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7. Network Architexture
7.1. Conv-Filter
We performed channel-by-channel single-layer convolution
on the voxel volume we constructed, with convolution ker-
nel weights initialized to one. Our convolution kernel size
is 5, padding is 2, and stride is 1 to keep the volume size.
Channel-by-channel convolution can preserve the semantic
information of high-frequency details.

7.2. Point Refiene

Figure 10. Visualization of point refine network. We use Fs
and xo as inputs to the network to obtain offsets D(x) to refine
the canonical coordinates after the general rigid deformation. We
initialize the bias of the last layer to zero, and the weight is within
the range of (�1e�5,�1e�5).

7.3. NeRF Network

Figure 11. Visualization of appearance network. Follow the
baseline [56], we use an 8-layer MLP with width=256, taking as
input positional encoding g of position x and producing color c
and density s . A skip connection that concatenates g(x) to the
fifth layer is applied. We adopt ReLU activation after each fully
connected layer, except for the one generating color c where we
use sigmoid.

8. Canonicalization
To map points in the observation space to the canonical
space, our baselines utilize neural networks to learn back-
ward warping weight fields. This method is easy to imple-
ment but suffers from poor generalization to unseen poses,

as the backward weight fields attempt to learn a spatial
weight fields that deform with pose variations, necessitat-
ing memorization of weight fields for different spatial con-
figurations. Generalizing to unseen poses using such pose-
dependent weight fields is difficult. Our method directly
queries the nearest SMPL’s LBS weights in an explicit
voxel, which is highly efficient and generalizable. However,
this method suffers from unnatural deformations when the
deformation angle is too large (see Figure 8). To address
this issue, we use an additional neural network to learn a
residual for canonical points, which is specific to the data
and empowered by point-level features, considering the dif-
ferent clothing of the performers.

The rotation R j and translation Tj for the rigid deforma-
tion are represented as:
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where p( j) is the ordered set of parents of joint j in the kine-
matic tree, wi defines local joint rotations using axis-angle
representations, R(wi) 2R3⇥3 is the converted rotation ma-
trix of wi via the Rodrigues formula, and oi is the i-th joint
center.

9. Ablation Study
Voxel Size. In the Conv-Filter, we voxelized all coordi-
nates, which resulted in some loss of information compared
to a dense space. However, this greatly facilitated our subse-
quent processing and computations. We conducted ablation
experiments on the voxel size used in the voxelization pro-
cess, as shown in Table 4. Voxel size affects mapping gran-
ularity to get canonical points. A larger voxel size results
in coarser mapping and lower image quality. In contrast, a
smaller one requires a bigger convolution kernel to diffuse
occupancy and more computing resources, and it did not re-
sult in higher accuracy because the prior does not perfectly
match the actual human body, and clothing is also outside
the prior.

Weight Distribution. In the main text, we discussed the
importance of filtering operations. It is worth noting that
previous methods did not require similar operations. Our
experiments suggest that this is because the learned neural
weight field assigns negative weights to irrelevant joints in
the data. When we simply use so f tmax to map the neural
weight field to a distribution that is the same as the SMPL



Table 4. Ablation experiment on the voxel size of our method in
ZJU-MOCAP. For different subjects, there is a different optimal
voxel size. We use 0.02 as voxel size in the experiment section
because it has the best overall performance.

PSNR" SSIM" †LPIPS#

voxel=0.01 30.49 0.971 26.386
voxel=0.015 30.69 0.972 25.354
voxel=0.02 31.09 0.974 24.085
voxel=0.025 31.07 0.974 24.705
voxel=0.03 30.72 0.973 25.013

Figure 12. By mapping the learned weight field of Human-
NeRF [56] to the same distribution as SMPL weight using soft-
max, the same phenomenon occurred.

weight, Â j2J w j = 1,w j > 0, similar phenomena occur, see
Figure 12.

10. More Results
Quantitative experiments. Due to the space limitation of
the main text, the Figure 4 provided in the main text is the
few-shot image synthesis result and Table 1 is a overall ta-
ble.

Table 8, Table 9 and Table 10 are detailed data for Ta-
ble 1. For ZJU-MOCAP, we use videos from the same six
subjects as in previous work. For our IN-THE-WILD DATA,
each subject is composed of multiple pose sequences to en-
able more convincing novel pose experiments. The videos
are captured with a single camera, and SMPL are estimated
with ROMP [50].

In order to better compare the performance of different
methods, we synthesized the results using full input images.
Figure 16 shows the synthesis results on ZJU-MOCAP, and
Figure 15 shows the image synthesis results on the IN-THE-
WILD DATA. Figure 17 directly compares the novel pose
image synthesis ability of the three methods under two input
conditions.

Compared with Figure 4, the defects of the baselines
have been significantly improved on ZJU-MOCAP, but
there are still obvious defects in these methods on IN-THE-
WILD DATA. This is highly related to the data distribution.

Pose similarity. We found that the novel pose experimen-
tal setting in previous studies is unreasonable because the

Table 5. Pose similarity of test poses and train poses in previous
novel pose experiments. The previous setting of novel pose is not
novel enough because of the high similarity.

Min Max Average
377 0.876 0.997 0.919
386 0.939 0.995 0.964
387 0.969 0.996 0.985
392 0.845 0.957 0.909
393 0.834 0.998 0.904
394 0.760 0.993 0.842

test poses and training poses are very similar, as the charac-
ters in ZJU-MOCAP perform similar movements repeatedly.
This also encourages us to use custom data and subjective
research of results on poses without ground truth images.
Novel poses synthesized by HumanNeRF should be suffi-
ciently novel and easy to obtain, rather than being limited
to professional laboratories.

To quantify the similarity of poses, we calculate the high-
est cosine similarity with all training poses for each pose in
the test data. As shown in Table 5, simply dividing each
subject into training and testing data in a 4:1 ratio may re-
sult in highly similar poses in the testing data being present
in the training data.

In our experiments, high pose similarity does not always
result in a decrease in baseline performance, because during
the training process, similar poses and viewpoints are lim-
ited. For example, the pose similarity of Subject 386 is very
high, but the corresponding pose only appears at the begin-
ning and can only see the performer’s right side, so when
we synthesize this highly similar pose, the performance of
the baselines is not good.

Qualitative results. In the qualitative experiments, we
drive the model to generate new pose images by using pose
sequences of different performers. We make a series of im-
age results into a video to help the human eyes better dis-
tinguish the performance of different methods. The video
results are included in the supplementary materials in the
form of a compressed file.

Visual quality. The rendering results and metrics on the
ZJU-MOCAP data are 512p resolution which we followed
the popular protocol in [56, 62], while on our collected IN-
THE-WILD data the resolution is 1080p. Both results show
our superiority over SOTAs. To validate the reliability of
these scores calculated with 512p, we compare our method
with HumanNeRF on frames with 2K resolution and find
that we still surpass HumanNeRF, as shown in Table 6.
We provide additional visual comparisons based on higher-
resolution frames (Figure 13). The logo and hand show bet-
ter details than HumanNeRF in both low and high resolu-
tion.

More comparisons. To demonstrate the excellent perfor-
mance of our method in similar tasks, additional compar-



Table 6. Results on subject 392 under different resolution.

2k resolution PSNR" SSIM" LPIPS# 512p resolution PSNR" SSIM" LPIPS#
HumanNeRF 31.36 0.983 0.0318 HumanNeRF 31.55 0.975 0.0280
Ours 31.73 0.984 0.0314 Ours 31.36 0.973 0.0276

HumanNeRF 521pGroundTruth Ours 512pHumanNeRF 2k Ours 2k

Figure 13. Results on subject 392 under different resolutions.

Table 7. Comparison with more methods. Our method has shown
significant advantages in comparison with more methods.

View Prior PSNR" SSIM" LPIPS#

T
H

U
M

A
N

4.
0 TAVA [20] >1 skeleton 26.607 0.968 0.032

SLRF [67] 24 nodes 26.152 0.969 0.024
Posevocab [22] 24 SMPL 30.972 0.977 0.017
Posevocab [22] 1 SMPL 27.820 0.973 0.064
Ours 1 SMPL 31.148 0.979 0.017

Z
JU

-M
O

C
A

P SLRF [67] 24 nodes 23.61 0.905 –
NPC [49] >1 point clouds 21.88 – 0.134

SelfRecon [15] 1 SMPL 27.94 0.969 0.043

Ours 1 SMPL 29.36 0.974 0.022

isons with methods that incorporate explicit information are
provided in Table 7.

Dancing visualization. In addition to using cross-subject
movements in our qualitative analysis to test the model’s
novel pose ability, we can also use dance movements from
online videos to drive the model as presented in Figure 14.

Ours HumanNeRF MonoHumanOurs HumanNeRF MonoHuman

Figure 14. Dancing results. Our results are very clean compared
to the blurry and unnatural results of other methods.



Figure 15. Image synthesis results with full input on IN-THE-WILD DATA. Our method maintains good performance at joint junctions,
but the results of the baselines are blurry and have unnatural distortions.

Figure 16. Image synthesis results with full input on ZJU-MOCAP. For Subject 386 (line 1), the baselines still have very poor image
synthesis results. For Subject 392 and 393, there are still irregular deformations and artifacts in the image synthesis results, whereas our
method achieves the best performance in visual comparison.

Figure 17. Comparison between full input and few-shot input. HumanNeRF [56] and MonoHuman [62] exhibit more artifacts and un-
natural deformations with less data. MonoHuman [62] even produces hand missing. Our method maintains almost unchanged performance
under the same testing conditions.



Table 8. Comparison of full input results on ZJU-MOCAP. Our method shows a leading advantage in LPIPS, which is aligned with
human perception. Each data in the table represents the average value of all test frames’ metrics in the corresponding video, which is
consistent with the previous studies.

Methods Subject377 Subject386 Subject387

PSNR" SSIM" †LPIPS# PSNR" SSIM" †LPIPS# PSNR" SSIM" †LPIPS#
Ani-NeRF [40] 22.12 0.8790 51.796 23.92 0.8545 55.697 16.26 0.7850 89.790
HumanNeRF [56] 30.74 0.9795 17.387 33.46 0.9716 36.326 30.30 0.9768 20.010
MonoHuman [62] 31.82 0.9822 17.561 30.10 0.9561 69.107 30.43 0.9755 23.954
Ours 31.34 0.9826 15.129 33.80 0.9741 32.990 29.36 0.9742 21.462

Methods Subject392 Subject393 Subject394

PSNR" SSIM" †LPIPS# PSNR" SSIM" †LPIPS# PSNR" SSIM" †LPIPS#
Ani-NeRF [40] 22.78 0.8610 67.744 20.37 0.8417 75.381 22.05 0.8537 69.188
HumanNeRF [56] 31.80 0.9743 26.811 29.80 0.9708 25.615 30.85 0.9702 22.783
MonoHuman [62] 32.06 0.9749 27.043 29.69 0.9701 26.570 31.37 0.9720 23.521
Ours 31.75 0.9740 25.537 29.50 0.9642 25.462 30.81 0.9697 23.929

Table 9. Comparison of few-shot input results on ZJU-MOCAP. On the most important metric LPIPS, our method demonstrates the best
results. our method exhibits less performance degradation with few-shot input indicates that our method does not overly rely on data to fit
the model, unlike previous methods.

Methods Subject377 Subject386 Subject387

PSNR" SSIM" †LPIPS# PSNR" SSIM" †LPIPS# PSNR" SSIM" †LPIPS#
Ani-NeRF [40] 21.77 0.8313 66.532 24.48 0.8386 74.342 20.74 0.8279 65.747
HumanNeRF [56] 30.33 0.9799 18.510 31.47 0.9618 48.410 27.92 0.9610 39.941
MonoHuman [62] 31.02 0.9774 22.562 31.26 0.9601 56.916 28.5 0.9619 43.147
Ours 31.07 0.9806 18.484 32.44 0.9644 43.876 28.05 0.9612 39.733

Methods Subject392 Subject393 Subject394

PSNR" SSIM" †LPIPS# PSNR" SSIM" †LPIPS# PSNR" SSIM" †LPIPS#
Ani-NeRF [40] 22.49 0.8433 61.917 21.96 0.8384 59.169 21.65 0.8240 61.328
HumanNeRF [56] 31.55 0.9747 28.043 29.45 0.9694 26.930 28.66 0.9629 36.507
MonoHuman [62] 31.48 0.9739 30.090 29.45 0.9691 30.113 28.86 0.9636 36.139
Ours 31.36 0.9734 27.604 29.25 0.9681 27.328 28.51 0.9626 35.479

Table 10. Comparison of results on the IN-THE-WILD DATA. Since IN-THE-WILD DATA is not captured in laboratory conditions and
only contains monocular information, the accuracy of SMPL estimation is lower compared to ZJU-MOCAP, which leads to a decrease
in overall performance metrics. However, this is more in line with real-world application scenarios. Our method demonstrates the best
performance, especially in the LPIPS metric, which reflects image quality the most. Even with reduced input data, our method maintains
excellent performance, while other methods experience a greater degree of decline.

Full Input S1 S2 S3

PSNR" SSIM" †LPIPS# PSNR" SSIM" †LPIPS# PSNR" SSIM" †LPIPS#
HumanNeRF [56] 32.94 0.9737 43.259 26.65 0.9650 41.505 27.32 0.9500 59.620
MonoHuman [62] 32.99 0.9725 46.272 26.74 0.9683 42.198 27.72 0.9509 66.400
Ours 33.72 0.9764 42.343 26.43 0.9709 39.174 27.54 0.9524 57.408

Few-shot Input S1 S2 S3

PSNR" SSIM" †LPIPS# PSNR" SSIM" †LPIPS# PSNR" SSIM" †LPIPS#
HumanNeRF [56] 33.37 0.9761 45.012 25.82 0.9599 43.326 27.27 0.9495 62.384
MonoHuman [62] 33.58 0.9744 50.561 26.57 0.9640 45.955 27.48 0.9522 72.143
Ours 33.70 0.9768 41.954 26.45 0.9712 39.894 27.62 0.9525 59.636
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