
A. Implementation Details
A.1. Perceiver-Actor

The high-level Perceiver-Actor (PerAct) agent is a
language-conditioned multi-task behaviour-cloning agent
πhigh(a | o, l), where ahigh = (apose, agrip), o consists of
calibrated RGB-D multi-view images, and l is a language
description of the task. First, PerAct encodes the language
description using the frozen pretrained CLIP [30] language
encoder. For the RGB-D images, PerAct computes the 3D
position utilising camera intrinsics and extrinsics to obtain
a 3D voxel grid representation of the current scene. Next,
PerAct employs PerceiverIO to encode both language and
voxel tokens with a fixed set of latent vectors. Finally, these
vectors are decoded into a 3D action-value attention map.
Specifically, we follow the official implementation and use
1003 voxels to represent the scene, and encode it 2048 fixed
latent vectors with dimension 512. During training, we per-
form data augmentations by offsetting the voxels with ran-
dom translations and rotations. During training, we min-
imise the following loss function

 \label {eq:peract_loss} \mathcal {L}_\mathrm {high} &= - \mathbb {E}_{k\sim \xi , \xi \sim \mathcal {D}}\left [\log \pi _\mathrm {high}(a_\mathrm {demo}(k)\mid o, l)\right]\nonumber \\ &= - \mathbb {E}_{k\sim \xi , \xi \sim \mathcal {D}}\left [\log \pi _\mathrm {trans} + \log \pi _\mathrm {rot} + \log \pi _\mathrm {grip} \right]\nonumber \\ \pi _\mathrm {trans} &= \mathrm {softmax}\left [Q_\mathrm {trans}((x, y, z)\mid o, l)\right]\nonumber \\ \pi _\mathrm {rot} &= \mathrm {softmax}\left [Q_\mathrm {rot}((\psi _\mathrm {rot}, \theta _\mathrm {rot}, \phi _\mathrm {rot})\mid o, l)\right]\nonumber \\ \pi _\mathrm {grip} &= \mathrm {softmax}\left [Q_\mathrm {grip}(\omega \mid o, l) \right],

 (12)

where Qtrans, Qrot, and Qgrip are the discrete Q functions
for the voxel-based translation policy πtrans, the discrete ro-
tation policy πrot, and the discrete binary gripper opening
/ closing policy πgrip. Here, (x, y, z) are the target voxel
indices, (ψrot, θrot, ϕrot) are the yaw, pitch, and roll param-
eters for a rotation, and ω is a binary value for gripper open-
ing / closing. In particular, unlike the original PerAct with
an additional action head πcollision to predict whether to ig-
nore collision during RRT planning, we use RK-Diffuser as
our low-level agent which handles collision checking au-
tomatically. Thus, we ignore πcollision for the high-level
agent. During inference, PerAct directly takes the argmax
of the discrete policy and reconstruct the continuous actions
by indexing with the discrete indices. We directly take the
hyper-parameters from the original PerAct [34].

A.2. RK-Diffuser

As discussed in the main text, in RK-Diffuser, we learn
two separate diffusion models πjoint and πpose. As dis-
cussed in Sect. 4.3, takes as the input the same condi-
tions Cpose, including the known start pose a(0)0pose, the
predicted next-best pose by the high-level agent â0pose(T),
the low-dimensional states s of the robot, the gripper open
amount g, and the point cloud of the environment v. Dif-
ferent from the voxel-based representation used in the high-

level agent, we use point cloud for the low-level agent given
the fact that low-level RK-Diffuser only requires under-
standing the 3D configuration of the environment, without
predicting the action-values over the empty voxels. Besides,
using voxels are computationally more expensive than the
point cloud. We use only the front camera. During infer-
ence, to perform conditional sampling, we use classifier-
free guidance following Ho and Salimans [9].

For each vector input, we use a MLP with 2 hidden lay-
ers of sizes 128 and 512 with GELU activations [8]. For
the point cloud, we use a standard PointNet++ [29] as the
encoder. We follow Janner et al. [21] and use a Conv1D
UNet [33] as the temporal feature extractor. We use 3 re-
peated down-sampling residual blocks and 3 additional up-
sampling residual blocks for the UNet. We train the goal-
conditioned low-level setup in a multi-task setup, with 100
demonstrations per task. We optimise the networks for
100K steps with AdamW optimiser [25]. In addition, to
compensate for the imperfect next-best pose predictions of
the high-level agent, we perform data augmentations to the
start pose and end pose by additionally taking a(0 + k) and
a(T − k) as start / end pose along a sub-trajectory ξ, where
k ∼ U [0, 5]. We determine the optimal hyper-parameters
through initial validation on three challenging RLBench
tasks: open oven, open microwave, and open grill. These
parameters are then applied across all tasks in both simula-
tion and real-world settings. Our search covered the follow-
ing hyper-parameters and training setups, with the selected
parameters highlighted in bold: 1) Denoising steps: 10, 50,
100; 2) Noise initialisation method: normal distribution or
uniform distribution; 3) Approach: predicting the noise ϵ or
directly predicting the observation x0.

B. Additional Results
B.1. Real-Robot Experiment Results

Table 3. Real-robot experiment results for opening oven and sort-
ing objects into drawer tasks.

Open Oven Sort Objects into Drawer Overall
reach open open beetle bear cube close

% 100 100 100 85 100 85 100 95.71

B.2. PerAct + Path Generation Baseline

In the work [15], a set of trajectories are generated and
ranked, reflecting the likelihood of success. Trajectories are
generated using three methods including: sampled (linear +
RRT), Bezier and learnt. Subsequently, over environment
rollouts, an RL policy is trained to evaluate and rank these
trajectories, with the highest being taken forward for execu-
tion. In the Behaviour Cloning setting, this direct approach
is not applicable due to the absence of environment rollouts.

Figure 6. During training, we compute the rank of the trajectories, i.e., the optimality of the trajectory, to encourage the agent to differentiate
quality of the sub-optimal trajectories generated by sample-based planners. During inference, we encourage RK-Diffuser to generate high-
rank trajectories only, i.e., shorter trajectories. In this figure, red trajectories denote the ground-truth trajectories generated by planners, and
blue trajectories are generated by RK-Diffuser, which has shorter lengths while satisfying the kinematics-constraints.

Nevertheless, as part of the demonstration creation in RL-
Bench [19], the path generation method is recorded at each
environment step and can be used as a training signal. To
make use of this, an additional head is added to the PerAct
backbone, which is trained to predict the optimal planning
method – either sampled or Bezier – in addition to gener-
ating next-best-pose, gripper and ignore collision outputs.
In this setting, the concept of collisions, as implemented in
[34], is crucial to enable reliable planning. Therefore, we
adapt the loss function in equation 12, incorperating the ig-
nore collision policy, to include a path generation policy

 \mathcal {L}_\mathrm {high} &= - \mathbb {E}_{k\sim \xi , \xi \sim \mathcal {D}}\left [\log \pi _\mathrm {trans} + \log \pi _\mathrm {rot} \right . \nonumber \\ &\quad \left . + \log \pi _\mathrm {grip} + \log \pi _\mathrm {collision} + \bold {\log \pi _\mathrm {path}}\right] \nonumber \\ \pi _\mathrm {path} &= \mathrm {softmax}\left [Q_\mathrm {path}(\lambda \mid o, l) \right],

 (13)

where Qpath is the discrete Q function for the voxel-based
path planning policy πpath. Here, λ is a discrete selection
for optimal planner method. During inference, if the model
determines that a sampled approach is optimal, it initially
attempts a linear path, followed by RRT planning if neces-
sary. In the case of the Bezier method, the model samples a
set of random curvature parameters, executing the first suc-
cessful configuration, if any.

B.3. Trajectory Ranking

As discussed in Sect. 4.3, we include an additional condi-
tional variable, trajectory rank, into RK-Diffuser. We de-
fine trajectory rank as rξ = dEuclidean

dtravel
, where dEuclidean

is the Euclidean distance between the start and end pose
and dtravel is the travelled distance between the start and
end pose. Intuitively, an optimal trajectory, ignoring the
kinematics constraint of the robot, should have rξ = 1.
We provide additional visualisations to analyse the effect
of trajectory ranking in Fig. 6, where the red curves de-
note the ground-truth trajectory, and blue ones are the tra-
jectories sampled from RK-Diffuser. We observe that the
RK-Diffuser is capable to generate shorter trajectories while
trained with sub-optimal planner demonstrations.

