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Continuous Pose for Monocular Cameras in Neural Implicit Representation

Supplementary Material

In this document, we provide additional details of our789
method and implementations. We further provide quali-790
tative examples corresponding to the main paper results.791
Please also refer to the supplementary video for additional792
qualitative visualizations. We have also attached an exam-793
ple code in a separate file.794

6. PoseNet Coordinate Frames795

In this section, we report the details of the PoseNet out-796
puts concerning the coordinate frame under different ap-797
plications. For the first two applications involving inac-798
curate pose and asynchronous events, we follow the work799
[29] and output refined pose from the noisy pose with re-800
spect to the ith camera frame. Tc′i,w

= Tiniti ◦ Trefinei ,801
Tiniti = Tci,w ◦ Tnoisei , while Ta,b represents the rigid-802
body transformation matrix that transforms homogeneous803
points defined in frame b to the equivalent points in frame804
a. Note cii refers to pose estimation of camera i and ci de-805
notes the ground truth. The target of PoseNet is to learn the806
cancellation of noise perturbations, essentially to serve as807
the inverse of Tnoisei . In the real experiment, we assume808
unknown initial pose so Tc′i,w

= I ◦ Trefinei making the809
objective of PoseNet to directly estimate Tci,w.810

In the RGB-D SLAM application in Table 5, we analyze811
the impact of varying reference coordinates on tracking. We812
denote the PoseNet output with respect to frames x. So the813
estimation of ithe camera pose: Tw,ci = Tw,ci−1

◦Tci−1,x ◦814
P (f(θp, ti)). The output with respect to different reference815
frames is shown in Table 9. Note we get the random frame816
by perturbing the pose of ci−1.817

For the experiments of IMU, PoseNet outputs the pose of818
the agent which is fixed as the IMU sensor. Then we trans-819
form the pose to camera frame with Tw,ci = Tw,bi ◦ Tbi,ci820
while bi,ci is constant and read from the sensor extrinsic.821

7. NeRF from Inaccurate Pose822

Implementation details. Compared to [29] we make the823
following modifications and extensions: (1) BARF perturbs824

Reference Frame Transformation

Default Tci−1,ci

World Tw,ci

Random Tr,ci

Intrinsic TI,ci

IMU Tbi−1,bi

Table 9. PoseNet on different reference coordinates.

Figure 7. Intrinsic Motion Frame. We decompose the relative
motion Ti,i+1 with a slowly changing rigid transform T0 and a low
dimensional frame-wise motion TI using two separate PoseNets.

the ground truth pose in synthetic datasets by independently 825
sampling 6 dimensions Gaussian noise in SE(3). We in- 826
troduce time-dependent noise which is closer to the real- 827
world scenario, for monocular cameras, where the error of 828
pose estimation increases with time due to drift and error 829
accumulation. Furthermore, we also separate the rotation 830
and translation perturbation and instead of sampling noise 831
across all frames we only sample a subset of frames and 832
interpolate the poses for the rest. By doing so we can ex- 833
plicitly set the maximal deviation on translation or rotation. 834
(2) Unlike BARF when we optimize one camera pose it also 835
affects the surrounding poses, therefore a larger batch size 836
is important for stable training. We use 4096 random rays 837
for each iteration to optimize camera poses collectively. 838

For joint training with the radiance field, we use the 839
Adam [23] optimizer for both translation and rotation net- 840
works with different learning rates. We use a smaller learn- 841
ing rate for rotation since quaternion rotation expression is 842
highly nonlinear and difficult to train compared to transla- 843
tion [28]. We use 1e-3 for TransNet and 2e-4 for RotsNet 844
and exponentially decay the schedule to 1e-5 and 1e-6 re- 845
spectively for stable training. 846

More results on the synthetic dataset. From Table 11 847
we can see our method is robust to large translation noise 848
of up to 40% of the whole scene and is also robust to large 849
rotation deviations of up to 90 degrees. BARF fails to reg- 850
ister the camera frame under 20% translation and 60-degree 851
rotation perturbation and although the 3D object is correctly 852
reconstructed with largely correct poses, certain novel view 853
synthesis yields bad PSNR as the object deviates from the 854
image centre. This can be clearly seen in qualitative results 855
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comparison in Figure 8.856

More results of real dataset. More results on other real857
scenes as well as qualitative results can be found in Table858
16 and Figure 9. Benefiting from neighboring temporal in-859
formation our proposed pose representation performs con-860
sistently well on different speeds of camera motion. Sim-861
ilar to the above experiments we can find the novel view862
deviates from the image center in Fort/2(19) results. Fur-863
thermore, our method is robust to high-speed scenarios with864
slight artifacts while BARF diverges and provides very in-865
accurate results. Note that in the reported results we disable866
the test-time photometric optimization for better compari-867
son of camera pose registration performance.868

B-spline baseline experiments on 3D. Similar to 2D pla-869
nar experiments we report also the results using classical870
continuous B-spline to enforce continuity between neigh-871
bouring poses. We experimented with various parameter872
configurations to illustrate the challenge of tuning classical873
methods in the context of neural radiance fields.874

Ablation on network size. We report the performance875
evaluations with different network sizes. The reduction in876
network size affects camera localization performance. We877
use the 8-layer and 256 width model for other applications.878

8. Continuous Pose for Asynchronous Events879

Implementation details. [47] shows EventNeRF recon-880
struction quality cannot handle inaccurate camera poses881
over 1 °. The real sequences angle offset reported by Event-882
NeRF however can reach up to 2.85 °. Following its noise883
perturbation method, we introduce different magnitudes of884
pose inaccuracies in the real datasets. Furthermore, we885
also consider the pose inaccuracies due to unknown asyn-886
chronous event poses. [47] provides in total 1000 ground887
truth poses from Blender which describes a circumferen-888
tial movement. We uniformly sample different numbers of889
poses to linearly interpolate the whole circular path position890
and keep the orientation unchanged. Similarly to above, we891
use the Adam optimizer with an exponential learning rate892
schedule which decays from 2e-4 to 2e-6 for TransNet and893
5e-5 to 5e-7 for RotsNet.894

Parameter Rotation error ↓ Translation error ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Regularize = 1e-3 26.815 14.5 8.87 0.62 0.60
Regularize = 1e-2 74.586 350.301 9.37 0.71 0.55
Regularize = 1e-1 115..65 581.81 4.51 0.39 0.73
Regularize = 1 94.81 284.61 9.85 0.70 0.56

knots = 75 50.779 199.2 8.46 0.61 0.60
knots = 50 3.009 9.523 14.46 0.69 0.21
knots = 25 3.01 9.53 14.46 0.69 0.21

Table 10. Quantitative results of BARF with B-Spline. We use
scipy B-spline interpolation implementation splrep. On top part
we use knots = 25 and for bottom part we use s = 1e-3.

TM 80 (10%)

Method RE TE PSNR SSIM LPIPS

BaRF[29] 0.06 0.254 27.72 0.92 0.04
Ours 0.03 0.196 27.91 0.92 0.04

TM 160 (20%)

Method RE TE PSNR SSIM LPIPS

BaRF[29] 24.76 57.342 9.79 0.61 0.52
Ours 0.05 0.292 26.74 0.91 0.06

TM 240 (30%)

Method RE TE PSNR SSIM LPIPS

BaRF[29] 19.77 95.631 6.97 0.50 0.73
Ours 0.03 0.178 28.44 0.93 0.04

TM 320 (40%)

Method RE TE PSNR SSIM LPIPS

BaRF[29] 18.66 127.3 7.39 0.53 0.71
Ours 0.03 0.200 28.25 0.93 0.04

(a) Interpolated translational noise experiments.
RM 30 °

Method RE TE PSNR SSIM LPIPS

BaRF[29] 0.067 0.265 27.75 0.92 0.05
Ours 0.049 0.105 28.22 0.93 0.04

RM 60 °

Method RE TE PSNR SSIM LPIPS

BaRF[29] 0.101 0.378 26.82 0.91 0.06
Ours 0.050 0.141 28.13 0.93 0.04

RM 90 °

Method RE TE PSNR SSIM LPIPS

BaRF[29] 12.103 37.380 10.40 0.61 0.42
Ours 0.061 0.181 28.03 0.93 0.04

RM 120 °

Method RE TE PSNR SSIM LPIPS

BaRF[29] 40.526 122.454 6.62 0.54 0.66
Ours 19.279 66.572 8.79 0.56 0.52

(b) Interpolated rotational noise experiments.
TM+RM R|t 30 ° + 80(10%)

Method RE TE PSNR SSIM LPIPS

BaRF[29] 0.062 0.306 27.78 0.92 0.04
Ours 0.064 0.266 28.97 0.93 0.04

TM+RM R|t 60 ° + 160(20%)

Method RE TE PSNR SSIM LPIPS

BaRF[29] 5.835 29.560 11.63 0.63 0.35
Ours 0.077 0.293 26.64 0.91 0.06

TM+RM R|t 90 ° + 240(30%)

Method RE TE PSNR SSIM LPIPS

BaRF[29] 46.352 160.639 8.17 0.63 0.60
Ours 0.378 2.813 22.10 0.83 0.09

TM+RM R|tt 120 ° + 320(40%)

Method RE TE PSNR SSIM LPIPS

BaRF[29] 55.640 195.134 7.7 0.63 0.63
Ours 16.122 52.527 9.16 0.56 0.51

(c) Interpolated translational and rotation noise experiments.

Table 11. Interpolated pose noise experiments. TM refers to
Translational maximal deviation and RM refers to Rotational max-
imal deviation. The diameter of the circular trajectory is 800, the
maximal deviation of the translation perturbation is set to be 10%,
20%, 30%, and 40%.2
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Method Rotation error ↓ Translation error ↓ PSNR ↑ SSIM ↑ LPIPS ↓
8-layer, width 256 0.07 0.28 27.30 0.92 0.06
8-layer, width 128 0.09 0.31 27.33 0.90 0.09
4-layer, width 256 0.10 0.32 27.13 0.90 0.10
4-layer, width 128 0.11 0.33 27.15 0.91 0.11

Table 12. Ablation study on network sizes. The performance
of camera localization drops only slightly with decreased network
size. The experiments is conducted using our synthetic dataset,
consistent with Table 3.

Qualitative results in interpolation error experiments.895
In Figure 10 we report the qualitative results of novel view896
synthesis on synthetic sequences of chair and hotdog which897
correspond to Table 4 of the main text. We can see Event-898
NeRF suffers from strong fuzzy artifacts and the depth899
seems to dilate around the object while our method correctly900
learns the depth and reconstructs clearer 3D objects.901

Qualitative results on the synthetic datasets in angle off-902
set calibration experiments. In Figure 11 we report 3903
more real dataset experiments on sequences of multimeter904
and plant. Similar to Figure 5 in the main text, EventNeRF905
suffers from trailing artifacts and at large angle offsets it906
nearly reconstructs 2 separate objects around the image cen-907
ter. In contrast, our method learns the offset angle and re-908
positions the object back to the image center.909

9. Visual SLAM with Depth and IMUs910

Full IMU fusion. In the main text, we elaborate on har-911
nessing gyroscope readings through both loose and tight912
coupling methods. However, direct utilization of ac-913
celerometer readings poses challenges as it provides accel-914
eration instead of velocity in the body frame, resulting in915
a significant error when integrating with an unknown ini-916
tial speed. Additionally, effective processing of accelera-917
tion data necessitates critical steps such as gravity removal918
and denoising [5, 11, 35, 42]. Therefore we first show the919
experiment with simulated IMU on the modified ScanNet920
dataset with simulated IMU as shown in Table 13. Given921
accelerator reading on time t, α̂t = (α̂x, α̂y, α̂z). We922
first transform the reading to the last body frame with cap-923
tured image, α̂ti−1,t = Rti−1,t ◦ α̂t. We calculate Rti,t924
from loosely coupled method mentioned above. We then925
use auto-differentiation to calculate the second derivative of926
TransNet with respect to input time and supervise it with L1927
loss:928

Lacc = |f̈(θp, t)− α̂ti−1,t|; (8)929

930

Implementation details. In the NICE-SLAM experi-931
ments, we follow the original work [64] and the bundle ad-932
justment is disabled. Learning rate for TransNet is set to933
1e-3 and for RotsNet 2e-4. For IMU experiment we use934

With IMU

scan/059 scan/106 scan/181 scan/207 Average

Nice-SLAM [64] 37.28 174.27 71.94 80.00 89.75
Ours(Gyro) 14.51 12.78 43.98 18.23 22.36
Ours(Acceleration) 14.98 11.49 44.13 19.38 22.49
Ours(Combined) 13.80 10.68 38.20 14.80 19.37

Table 13. Tracking performance on challenging Scannet [9].
Our PoseNet improves the tracking performance of NICE-SLAM
significantly by fusing the IMU tightly. Using full IMU reading
yields the best results over all experiment sequences.

Method v101 v102 v103 v201 v202 v203 Avg

No IMU 2.17 N/A 5.82 7.76 5.04 N/A N/A
Gyro 1.98 6.09 5.55 4.99 3.03 15.34 6.16
Accelerator 2.16 4.76 5.10 6.72 4.14 15.10 6.33
Combined 2.40 5.33 3.63 5.84 3.46 13.63 5.71

Table 14. Tracking performance on EUROC [4]. Note that here
we report only PoseNet based results. Utilizing both gyroscope
and accelerometer data proves beneficial, particularly in challeng-
ing scenes, as compared to not using IMU.

Method GFLOPs Params[103] Time-cost[s/it]

BARF 65.60 514 0.133
Ours 65.62 791 0.138

Method Tracking time-Cost[ms/iter] Convergence rate[iter]

NICE-SLAM 27.1 11.96
Ours 31.5 13.21

Table 15. Left–Computation & Runtime. Computation of a
1024 batch ray using RTX 3090, with the negligible inclusion of
extra computation and time expense. Right–Runtime & Conver-
gence rate. We follow the default setting of Replica.yaml. We
assume convergence when the tracking loss remains unchanged.

λgyro = 1 and λacc = 1. For IMU simulation we interpo- 935
late the ground truth from 20 Hz to 200 Hz and calculate 936
the numerical derivatives. We use the cubic interpolator for 937
translation and SLERP for rotation. We downsample the 938
dataset from 20Hz to 5 Hz to highlight the importance of 939
using IMU which is 100 Hz. 940

More experiments on RGB-D SLAM with IMU. As Ta- 941
ble 13 shows, by fusing the acceleration and angular veloc- 942
ity we improve NICE-SLAM significantly and can maintain 943
tracking to the end on challenging ScanNet. Taking advan- 944
tage of both temporal information yields the best tracking 945
performance. Qualitative results can be seen in Figure 12. 946
We then use our method on EUROC [4]. We first use EKF- 947
SLAM to denoise accelerator readings with sensor-fusion 948
from gyroscope and Vicon Pose. As Table 14 demonstrates, 949
fusing accelerator is beneficial especially under challenging 950
scenes such as v103 and v203, and combining both sensor 951
data yields the best results on average. 952
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corrected pose RGB Depth

BARF

Scale 01 pose perturbation Ours

BaRF

Scale 02 pose perturbation Ours

BaRF

Scale 03 pose perturbation Ours

Figure 8. Qualitative results of interpolated pose noise. Our method can handle large pose noise and render images in the centre with
the correct detphs.
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RGB Depth
ours BaRF ours BaRF

Fern (18)

Fern/2 (9)

Fern/4 (5)

Fort (38)

* Fort/2 (19)

Fort/4 (10)

Orchids (23)

Orchids/2 (12)

* Orchids/4 (6)
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RGB Depth
ours BaRF ours BaRF

Room (37)

Room/2 (18)

* Room/4 (9)

Flower (34)

Flower/2 (17)

Flower/4 (9)

Horns (56)

Horns/2 (28)

Horns/4 (14)
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RGB Depth
ours BaRF ours BaRF

Trex (50)

Trex/2 (25)

Trex/4 (13)

Figure 9. Qualitative results of novel view synthesis real datasets [32] with unknown pose. Corresponding to Table 2 in the main text
we report the real dataset results in which the camera moves in a smooth trajectory. We denote BaRF failure cases with * and the number
in the parentheses is the number of frames used in training.

Scene Rotation ↓ Translation ↓ PSNR ↑ SSIM ↑ LPIPS ↓
BARF ours BARF ours BARF ours BARF ours BARF ours

Flower 0.64 0.49 0.27 0.25 17.18 17.93 0.34 0.41 0.27 0.21
Flower/2 0.62 0.46 0.28 0.25 17.18 17.94 0.34 0.36 0.27 0.23
Flower/4 0.59 0.54 0.31 0.29 17.07 17.38 0.33 0.38 0.29 0.27

Horns 0.18 0.19 0.18 0.18 19.58 18.89 0.59 0.55 0.32 0.27
Horns/2 0.27 0.33 0.20 0.17 16.24 16.09 0.49 0.45 0.31 0.28
Horns/4 0.21 0.24 0.16 0.17 16.91 16.85 0.54 0.53 0.32 0.32

Trex 0.49 0.41 0.38 0.35 16.53 17.04 0.42 0.45 0.21 0.19
Trex/2 0.56 0.26 0.43 0.29 16.37 18.96 0.40 0.61 0.23 0.16
Trex/4 0.19 0.20 0.24 0.26 21.62 20.74 0.73 0.70 0.17 0.15

Average 0.42 0.34 0.27 0.24 17.63 17.95 0.46 0.49 0.27 0.23

Table 16. More quantitative results on real datasets. In addition to Table 2 we report more results on LLFF [32] dataset. Note that in
this dataset images are captured in a top-down, left-right manner rather than following a continuous trajectory. Consequently, our method
may not be fully leveraged. Nevertheless, when considering average values, our approach outperforms the baseline.
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Interpolate 20 Interpolate10 Interpolate6

EventNeRF

Chair Dataset ground truth Ours

EventNeRF

Hotdog Dataset ground truth Ours

Figure 10. Qualitative results of novel view depth and rgb synthesis Interpolation error experiments. Our method improves Event-
NeRF significantly in all six experimental setups.
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offset 0.2388 ° offset 1.5 ° offset 2.85 °

EventNeRF

Multimeter Dataset (with calibration) Ours

EventNeRF

Plant Dataset (with calibration) Ours
9
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offset 0.2388 ° offset 1.5 ° offset 2.85 °

EventNeRF

Chick Dataset (with calibration) Ours

Figure 11. Qualitative results of novel view depth and rgb synthesis in angle offset calibration experiments. Our method improves
EventNeRF significantly in all six experimental setups.

(a) scan/059 (b) scan/v106

(c) scan/181 (d) scan/207

Figure 12. Qualitative results of tracking on challenging ScanNet With the assistance of simulated IMU information, our method
maintains robust tracking and preserves scale accuracy.
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(a) NICE-SLAM

(b) Ours

(c) NICE-SLAM PSNR: 33.9

(d) Ours PSNR: 36.9

Figure 13. Reconstruction and Rendering of Replica Room0.
Thanks to the improvement of tracking performance, our method
is able to substantially increase the fidelity of the renderings. This
is also supported by the quantitative results PSNR. We reconstruct
clean details compared to NICE-SLAM.

(a) NICE-SLAM

(b) Ours

(c) NICE-SLAM PSNR: 32.7

(d) Ours PSNR: 33.3

Figure 14. Reconstruction and Rendering of Replica Room1.
In this relatively easier scene, we perform slightly better than
NICE-SLAM in rendering and reconstruction with less artifacts.
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(a) NICE-SLAM

(b) Ours

(c) NICE-SLAM PSNR: 33.3

(d) Ours PSNR: 36.8

Figure 15. Reconstruction and Rendering of Replica Room2.
While the reconstruction demonstrates that the NICE-SLAM tra-
jectory is highly aligned with the ground truth, it adversely affects
rendering performance, resulting in lower fidelity. In contrast, our
method maintains high-fidelity rendering.

(a) scan/0000

(b) scan/0059

(c) scan/0106

(d) scan/0181

(e) scan/0207

Figure 16. Qualitative results of tracking on ScanNet[9].The
initial trajectories diverge in the NICE-SLAM trajectory from the
ground truth, while ours align with it.
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(a) euroc/v101 (b) euroc/v102

(c) euroc/v103 (d) euroc/v201

(e) euroc/v202 (f) euroc/v203

Figure 17. Qualitative results of tracking on EUROC[4]. We compare the trajectories of our method to NICE-SLAM. Notably, NICE-
SLAM encounters failures at v102, v202, and v203, so only part of trajectories are displayed. The results indicate that our method
significantly aligns with the ground truth trajectory.
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