
COTR: Compact Occupancy TRansformer for Vision-based
3D Occupancy Prediction
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MonoScene [3] 24 ✗ - 6.1 1.75 7.23 4.26 4.93 9.38 5.67 3.98 3.01 5.90 4.45 7.17 14.91 6.32 7.92 7.43 1.01 7.65
OccFormer[41] 24 ✗ 30.1 20.4 6.62 32.57 13.13 20.37 37.12 5.04 14.02 21.01 16.96 9.34 20.64 40.89 27.02 27.43 18.65 18.78 16.90
BEVFormer [18] 24 ✗ - 26.9 5.85 37.83 17.87 40.44 42.43 7.36 23.88 21.81 20.98 22.38 30.70 55.35 28.36 36.0 28.06 20.04 17.69
CTF-Occ [32] 24 ✗ - 28.5 8.09 39.33 20.56 38.29 42.24 16.93 24.52 22.72 21.05 22.98 31.11 53.33 33.84 37.98 33.23 20.79 18.0
VoxFormer [17] 24 ✔ - 40.7 - - - - - - - - - - - - - - - - -
SurroundOcc [37] 24 ✔ - 40.7 - - - - - - - - - - - - - - - - -
FBOcc [19] 20 ✔ - 42.1 14.30 49.71 30.0 46.62 51.54 29.3 29.13 29.35 30.48 34.97 39.36 83.07 47.16 55.62 59.88 44.89 39.58

TPVFormer [10] 24 ✔ 66.8 34.2 7.68 44.01 17.66 40.88 46.98 15.06 20.54 24.69 24.66 24.26 29.28 79.27 40.65 48.49 49.44 32.63 29.82
+ COTR (Res-50) 24 ✔ 70.6 39.3 11.66 45.47 25.34 41.71 50.77 27.39 26.30 27.76 29.71 33.04 37.76 80.52 41.67 50.82 54.54 44.91 38.27

SurroundOcc* [37] 24 ✔ 65.5 34.6 9.51 38.50 22.08 39.82 47.04 20.45 22.48 23.78 23.00 27.29 34.27 78.32 36.99 46.27 49.71 35.93 32.06
+ COTR (Res-50) 24 ✔ 71.0 39.3 11.37 45.90 25.97 43.08 51.56 25.55 26.21 26.53 29.48 33.65 38.87 80.45 40.34 50.86 53.88 45.37 38.94

OccFormer[41] 24 ✔ 70.1 37.4 9.15 45.84 18.20 42.80 50.27 24.00 20.80 22.86 20.98 31.94 38.13 80.13 38.24 50.83 54.3 46.41 40.15
+ COTR (Res-50) 24 ✔ 71.7 41.2 12.19 48.47 27.81 44.28 52.82 28.70 28.16 28.95 31.32 35.01 39.93 81.54 42.05 53.44 56.22 47.37 41.38

BEVDet4D [8] 24 ✔ 73.8 39.3 9.33 47.05 19.23 41.47 52.21 27.19 21.23 23.32 21.58 35.77 38.94 82.48 40.42 53.75 57.71 49.94 45.76
+ COTR (Res-50) 24 ✔ 75.0 44.5 13.29 52.11 31.95 46.03 55.63 32.57 32.78 30.35 34.09 37.72 41.84 84.48 46.19 57.55 60.67 51.99 46.33

BEVDet4D [8] 36 ✔ 72.3 42.5 12.37 50.15 26.97 51.86 54.65 28.38 28.96 29.02 28.28 37.05 42.52 82.55 43.15 54.87 58.33 48.78 43.79
+ COTR (Swin-B) 24 ✔ 74.9 46.2 14.85 53.25 35.19 50.83 57.25 35.36 34.06 33.54 37.14 38.99 44.97 84.46 48.73 57.60 61.08 51.61 46.72

Table 4. 3D Occupancy prediction performance on the Occ3D-nuScenes dataset. We present the IoU (geometry) and mean IoU
(semantic) over categories and the IoUs (semantic) for different classes.

6. Further Implementation Details
In this section, we further elaborate on the implementation
details of our COTR.

Geometry-aware Occupancy Encoder. As we men-
tioned in Sec. 3.3, the Explicit View Transformation gen-
erates a occupancy feature OE ∈ R32×200×200×16. Then,
we use a 3D-ResNet according to [8] to generate multi-
scale occupancy features O0

E ∈ R32×200×200×16, O1
E ∈

R64×100×100×8, O2
E ∈ R128×50×50×4. Next, employ tri-

linear interpolation to sample multi-scale OCC features
into the same size of 50 × 50 × 16, followed by a con-
catenation and convolutional layer to construct the com-
pact OCC representation Oc ∈ R256×50×50×16. Finally,
the compact OCC representation is fed into Implicit View-
Transformation for further update. Since the compact OCC
feature Oc has been already initialized by EVT, we only
use 1 Transformer layer in IVT. With the final predic-
tion resolution being 200 × 200 × 16, we use deconvolu-
tion layers to upsample the compact OCC feature to O ∈
R256×200×200×16, which was only utilized for mask predic-
tion in Semantic-aware Group Decoder. In order to coun-
teract the loss of geometric details throughout the process

3
of downsampling, we construct a U-net[29] architecture by
concatenated multi-scale features {Oi

E}i=0 to the upsam-
pled features.

Loss Function. During training, we used a total of 3 
different loss functions:

L = λdepthLdepth + λsegLseg + λmask-clsLmask-cls, (4)

where Ldepth is the depth estimation loss in the Image 
Featurizers following BEVDepth [16], Lseg is a simple 
cross-entropy segmentation loss between a coarse predic-
tion from O and the ground truth label, and the λmask-cls 
loss combines a cross entropy classification loss and a  bi-
nary mask loss for each predicted mask segment following 
MaskFormer [6]. We set the hyper-parameters to λdepth = 
λmask-cls = 1 and λseg = 10.

7. Further Experiments

Per-class comparison with SOTA. We report more quanti-
tative details in Table 4 about our experimental results for 
better comparison with other competitors. Besides TPV-
Former [10] and BEVDet4D [8], we also integrate COTR



Rep. Resolution IoU (%) mIoU (%) FLOPs (G)

BEV 200× 200 70.48 37.51 65.74
TPV 200× (200, 16× 2) 70.41 37.21 291.62

Voxel

200× 200× 16 - - 402.98
100× 100× 8 70.83 37.36 101.73
50× 50× 4 70.87 37.61 61.27
50× 50× 8 70.71 37.45 67.11
50× 50× 16 70.89 37.97 78.47

Table 5. Ablation study for different occupancy representa-
tion resolution. All models are trained without Semantic-aware
Group Decoder and long-term temporal information. We report
the FLOPs of the Implicit View Transformation module.

Component Computational Cost

GOE TD CFSG Params (M) FLOPs (G)

34.97 - 541.21 -
✔ 35.84 +0.87 573.82 +32.61

✔ 36.21 +1.24 628.75 +87.54
✔ ✔ 36.21 +1.24 628.75 +87.54

Table 6. Ablation study on each component’s computational
cost. All models are trained without long-term temporal informa-
tion.

into SurroundOcc [37] and OccFormer [41]. COTR yields
significant performance improvements in both geometric
completion and semantic segmentation, surpassing Sur-
roundOcc and OccFormer by 5.5%, 1.6% in IoU and 4.7%,
3.8% in mIoU. Notably, a conspicuous amelioration primar-
ily resides within small objects and rare objects, demon-
strating that our approach can indeed apprehend finer geo-
metric details, and substantially enhance semantic discerni-
bility.

Ablation study for different OCC resolution. Table
5 compared different resolutions for OCC representations
in our experiments. It is abundantly clear that the high-
resolution (200 × 200 × 16) OCC representation incurs a
massive computational overhead, with the FLOPs approx-
imately 5× that of the compact (50 × 50 × 16) OCC rep-
resentation, respectively. Additionally, it appears that pre-
serving the height information is beneficial for the task of
occupancy prediction. Overall, our compact OCC represen-
tation strikes a balance between performance and computa-
tional overhead.

Ablation study on computational cost. As shown in
Table 6, our proposed COTR is an efficient approach in
which each component does not add a significant amount of
computational costs. It’s worth noting that, since we only
used the Coarse-to-Fine Semantic Grouping (CFSG) strat-
egy during training and kept only one group during infer-
ence, CFSG doesn’t introduce any extra overhead. More
metrics are reported in Table 7. All baselines are concur-
rently equipped with EVT and IVT for a fare comparison.

method Params (M) FLOPs (G) LT Latency (s)
TPVFormer 54.05 972.75 ✗ 0.59
+ COTR (R50) 53.30 784.85 ✗ 0.43
BEVDet4D † 35.67 924.07 ✗ 0.67
+ COTR (R50) 38.87 747.26 ✗ 0.42
BEVDet4D 35.67 1049.52 ✔ 1.89
+ COTR (R50) 38.87 747.26 ✔ 1.43
BEVDet4D 121.28 4195.12 ✗ 1.67
+ COTR (SwinB) 104.99 3761.06 ✗ 1.43

Table 7. Ablation study on efficiency. All models are tested on a
RTX A6000 GPU. † input size of 256×704, others same as Tab. 1.

8. Visualization
In this section, we provide more visualization results of our
method.

Visual Ablations on Occluded Scenes. To validate
the robustness of our method in handling occluded scenes,
we present additional visual results. As shown in the first
scene in Fig. 7, our method without using long-term tempo-
ral information, successfully detects small objects (such as
pedestrians and bicycles) within a limited occlusion range.
However, in the second scene, when a significant portion
of the vehicle is obscured, the model struggles to correctly
identify occluded objects due to the constrained camera per-
spective.

Visual Ablations on Low-light Scenes. To validate the
robustness of our method in handling low-light environ-
ments, we present additional visual results. As illustrated
in the first scenario of Fig. 8, our model is capable of suc-
cessfully detecting unknown objects in the dark. However,
the second scenario shows that while our model can detect
small objects in the dark from a distance, it fails to predict
successfully when part of the camera is nearly completely
obscured by darkness. This limitation is primarily due to the
camera’s perception capabilities and other modalities such
as LiDAR or Radar might be required to aid successful de-
tection.
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Figure 7. Visualizations for occlusion on OCC3D-nuScenes validation set. For each scene, the six images in the “Input Images” line left
are the inputs to our model captured by font-left, front, front-right, back-right, back, and back-right cameras. The six images in the “Preds”
line left denote our prediction results with the corresponding views as the inputs. The two images on the right provide a global view of our
predictions. The two images in the “GT” line provide a global view of ground truth.
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Figure 8. Visualizations for low-light environments on OCC3D-nuScenes validation set.
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