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Figure 10. (A) Adaptive searching kernel applied on an image
plane. The square represents a pixel to be rendered on the im-
age. The circle represents a cross-section of the searching kernel
of a cone to select points to render. (B) Detailed derivation of the
searching kernel.

In this supplementary material, we provide details about the
following topics:
• Derivation of searching radius in Appendix 1;
• Additional experiments in Appendix 2;
• Breakdown results in Appendix 3;
• Visualization in Appendix 4;
• Limitation in Appendix 5.

1. Adaptive searching radius derivations
In this section, we elaborate on the derivation of adaptive
searching kernel r as mentioned in Section 3.2. We initiate
the derivation with a disc representation on the image plane,
approximating the area of the pixel. The radius of the disc
can be calculated by ṙ =

√
∆x ·∆y/π, where ∆x and ∆y

are the width and height of the pixel in world coordinates.
For a broader coverage area, we shift from a disc with radius
ṙ for one pixel to a larger disc with radius r̈ for the searching
kernel. The searching kernel size s can be expressed as s =
2 ·

⌈
r̈
ṙ

⌉
+ 1. Specifically, given the searching kernel s and

radius ṙ, the suitable range for r̈ is,(
s− 1

2
− 1

)
· ṙ < r̈ ≤

(
s− 1

2

)
· ṙ. (6)

As shown in Figure 10B, to determine the radius r for
sample points, we employ the concept of similar triangles,
specifically △ABF ∼ △ADC. This set of similar trian-
gles establishes a proportionality that allows us to solve for
r as,

r = CD =
AD ×BF

AB
. (7)

Figure 11. Radius Strategies and Performance: (A) depicts an
adaptive radius correlated with viewport distance, (B) shows a
constant fixed radius, and (C) compares their PSNR performance.
Additional comparison of point cloud selection strategies in Fig-
ure 4 in the main text.

Here, AD represents the Euclidean distance between the
camera ray o and the sample point position xsp

j ,given by

AD =
∥∥∥xsp

j − o
∥∥∥
2
. By invoking another set of similar

triangles, △BEF ∼ △AEG, we can calculate BF as,

BF = r̈ · cosθ =
r̈ ·AG

AE
=

r̈f

∥po − o∥2
, (8)

where f is the local length and po is the pixel center inter-
sected by the camera ray. The length AB is the hypotenuse
of the right triangle △AGB and is computed using the
Pythagorean theorem as,

AB =
√

GB2 +AG2

=

√
(GE −BE)

2
+AG2

=

√(√
AE2 −AG2 −BE

)2

+AG2

=

√(√
∥po − o∥22 − f2 − r̈

)2

+ f2

(9)

Combining these elements, the final expression for the ra-
dius r of the searching kernel is,

r =
∥xsp

j − o∥2 · f r̈

∥po − o∥2 ·
√(√

∥po − o∥22 − f2 − r̈
)2

+ f2.

(10)
This integrated expression encapsulates the geometric re-
lationship between the image plane, the searching kernel,



Figure 12. Adaptive sampling for noisy input, showing the transition from primary-surface to multiple-surface sampling by adjusting γ
values, with visual results for different surfaces. It features a visual comparison across different surfaces. The first column displays the
ground truth, and the last column showcases the region where multi-surface sampling is applied in Point-NeRF. The middle part illustrates
the gradual transition. In the main text, the default value of β2 is set to 0.02 when dealing with refined geometry input.

and the camera parameters, completing the derivation of the
adaptive searching kernel’s radius.

Room for improvement. As the angle B̂OE is minus-
cule (less than 1 degree), we can make the below approxi-
mation and then apply a similar triangle relationship:

AB ≈ AF = AE − EF = AE − BF × EG

AG
(11)

In fact, we can further simplify eq. 11 by applying small
angle assumption of B̂OE twice: AB ≈ AF ≈ AE. Eq. 7
becomes:

r ≈ AD ×BF

AE
=

∥xsp
j − o∥2 · r̈f

∥po−o∥2

∥po − o∥2

≈
∥xsp

j − o∥2 · r̈f
∥po − o∥22

(12)

Eq. 12 is simpler and faster to computer than eq. 10.

2. Additional experiments
Comparison between the fixed radius and our adaptive
radius sampling. Regarding the discussion in Section 3, we
compared the performance differences between adaptive ra-
dius and fixed radius on the NeRF-Synthesis dataset, build-
ing upon the Point-NeRF framework. Figure 11 illustrates

the differences between adaptive and fixed radius strategies
for point cloud sampling in neural radiance fields. As ex-
plained in Section 3.5, the adaptive radius expands with in-
creased distance from the ray origin, resembling a camera’s
view frustum, while the fixed radius used by Point-NeRF
remains constant. The performance in Figure 11C demon-
strates that the adaptive radius yields higher PSNR values,
indicating a reduction in noise by selecting only points rel-
evant to the rendered pixel.
Our adaptive sampling for noisy input. This section ex-
tends the discussion on the solution to noisy input from Sec-
tion 4.3. Primary surface sampling encounters challenges
in accurately extracting surface features from noisy point
cloud input. As outlined in the ablation study, we proposed
two methods to address issues with noisy inputs. The first
involves a brief 10-minute geometry optimization that sig-
nificantly enhances the benefit of our methods by filling
gaps and refining noisy point clouds from noisy surfaces.
The second method adaptively adjusts the sampling scope,
shifting from primary surface to multi-surface sampling.
Notably, unlike full multi-surface sampling, which gathers
features from all intersected surfaces, our approach, as illus-
trated in Figure 12, samples just slightly beyond the primary
surface, avoiding extensive multi-surface feature collection.



Method Rm0 Rm1 Rm2 Off0 Off1 Off2 Off3 Off4 Avg.
NICE-SLAM [69] 0.97 1.31 1.07 0.88 1.00 1.06 1.10 1.13 1.06
Point-SLAM [48] 0.61 0.41 0.37 0.38 0.48 0.54 0.69 0.72 0.52
Point-SLAM + Ours 0.69 0.53 0.37 0.47 0.45 0.65 0.64 0.54 0.54

Table 6. Tracking performance on Replica [53] (ATE RMSE ↓ [cm]).

Method Metric Rm0 Rm1 Rm2 Off0 Off1 Off2 Off3 Off4 Avg.

NICE-SLAM[69]

Depth L1 [cm] ↓ 1.81 1.44 2.04 1.39 1.76 8.33 2.01 2.97 2.97
Precision [%] ↑ 45.86 43.76 44.38 51.40 50.80 38.37 40.85 37.35 44.10
Recall [%] ↑ 44.10 46.12 42.78 48.66 53.08 39.98 39.24 35.77 43.69
F1 [%] ↑ 44.96 44.84 43.56 49.99 51.91 39.16 39.92 36.54 43.86

Point-SLAM[48]

Depth L1 [cm] ↓ 0.53 0.22 0.46 0.30 0.57 0.49 0.51 0.46 0.44
Precision [%] ↑ 91.95 99.04 97.89 99.00 99.37 98.05 96.61 93.98 96.99
Recall [%] ↑ 82.48 86.43 84.64 89.06 84.99 81.44 81.17 78.51 83.59
F1 [%] ↑ 86.90 92.31 90.78 93.77 91.62 88.98 88.22 85.55 89.77

Point-SLAM + Ours

Depth L1 [cm] ↓ 0.51 0.23 0.55 0.37 0.46 0.54 0.52 0.42 0.45
Precision [%] ↑ 92.31 98.96 97.56 98.85 99.31 99.33 97.45 93.95 97.22
Recall [%] ↑ 83.32 85.98 84.65 88.86 85.23 81.74 82.71 79.38 83.98
F1 [%] ↑ 87.58 92.01 90.64 93.58 91.73 89.68 89.38 86.05 90.11

Table 7. Reconstruction performance on Replica [53].

Figure 13. The illustration of the trade-off between efficiency and
accuracy in the transition from primary surface to multiple sur-
face sampling under the noisy input by adjusting the γ parameter.
Point-NeRF with our HashPoint and γ = 0.01 outperforms origi-
nal Point-NeRF in both PSNR and FPS.

Figure 13 demonstrates that reducing γ increases precision
and reduces the speed of sampling. A larger γ (e.g., 0.9) fo-
cuses on primary surface sampling, maximizing speed for
interactive frame rate while maintaining competitive preci-
sion. Conversely, a smaller γ captures more point cloud
features below the primary surface, exceeding the precision
of multi-surface sampling and still achieving speeds over
20 times faster. In summary, the γ adjustment effectively
balances sampling speed and precision, with each setting
offering unique benefits in efficiency and accuracy.

Tracking and mapping. We supplement the integration of
our method with Point-SLAM [48] for tracking and recon-
struction on the Replica [53] dataset. As shown in Tables 6
and 7, our approach outperforms the original depth-guided
sampling in terms of precision and recall, while maintaining
competitive performance in other metrics.

Method Performance

Searching Selection PSNR ↑ FPS ↑
Point-NeRF

Uniform grid Multiple surface 33.31 0.12
HashPoint Multiple surface 33.34 0.78

Uniform grid Primary surface 33.20 6.92
HashPoint Primary surface 33.22 9.60

Point-SLAM

Depth Single surface 30.01 4.64
Depth Primary surface 30.32 6.72

Pointersect

Uniform grid K nearest points 31.23 1.30
HashPoint K nearest points 31.23 1.75

Uniform grid Primary surface 30.01 8.89
HashPoint Primary surface 30.03 9.13

NPLF

Brute force K nearest points 30.44 0.48
HashPoint K nearest points 30.42 3.12
Brute force Primary surface 29.88 0.50
HashPoint Primary surface 29.90 3.40

Table 8. Ablation study evaluates on NeRF-Synthesis dataset.

3. Breakdown results

Table 9 provides detailed per-scene quantitative results
comparing integration with Point-NeRF on the NeRF-
Synthesis dataset. Our integration significantly accelerates
the process while preserving competitive performance. The
comparative data for our ablation study is outlined in Ta-
ble 8.



Chair Drums Lego Mic Materials Ship Hotdog Ficus

PSNR↑
NPBG 26.47 21.53 24.84 26.62 21.58 21.83 29.01 24.60
NeRF 33.00 25.01 32.54 32.91 29.62 28.65 36.18 30.13
NSVF 33.19 25.18 32.54 34.21 29.62 27.93 37.14 31.23
Point-NeRF 35.40 26.06 35.04 35.95 29.61 30.97 37.30 36.13
Point-NeRF + Ours 35.54 26.12 34.68 36.34 30.64 31.08 37.02 34.30

SSIM↑
NPBG 0.939 0.904 0.923 0.959 0.887 0.866 0.964 0.940
NeRF 0.967 0.925 0.961 0.980 0.949 0.856 0.974 0.964
NSVF 0.968 0.931 0.960 0.987 0.973 0.854 0.980 0.973
Point-NeRF 0.984 0.935 0.978 0.990 0.948 0.892 0.982 0.987
Point-NeRF + Ours 0.977 0.931 0.967 0.984 0.949 0.920 0.978 0.978

LPIPSvgg ↓
NPBG 0.085 0.112 0.119 0.060 0.134 0.210 0.075 0.078
NeRF 0.046 0.091 0.050 0.028 0.063 0.206 0.121 0.044
Point-NeRF 0.023 0.078 0.024 0.014 0.072 0.124 0.037 0.022
Point-NeRF + Ours 0.028 0.101 0.047 0.018 0.075 0.097 0.036 0.041

LPIPSalex ↓
NSVF 0.043 0.069 0.029 0.010 0.021 0.162 0.025 0.017
Point-NeRF 0.010 0.055 0.011 0.007 0.041 0.070 0.016 0.009
Point-NeRF + Ours 0.012 0.067 0.014 0.010 0.049 0.054 0.018 0.017

Table 9. Quantitative results in the NeRF Synthetic dataset.

Figure 14. The qualitative results of Point-SLAM [62] with ours on the Replica [53] dataset.

4. Visualization

We also experiment with the integration with Point-SLAM
and NPLF on Replica and Waymo datasets respectively.
The qualitative results are shown in Figure 14 and 15.
Please find more visual results for sampling comparison in
our video.

5. Limitation

During optimization, due to gradient propagation issues,
multi-surface sampling is still necessary to sample and opti-
mize all points as much as possible. Currently, our choice of
β is fixed and does not dynamically adjust based on the ge-
ometry’s distribution and noise level. Future work could ex-



Figure 15. The qualitative results of NPLF [41] with ours on the Waymo [54] dataset.

plore dynamic adjustment of the sampling process. For in-
stance, as the geometry is progressively optimized, β could
increase gradually, transitioning from multi-surface to pri-
mary surface sampling.


