0, (9)

it holds that fS → fT , and we have

∇θSEx∼µ[fS(x)] = ∇θSW (PS ,PT )

= Ex∼µ[∇θS∥fG ◦ fS(x)− fG ◦ fT (x)∥]. (10)

Proof. Let us define

V (fS , θS) = Ex∼µ [ ∥fS(x), fT (x)∥ ] , (11)

V ′(fS , θS) = Ex∼µ[ ∥fG ◦ fS(x), fG ◦ fT (x)∥ ], (12)

where fS lies in FS = {fS : X → Y} and θS ∈ ΘS .
According to the Johnson-Lindenstrauss Lemma [4], for

any 0 < ϵ < 1/2 and any integer m > 4, let n = 20 logm
ϵ2 ,

then for any set S of m points in RC , the generator mapping
function fG : RC → Rn for all fS(x), fT (x) ∈ S holds
that

(1− ϵ) ∥fG ◦ fS(x), fG ◦ fT (x)∥
≤ ∥fS(x), fT (x)∥

≤ (1 + ϵ) ∥fG ◦ fS(x), fG ◦ fT (x)∥. (13)

Using Squeeze Theorem [9], we know that the minimiza-
tion of equation 11 and equation 12 converge to the same
results, i.e.,

inf V (fS , θS) = inf V ′(fS , θS). (14)

We can rewrite the equation 1 using x ∼ µ:

W (PS ,PT ) = inf
γ∈

∏
(PS ,PT )

E(yS ,yT )∼γ [ ∥yS − yT ∥ ]

= inf
γ∈

∏
(fS(µ),fT (µ))

Ex∼µ [ ∥fS(x), fT (x)∥ ]

= inf
γ∈

∏
(fS(µ),fT (µ))

V (fS , θS),

(15)

where fS and fT map distribution µ to PS and PT , respec-
tively. So we can get

inf V ′(fS , θS) = inf V (fS , θS) = W (PS ,PT ). (16)

According to Def. 1, when inf V ′(fS , θS) → 0, then
W (PS ,PT ) → 0, and we can derive that fS → fT .

The rest of the proof will be dedicated to show that
the optimal solution of minV ′(fS , θS) leads to reduce the
Wasserstein distance of PS and PT , which drives fS to ap-
proximate fT .

We know by the Kantorovich-Rubinstein duality [14]
that there is an f̃S ∈ FS that attains

inf Ex∼µ[ ∥f̃S(x), fT (x)∥ ]

= sup Ex∼µ[ f̃S(x) ]− Ex∼µ[ fT (x) ]. (17)

Let us define X̃(θS) = {f̃S ∈ FS : V (f̃S , θS) =
W (PS ,PT )} which is non-empty. We know by a simple
envelope theorem [10] that

∇θSW (PS ,PT ) = ∇θSV (f̃S , θS), (18)

for any f̃S ∈ X̃(θS) when both terms are well-defined.
Let f̃S ∈ X̃(θS), which we knows exists since X̃(θS) is

non-empty for all θS . Then, we get

∇θSW (PS ,PT ) = ∇θSV (f̃S , θS)

= ∇θSEx∼µ[ ∥f̃S(x), fT (x)∥ ]

= ∇θSEx∼µ[ f̃S(x) ]− Ex∼µ [ fT (x) ]

= ∇θSEx∼µ[ f̃S(x) ].
(19)

In practice, we use empirical distance between generated
images of the student and teacher as loss to update θS by
back-propagation, i.e.,

∇θSEx∼µ[fS(x)] = ∇θSW (PS ,PT )

= ∇θSW ((fG)#PS , (fG)#PT )

= ∇θSEx∼µ[∥fG ◦ fS(x)− fG ◦ fT (x)∥]
= Ex∼µ[∇θS∥fG ◦ fS(x)− fG ◦ fT (x)∥], (20)

when W (PS ,PT ) → 0, the student function fS converges
to the teacher function fT .

1.3. Proof of Theorem 3

Theorem 3. (Generalization Bound) Let H ⊆ RX×Y be
a hypothesis set for C-way classification task. For any 0 <
ϵ < 1/2 and a sample S of size m > 4 drawn according
to µ, let g : RC → Rn be a mapping function of generator



G with n ≤ 20 logm
ϵ2 . Fix ρ > 0, for any 1 > δ > 0, with

probability at least 1−δ, the following holds for all h ∈ H ,

R(h) ≤ R̂ρ(h) +
2C2

ρ(1− ϵ)

√
r2Λ2

m
+

√
log 1

δ

2m
. (21)

For any x ∈ X , the Λ ≥ 0 and (
∑C

y=1 ∥h(x, y)∥p)1/p ≤ Λ

for any p ≥ 1, and the r > 0 for K(x, x) ≤ r2 where kernel
K : X × X → R is positive definite symmetric.

Proof. For the C-way classification task, a hypothesis h :
X × Y → R aims to get y with the minimum dis-
tance, i.e. argminy∈Y ∥h(x) − hy∥ which is equiva-
lent to argminy∈Y(1 + ϵ)∥g(h(x)) − g(hy)∥ by Johnson-
Lindenstrauss theorem, as the result of x. We define the
margin ρh(x, y) of the hypothesis h as

ρh(x, y) = ∥g(h(x))− g(hy)∥ − min
y′ ̸=y

∥g(h(x))− g(hy′)∥,

(22)

where h(x) is the vector of h(x, y), y ∈ Y and hy use the
mean of x which belong to class y as input. g is the mapping
function of generator G.

For any ρ < 0, we can define the empirical margin loss
of hypothesis h for multi-class classification as

R̂ρ(h) =
1

m

m∑
i=1

Φρ(ρh(xi, yi)), (23)

where Φρ is the margin loss function

Φρ(x) =

 1 0 ≤ x,
1− x/ρ ρ ≤ x ≤ 0,
0 x ≤ ρ.

(24)

Thus, empirical margin loss is upper bounded by

R̂ρ(h) ≤
1

m

m∑
i=1

1ρh(xi,yi)≥ρ. (25)

Let H̃ = {(x, y) 7→ ρh(x, y) : h ∈ H}, consider the
family of functions H̃ = {Φρ ◦ r : r ∈ H̃} derived from H̃ ,
which take values in [0, 1]. By Rademacher theorem, with
the probability at least 1− δ, for all h ∈ H ,

E[Φρ(ρh(x, y))] ≤ R̂ρ(h) + 2Rm(Φ ◦ Ĥ) +

√
log 1

δ

2m
.

(26)

Since 1µ≥0 ≤ Φρ(µ) for all µ ∈ R, the gen-
eralization error R(h) is a lower bound on the left-
hand side by Johnson-Lindenstrauss theorem, R(h) =

E
[
1∥h(x)−hy∥−miny′ ̸=y ∥h(x)−hy′∥≥0

]
≤ E[Φρ(ρh(x, y))],

and we get

R(h) ≤ R̂ρ(h) + 2Rm(Φ ◦ Ĥ) +

√
log 1

δ

2m
. (27)

Let ρ = −ρ, because the (1/ρ)-Lipschitzness of Φp, so
that Rm(Φp ◦H̃) ≤ 1

ρRm(H̃). Here, Rm(H̃) can be upper
bounded as follows:

Rm(H̃) =
1

m
E
S,σ

[ sup
h∈H

m∑
i=1

σiρh(xi, yi)]

=
1

m
E
S,σ

[ sup
h∈H

m∑
i=1

∑
y∈Y

σiρh(xi, y)1y=yi ]

≤ 1

m

∑
y∈Y

E
S,σ

[ sup
h∈H

m∑
i=1

σiρh(xi, y)1y=yi ]

=
1

m

∑
y∈Y

E
S,σ

[ sup
h∈H

m∑
i=1

σiρh(xi, y)(
2(1y=yi)− 1

2
+

1

2
)]

≤ 1

2m

∑
y∈Y

E
S,σ

[ sup
h∈H

m∑
i=1

σi(2(1y=yi)− 1)ρh(xi, y)]+

1

2m

∑
y∈Y

E
S,σ

[ sup
h∈H

m∑
i=1

σiρh(xi, y)]

=
1

m

∑
y∈Y

E
S,σ

[ sup
h∈H

m∑
i=1

σiρh(xi, y)],

(28)

where σ = (σ1, . . . , σm)T with σi independent uniform
random variables taking values in {−1,+1}, observing that
σi and −σi are distributed in the same way.

Let Π1(H)(C−1) = {min{h1, . . . , hl} : hi ∈
Π1(H), i ∈ [1, C − 1]}. By Johnson-Lindenstrauss theo-



rem, we get

Rm(H̃) ≤ 1

m

∑
y∈Y

E
S,σ

[ sup
h∈H

m∑
i=1

σi(∥g(h(x))− g(hy)∥

− min
y′ ̸=y

∥g(h(x))− g(hy′)∥)]

≤ 1

m

∑
y∈Y

E
S,σ

[ sup
h∈H

m∑
i=1

σi
1

1− ϵ
(∥h(xi)

− hy∥ − min
y′ ̸=y

∥h(xi)− hy′∥)]

≤ 1

(1− ϵ)m

∑
y∈Y

[E
S,σ

[ sup
h∈H

m∑
i=1

σi∥h(xi)− hy∥]

+ E
S,σ

[ sup
h∈H

m∑
i=1

σi min
y′ ̸=y

∥h(xi)− hy′∥]]

≤ 1

(1− ϵ)m

∑
y∈Y

[E
S,σ

[ sup
h∈Π1(H)

m∑
i=1

σih(xi)]

+ E
S,σ

[ sup
h∈Π1(H)(C−1)

m∑
i=1

σih(xi)]]

≤ C

(1− ϵ)m
[C E

S,σ
[ sup
h∈Π1(H)

m∑
i=1

σih(xi)]]

=
C2

1− ϵ
[
1

m
E
S,σ

[ sup
h∈Π1(H)

m∑
i=1

σih(xi)]]

=
C2

1− ϵ
Rm(Π1(H)).

(29)

Let K : X × X → R be a positive definite symmetric
kernel and let h(x, y) = argmaxy∈Y wy · Φ(x), where Φ :
X → Rn be a feature mapping associated to K. We denote
W as W = (w⊤

1 , . . . , w
⊤
C ). For any p ≥ 1, the family of

kernel-based hypotheses is

H = {h ∈ RX×Y : h(x, y) ∈ Rn, ∥h∥p ≤ Λ}, (30)

where ∥h∥p = (
∑C

y=1 ∥h(x, y)∥p)1/p.

Observe that for all l ∈ [1, C], we have ∥wl∥ ≤
(
∑C

l=1 ∥wl∥p)1/p = ∥W∥p ≤ ∥h∥p ≤ Λ.And for i ̸= j,
Eσ[σi, σj ] = 0. The Radmacher complexity of the hypothe-
ses set Π1(H) can be expressed and bounded as follows:

Rm(Π1(H)) =
1

m
E
S,σ

[
sup

y∈Y,∥W∥≤Λ

〈
wy,

m∑
i=1

σiΦ(xi)

〉]

≤ 1

m
E
S,σ

[
sup

y∈Y,∥W∥≤Λ

∥wy∥

∥∥∥∥∥
m∑
i=1

σiΦ(xi)

∥∥∥∥∥
]

≤ Λ

m
E
S,σ

[∥∥∥∥∥
m∑
i=1

σiΦ(xi)

∥∥∥∥∥
]

≤ Λ

m

E
S,σ

∥∥∥∥∥
m∑
i=1

σiΦ(xi)

∥∥∥∥∥
2
1/2

=
Λ

m

[
E
S,σ

[
m∑
i=1

∥Φ(xi)∥2
]]1/2

=
Λ

m

[
E
S,σ

[
m∑
i=1

K(xi, xi)

]]1/2

≤ Λ
√
mr2

m
=

√
r2Λ2

m
, (31)

which concludes the proof.

2. More Results
2.1. Complete Distillation Experiments

We conduct different teacher-student model pairs for distil-
lation experiments, and use ResNet32 / ResNet56 / VGG13
/ ResNet110 / ResNet50 / ResNeXt101 as teacher mod-
els and use ResNet8 / ResNet32 / VGG11 / MobileNet /
ResNet34 / ResNeXt50 as student models. Distillation per-
formance is tested on various datasets, such as MNIST,
CIFAR-10, CIFAR-100, Tiny ImageNet, and ImageNet-1K,
as top-1 classification accuracy is exploited as an evaluation
metric. The experimental results are shown in Tab. 1, Tab. 2
and Tab. 3. For the training of teacher and student mod-
els, we adopt the same setting of hyperparameters, so as to
verify the distillation effect of student models trained with
different methods compared with the teacher model trained
with vanilla supervised learning under the same conditions.

We also provide complete ablation results of different
data sizes on CIFAR-10 and CIFAR-100, as shown in
Tab. 4. We use an effective teacher-student pair of ResNet56
- MobileNet for experiments. The results show that B2KD
methods are generally more robust than traditional KD
methods for small data sizes, and they can utilize the in-
formation in available samples maximumly to model com-
pression in extreme cases. In the comparison of all methods,
MEKD achieves the best performance, which also validates
the effectiveness and robustness of our proposed method.



Method Data Size MNIST CIFAR-10

Teacher 50K∼100K
ResNet32 VGG13 ResNet32 ResNet32 ResNet56 VGG13 ResNet56 ResNet56

99.50 99.52 99.50 99.50 94.15 94.42 94.15 94.15

Student 50K∼100K
ResNet8 VGG11 VGG11 MobileNet ResNet8 VGG11 VGG11 MobileNet

99.24 99.41 99.41 99.18 87.74 91.81 91.81 90.04
KD [5] 50K∼100K 99.33 99.44 99.31 99.30 86.58 92.16 92.25 90.43
ML [1] 50K∼100K 99.49 99.40 99.44 99.40 87.89 91.58 91.91 91.19
AL [16] 50K∼100K 99.37 99.26 99.26 99.21 87.25 91.96 91.97 90.54

DKD [18] 50K∼100K 99.33 99.43 99.48 99.42 86.61 92.06 92.42 90.50
DAFL [3] 0K 96.42 97.00 96.14 97.85 60.67 65.41 66.03 69.59
KN [11] 10K 98.61 98.81 98.07 98.54 80.62 81.83 82.41 85.07
AM [15] 10K 99.33 99.47 99.50 99.42 74.89 77.25 74.26 73.65

DB3KD [17] 10K 98.94 99.16 98.91 98.91 78.47 83.72 85.84 81.67
MEKD (soft) 10K 99.40 99.43 99.36 99.25 85.36 86.11 87.27 86.85
MEKD (hard) 10K 99.40 99.45 99.28 99.27 84.45 86.16 87.25 86.53

Table 1. Top-1 classification accuracy (%) of the student model on MNIST and CIFAR-10.

Method Data Size CIFAR-100 Tiny ImageNet

Teacher 50K∼100K
ResNet56 VGG13 ResNet56 ResNet56 ResNet110 VGG13 ResNet110 ResNet110

72.06 74.68 72.06 72.06 60.71 59.89 60.71 60.71

Student 50K∼100K
ResNet8 VGG11 VGG11 MobileNet ResNet32 VGG11 VGG11 MobileNet

59.92 69.12 69.12 68.14 55.47 54.14 54.14 56.07
KD [5] 50K∼100K 53.31 70.88 67.97 71.86 54.14 54.40 49.63 57.85
ML [1] 50K∼100K 54.44 67.78 70.18 73.08 56.56 57.46 56.78 60.07
AL [16] 50K∼100K 58.36 69.92 71.13 71.33 46.02 46.26 45.60 51.29

DKD [18] 50K∼100K 54.28 67.32 70.10 72.38 55.99 55.88 56.52 59.43
DAFL [3] 0K 42.44 43.78 48.32 54.10 38.44 31.93 34.13 40.93
KN [11] 10K 48.75 57.83 55.64 58.49 48.92 46.99 45.05 50.22
AM [15] 10K 50.69 62.17 63.20 65.58 47.72 49.26 47.32 51.54

DB3KD [17] 10K 50.49 63.48 62.76 63.67 47.95 48.46 46.93 50.49
MEKD (soft) 10K 51.87 64.76 64.83 67.07 50.87 51.85 49.95 54.93
MEKD (hard) 10K 51.67 64.72 65.32 67.36 49.89 51.33 49.36 54.71

Table 2. Top-1 classification accuracy (%) of the student model on CIFAR-100 and Tiny ImageNet.

In all experiments, teacher and student models are
trained for 350 epochs, except 12 epochs for MNIST. We
use Nesterov SGD with momentum 0.9 and weight-decay
0.0005 for training and use a mini-batch size of 128 im-
ages on a single NVIDIA GeForce RTX 3090 GPU. The
initial learning rate is 0.1, except 0.01 for MNIST, and we
conduct a multi-step learning rate schedule which decreases
the learning rate by 0.1 at the 116th and 233th epoch for the
training of models, except no learning rate schedule is used

for MNIST. For the training of student models, we follow
the unsupervised setting and only use the soft or hard re-
sponses of teacher models for distillation. Note that for all
experiments, we conduct three times experiments and report
the mean accuracy.

For the training of DCGAN, we follow the hyperparam-
eters’ settings of the work [12]. DCGAN composes of
a generator realized by transposed convolution layer and
a discriminator realized by an ordinary convolution layer,



Dataset
T - S

Data Size
KD ML AL DKD KN AM DB3KD MEKD MEKD

Pairs (soft) (soft) (soft) (soft) (soft) (soft) (hard) (soft) (hard)

ImageNet-1K
RN50 - RN34 100K 52.08 54.97 53.50 53.57 56.77 56.92 58.61 59.89 59.32
RX101 - RX50 100K 54.90 56.58 50.88 55.31 57.43 55.64 59.90 61.21 60.54

Table 3. Top-1 classification accuracy (%) of the student model on ImageNet-1K. We use pretrained RN50 (76.13%) and RX101 (79.31%)
as the teacher models, respectively. RN is ResNet and RX is ResNeXt

Dataset
T - S

Data Size
KD ML AL DKD KN AM DB3KD MEKD MEKD

Pairs (soft) (soft) (soft) (soft) (soft) (soft) (hard) (soft) (hard)

CIFAR10

T: ResNet56 0.1K 16.74 17.78 12.97 20.66 27.67 48.31 43.05 49.04 47.12
(94.15%) 1K 31.25 31.57 32.05 31.09 58.65 62.05 64.28 69.84 68.66

S: MobileNet 10K 70.90 73.06 68.61 75.44 85.07 73.65 81.67 86.85 86.53
(90.04%) 50K(full) 90.43 91.19 90.54 90.50 92.19 86.33 92.46 93.48 93.09

CIFAR100

T: ResNet56 0.1K 01.96 01.88 01.72 02.56 13.23 36.73 30.72 33.56 34.60
(72.06%) 1K 10.36 10.06 09.62 10.81 35.80 52.09 50.14 53.84 54.52

S: MobileNet 10K 44.32 48.08 40.57 47.24 58.49 65.58 63.67 67.07 67.36
(68.14%) 50K(full) 71.86 73.08 71.33 72.38 70.85 71.77 73.36 73.84 73.27

Table 4. Ablation study of data size with top-1 classification accuracy (%) of the student model on CIFAR-10 and CIFAR-100.

EPOCH 0 EPOCH 10

EPOCH 20 EPOCH 30

Figure 1. t-SNE visualization of synthetic (blue) and genuine (red)
images of MEKD with DCGAN on MNIST.

EPOCH 0 EPOCH 50

EPOCH 100 EPOCH 200

Figure 2. t-SNE visualization of synthetic (blue) and genuine (red)
images of MEKD with DCGAN on CIFAR-10.



which greatly reduces the number of network parameters
and improves the image generation effect. As an extension
of our method, we believe that generative models of differ-
ent architectures can also be used as emulators to learn the
inverse mapping of the teacher function, by adding infor-
mation maximization (IM) loss to alleviate the problem of
mode collapse and achieve the purpose of deprivatization.
This will be our research work in the future.

2.2. Visualization Results

We evaluate the training process of DCGAN in terms of
whether the generated distribution is consistent with the real
distribution, and visualize the synthetic and genuine images
by t-SNE projection. As shown in Fig. 1 and Fig. 2, it can be
observed that in the training process of DCGAN, the gener-
ated distribution is gradually closer to the real distribution.
This verifies the effectiveness of using DCGAN as the em-
ulator to learn the inverse mapping of the teacher function,
and also proves that DCGAN can indeed alleviate the prob-
lem of mode collapse and generate images consistent with
the distribution of real images. These synthetic images can
not only effectively integrate various patterns in genuine im-
ages, but also serve as effective query samples to support the
distillation of student models.
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