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A. Dataset Setup Details
We provide more details about our new dataset format
for our Cam4DOcc benchmark by presenting statistics on
the instance duration [tin, tout] after splitting the original
nuScenes and Lyft-Level5 datasets to separate sequences
mentioned in Sec. 3.2. As shown in Fig. 1, most general
movable objects (GMO) appear in at least two historical ob-
servations and all future observations ([�2, 4] and [�1, 4])
in our benchmark. The long instance duration leads to
an effective training strategy for the occupancy forecasting
model. Besides, over 30% instances in the two datasets first
appear in the current frame (t = 0), which makes the model
learn to forecast the object motion only according to their
current location and surrounding conditions.

Figure 1. Instance duration on nuScenes and Lyft-Level5.

In addition, we further provide a detailed illustration
of inflated GMO and fine-grained GMO defined in our
Cam4DOcc introduced in Sec. 3.3, as shown in Fig. 2.
Compared to the fine-grained labels, the inflated bounding-
box-wise annotation overall provides more comprehensive
training signals for the occupancy forecasting model. In ad-
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dition, the motion of GMO with a structured format from
the instance bounding box is easier to capture (validated
in Sec. 5.2). From the second row of Fig. 2 we can also
see that sometimes fine-grained voxel annotation cannot ac-
curately represent the sophisticated shape of GMO while
the bounding-box-wise annotation can totally encompass
the holistic GMO instance grids. The third row of Fig. 2
also presents that fine-grained annotation may miss some
occluded objects compared to the original instance bound-
ing box labels, affecting the rationality of the training and
evaluation on these scenarios. Therefore, Cam4DOcc sug-
gests using inflated GMO annotations to train current-stage
camera-based models for more reliable 4D occupancy fore-
casting and safer navigation in autonomous driving. We
also hope that the preset tasks with fine-grained GMO la-
bels in Cam4DOcc can be the foundation for developing
more advanced camera-only 4D occupancy forecasting ap-
proaches in future research.

(a) Inflated GMO annotations (b) Fine-grained GMO annotations

Figure 2. Comparison of GMO categories defined in Cam4DOcc.

1



B. OCFNet Model Details
Our proposed OCFNet receives 6 images with the size of
900 ⇥ 1600 captured by surround-view cameras mounted
on the vehicle. We use ResNet50 [4] pretrained on Ima-
geNet [3] with FPN [8] as the image encoder in OCFNet.
LSS-based 2D-3D Lifting module [9] transforms and fuses
image features from multiple camera images to unified
voxel features. We use the vanilla 3D-ResNet18 as the
Voxel Encoder and use 3D-FPN as the Voxel Decoder in
both the occupancy forecasting head and flow prediction
head of the Future State Prediction Module. The prediction
module containing stacked residual convolutional blocks
orderly encodes historical 3D features, expands channel di-
mensions according to the future time horizon Nf , and pro-
duces future 3D features, as shown in Fig. 3. Referring to
the setups of PowerBEV [7], the numbers of the three types
of residual convolutional blocks in the prediction module
are set to 2, 1, and 2, with the kernel size of (3, 3, 1).

To extend our occupancy forecasting model to 3D in-
stance prediction, our OCFNet predicts occupancy and 3D
flow over t 2 [0, Nf ], corresponding to 5 continuous esti-
mations specifically in our work. Local maxima are first ex-
tracted from the estimated occupancy probabilities at t = 0
following [7], determining the instances’ centers. Then, the
instances in the following future frames are associated con-
secutively with the predicted flow.

To train our OCFNet using the loss defined in Eq. (4),
we set �1 = �3 = 0.5 and �2 = 0.05 to balance the op-
timization for occupancy forecasting, depth reconstruction,
and 3D backward centripetal flow prediction. The total pa-
rameter number of our OCFNet is 370 M, the GFLOPs are
6434, and the training-time GPU memory is 57 GB. We be-
lieve that our model can serve as a foundational codebase to
facilitate future 4D occupancy forecasting works.

C. Study on Future Time Horizons
We further conduct a study on forecasting performance
drops with different future time horizons. Since the oc-
cupancy grids of static objects do not change in the fu-
ture time steps unless ground-truth annotations jitter, here
we solely focus on the ability to forecast the future oc-
cupancy state of movable objects. In this experiment, we
post the performance of OpenOccupancy-C, PowerBEV-
3D, and our OCFNet for the first-level task and the second-
level task since the baseline SPC fails to forecast the in-
flated GMO mentioned in Sec. 5.2. As shown in Tab. 1,
our OCFNet† remains the best performance for different
time horizons in both tasks. In addition, all the baseline
approaches show better performance on Lyft-Level5 than
nuScenes as the time period for evaluating on Lyft-Level5
is relatively shorter. The closer the timestamp is to the cur-
rent moment, the easier it is for all the baselines to forecast
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Figure 3. The prediction module in our OCFNet.

Predicted FlowGT 4D Occupancy

Figure 4. Visualization of predicted 3D backward flow (t 2
[1, Nf ]). The output flow vectors and ground-truth occupancy
from timestamps 1 to Nf are assigned colors from dark to light
respectively. The motion trend of each selected moving object is
represented by red arrows.

the occupancy status.

D. 3D Flow Prediction
Our proposed novel end-to-end occupancy forecasting net-
work OCFNet is trained to reasonably estimate future occu-
pancy state and 3D motion flow simultaneously. We no-
tice that the multi-task learning scheme can help to im-
prove forecasting performance, as shown in Sec. 5.3. Here,
we illustrate the predicted 3D backward centripetal flow
in Fig. 4. As can be seen, the predicted flow vectors of the



Table 1. Comparison of performance on forecasting GMO in different future time horizons

approach
nuScenes Lyft-Level5 nuScenes-Occupancy

0.5 s 1.0 s 1.5 s 2.0 s 0.2 s 0.4 s 0.6 s 0.8 s 0.5 s 1.0 s 1.5 s 2.0 s

OpenOccupancy-C [10] 12.07 11.80 11.63 11.45 13.87 13.77 13.65 13.53 9.17 8.64 8.29 8.02

PowerBEV-3D [7] 22.48 22.07 21.65 21.25 25.70 25.25 24.82 24.47 5.74 5.56 5.41 5.25

OCFNet (ours) 25.95 24.92 24.33 23.89 31.51 30.87 30.17 29.56 9.17 8.72 8.53 8.35

OCFNet† (ours) 29.36 28.30 27.44 26.82 35.58 34.96 34.28 33.56 10.64 10.20 9.89 9.68

Table 2. Comparison of performance on 3D instance prediction

approaches nuScenes Lyft-Level5

PowerBEV-3D [7] 20.02 27.39

OCFNet 14.26 24.82
OCFNet† 18.57 28.23
OCFNet⇤ 21.36 28.81

moving object approximately point from the voxel grids of
the new coming frame to the ones of the past frame belong-
ing to the same instance. Therefore, the predicted flow can
further guide occupancy forecasting by explicitly capturing
the motion of GMO in each time interval. Thanks to the
flow vectors predicted by Cam4DOcc, we can further asso-
ciate consistent instances between adjacent future frames,
leading to 3D instance prediction beyond occupancy state
forecasting.

E. 3D Instance Prediction
Most existing instance prediction methods [1, 2, 5, 7] can
only forecast the future position of objects of interest on
BEV representation, while our work extends this task to
more complex 3D space. To achieve instance prediction,
models are required to output reasonable 3D flow after the
training process. The ground-truth 3D backward centripetal
flow in our Cam4DOcc is directly calculated from the an-
notations of the original datasets, given the positions of in-
stance bounding boxes as well as the corresponding IDs.
During the forecasting process, we first extract the centers
of instances at t = 0 and then associate pixel-wise instance
ID over time t 2 [1, Nf ] using the predicted 3D backward
centripetal flow. Following the previous work [7], we cal-
culate the centers C of instances by non-maximum suppres-
sion (NMS) at t = 0. The predicted backward flow starts
from the occupancy grid o1 at t = 1 to o0 at t = 0, and the
instance ID of the center in C closest to o0 is propagated
to o1 . Since there is no real observation from t = 1 on,
we then directly use the predicted flow from o2 at t = 2 to
o1 at t = 1 to propagate the instance ID for the forecasted
frames. The same association is then implemented over the
following time steps.

To report the instance prediction quality, we extend the
metric video panoptic quality (VPQ) [6] from the previous
2D instance prediction [5, 7] to our 3D instance prediction,
which is calculated by
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where TPt, FPt, and FNt represent true positives, false
positives, and false negatives at timestamp t. Note that
in our work the predicted instance is regarded as one true
positive once its IoU is greater than 0.2 (adaptively cho-
sen according to the level of IoU) and the corresponding
instance ID is correctly tracked. The experimental results
are shown in Tab. 2. Note that the instance prediction re-
sults of PowerBEV-3D are also from the duplication of fore-
casted 2D flow along the height dimension (same as its
3D extension of forecasted occupancy introduced in Sec.
3.4). As can be seen, our proposed OCFNet† shows better
3D instance prediction ability than PowerBEV-3D on Lyft-
Level5 while PowerBEV-3D outperforms our approach on
nuScenes. In addition, OCFNet† improves the prediction of
OCFNet by 30.2% and 13.7% on nuScenes and Lyft-Level5
respectively. The 2D-3D instance-based prediction base-
line presents good instance prediction ability on nuScenes
because 2D backward centripetal flow is easier to forecast
than the 3D counterpart. On the contrary, our proposed
method produces better forecasting results on Lyft-Level5,
dominated by far better GMO occupancy forecasting qual-
ity of OCFNet† than that of PowerBEV-3D on this dataset.
Therefore, in the 3D instance prediction task, we further
propose a new baseline namely OCFNet⇤, which combines
the advantages of our original OCFNet† and PowerBEV-
3D. The principle is that the 3D flow of the intersection
GMO occupancy forecasted by the two methods follows
PowerBEV-3D’s results, while the other GMO occupancy
grids forecasted by OCFNet† have the motion flow gener-
ated by OCFNet† itself. Based on this setup, whether an
occupancy grid is occupied totally depends on OCFNet†,
and its flow depends on the choice between OCFNet† and
PowerBEV-3D. From Tab. 2, we can see that OCFNet⇤
has the best 3D instance prediction performance, which en-



hances PowerBEV-3D by 6.7% on nuScenes and improves
OCFNet† by 2.1% on Lyft-Level5.

F. Study on Movable Objects of Multiple Cat-
egories

We additionally report the results of each class of movable
objects in Tab. 3, providing a more detailed and nuanced
analysis of OCFNet forecasting performance across vari-
ous categories. To extend the use of our proposed bench-
mark, we further provide forecasting performance evalua-
tion on the OCFNet with LiDAR inputs (OCFNet-L), com-
pared with our original camera-only OCFNet (OCFNet-C).
OCFNet-L replaces the image encoder and the lifting mod-
ule in the vanilla OCFNet architecture with voxel feature
encoding as well as sparse convolution middle layers [11].
Here we only use point clouds from sample observations as
OCFNet-L inputs rather than aggregated multiple sweeps
on the nuScenes dataset. As can be seen, OCFNet has a
better ability to forecast moving objects with larger sizes.
OCFNet-C outperforms OCFNet-L in the bicycle, motorcy-
cle, and pedestrian classes, which reveals that OCFNet-L
tends to be affected by the sparsity of LiDAR observations
since relatively small objects are hit by fewer rays, thus
harder to capture future motion. We will report more results
of multi-modal baselines in our open-source repository.

G. Visualization of future GMO occupancy
forecasted by OCFNet on Lyft-Level5

In this section, we present our proposed OCFNet fore-
casting inflated general movable objects of the Lyft-Level5
dataset. Fig. 5 and Fig. 6 show the results in small-scale and
large-scale scenes respectively. The prediction results and
ground truth from timestamps 1 to Nf are assigned colors
from dark to light. As to the small-scale scenes, the valid
GMO over the future time horizon occupy relatively fewer
volumes and both OCFNet and OCFNet† can capture their
motion accurately. When it comes to the large-scale scenes
with more complicated traffic conditions, OCFNet† signif-
icantly outperforms OCFNet which only uses 1

6 sequences
for training. Therefore, when the driving scenario of the ego
vehicle has few movable obstacles, such as in rural areas,
OCFNet trained with limited data is enough to forecast the
future occupancy of surrounding traffic participators. This
can significantly improve the deployment efficiency of fore-
casting modules in autonomous driving systems by decreas-
ing memory consumption and training period.
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Table 3. IoUf results of multiple movable categories in the first-level task on nuScenes

approach bicycle bus car construction motorcycle trailer truck pedestrian mean

OCFNet-C 10.75 28.87 24.62 12.70 9.62 22.12 23.52 10.26 17.81
OCFNet-L 5.80 25.31 25.83 13.02 7.55 24.29 23.94 9.61 16.92
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Figure 5. Visualization of forecasting inflated GMO by our proposed OCFNet in small-scale scenes of Lyft-Level5.
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Figure 6. Visualization of forecasting inflated GMO by our proposed OCFNet in large-scale scenes of Lyft-Level5.


