HumanNeRF-SE: A Simple yet Effective Approach to Animate HumanNeRF with Diverse Poses

Supplementary Material

7. Network Architexture

7.1. Conv-Filter

We performed channel-by-channel single-layer convolution on the voxel volume we constructed, with convolution kernel weights initialized to one. Our convolution kernel size is 5, padding is 2, and stride is 1 to keep the volume size. Channel-by-channel convolution can preserve the semantic information of high-frequency details.

7.2. Point Refiene

Figure 10. Visualization of point refine network. We use F_s and x_o as inputs to the network to obtain offsets $\Delta(x)$ to refine the canonical coordinates after the general rigid deformation. We initialize the bias of the last layer to zero, and the weight is within the range of $(-1e^{-5}, -1e^{-5})$.

7.3. NeRF Network

Figure 11. **Visualization of appearance network.** Follow the baseline [56], we use an 8-layer MLP with width=256, taking as input positional encoding γ of position *x* and producing color *c* and density σ . A skip connection that concatenates $\gamma(x)$ to the fifth layer is applied. We adopt ReLU activation after each fully connected layer, except for the one generating color *c* where we use sigmoid.

8. Canonicalization

To map points in the observation space to the canonical space, our baselines utilize neural networks to learn backward warping weight fields. This method is easy to implement but suffers from poor generalization to unseen poses, as the backward weight fields attempt to learn a spatial weight fields that deform with pose variations, necessitating memorization of weight fields for different spatial configurations. Generalizing to unseen poses using such posedependent weight fields is difficult. Our method directly queries the nearest SMPL's LBS weights in an explicit voxel, which is highly efficient and generalizable. However, this method suffers from unnatural deformations when the deformation angle is too large (see Figure 8). To address this issue, we use an additional neural network to learn a residual for canonical points, which is specific to the data and empowered by point-level features, considering the different clothing of the performers.

The rotation R_j and translation T_j for the rigid deformation are represented as:

$$\begin{bmatrix} R_j & T_j \\ 0 & 1 \end{bmatrix} = \prod_{i \in p(j)} \begin{bmatrix} R(\boldsymbol{\omega}_i^c) & o_i^c \\ 0 & 1 \end{bmatrix} \left\{ \prod_{i \in p(j)} \begin{bmatrix} R(\boldsymbol{\omega}_i) & o_i \\ 0 & 1 \end{bmatrix} \right\}^{-1}$$
(14)

where p(j) is the ordered set of parents of joint *j* in the kinematic tree, ω_i defines local joint rotations using axis-angle representations, $R(\omega_i) \in \mathbb{R}^{3\times 3}$ is the converted rotation matrix of ω_i via the Rodrigues formula, and o_i is the *i*-th joint center.

9. Ablation Study

Voxel Size. In the Conv-Filter, we voxelized all coordinates, which resulted in some loss of information compared to a dense space. However, this greatly facilitated our subsequent processing and computations. We conducted ablation experiments on the voxel size used in the voxelization process, as shown in Table 4. Voxel size affects mapping granularity to get canonical points. A larger voxel size results in coarser mapping and lower image quality. In contrast, a smaller one requires a bigger convolution kernel to diffuse occupancy and more computing resources, and it did not result in higher accuracy because the prior does not perfectly match the actual human body, and clothing is also outside the prior.

Weight Distribution. In the main text, we discussed the importance of filtering operations. It is worth noting that previous methods did not require similar operations. Our experiments suggest that this is because the learned neural weight field assigns negative weights to irrelevant joints in the data. When we simply use *softmax* to map the neural weight field to a distribution that is the same as the SMPL

Table 4. Ablation experiment on the voxel size of our method in ZJU-MOCAP. For different subjects, there is a different optimal voxel size. We use 0.02 as voxel size in the experiment section because it has the best overall performance.

	PSNR↑	SSIM↑	$^{\dagger}\text{LPIPS}{\downarrow}$
voxel=0.01	30.49	0.971	26.386
voxel=0.015	30.69	0.972	25.354
voxel=0.02	31.09 😐	0.974 😐	24.085 😐
voxel=0.025	31.07	0.974 😐	24.705
voxel=0.03	30.72	0.973	25.013

Figure 12. By mapping the learned weight field of Human-NeRF [56] to the same distribution as SMPL weight using softmax, the same phenomenon occurred.

weight, $\sum_{j \in J} w_j = 1, w_j > 0$, similar phenomena occur, see Figure 12.

10. More Results

Quantitative experiments. Due to the space limitation of the main text, the Figure 4 provided in the main text is the few-shot image synthesis result and Table 1 is a overall table.

Table 8, Table 9 and Table 10 are detailed data for Table 1. For ZJU-MOCAP, we use videos from the same six subjects as in previous work. For our IN-THE-WILD DATA, each subject is composed of multiple pose sequences to enable more convincing novel pose experiments. The videos are captured with a single camera, and SMPL are estimated with ROMP [50].

In order to better compare the performance of different methods, we synthesized the results using full input images. Figure 16 shows the synthesis results on ZJU-MOCAP, and Figure 15 shows the image synthesis results on the IN-THE-WILD DATA. Figure 17 directly compares the novel pose image synthesis ability of the three methods under two input conditions.

Compared with Figure 4, the defects of the baselines have been significantly improved on ZJU-MOCAP, but there are still obvious defects in these methods on IN-THE-WILD DATA. This is highly related to the data distribution.

Pose similarity. We found that the novel pose experimental setting in previous studies is unreasonable because the Table 5. Pose similarity of test poses and train poses in previous novel pose experiments. The previous setting of novel pose is not novel enough because of the high similarity.

	Min	Max	Average
377	0.876	0.997	0.919
386	0.939	0.995	0.964
387	0.969	0.996	0.985
392	0.845	0.957	0.909
393	0.834	0.998	0.904
394	0.760	0.993	0.842

test poses and training poses are very similar, as the characters in ZJU-MOCAP perform similar movements repeatedly. This also encourages us to use custom data and subjective research of results on poses without ground truth images. Novel poses synthesized by HumanNeRF should be sufficiently novel and easy to obtain, rather than being limited to professional laboratories.

To quantify the similarity of poses, we calculate the highest cosine similarity with all training poses for each pose in the test data. As shown in Table 5, simply dividing each subject into training and testing data in a 4:1 ratio may result in highly similar poses in the testing data being present in the training data.

In our experiments, high pose similarity does not always result in a decrease in baseline performance, because during the training process, similar poses and viewpoints are limited. For example, the pose similarity of Subject 386 is very high, but the corresponding pose only appears at the beginning and can only see the performer's right side, so when we synthesize this highly similar pose, the performance of the baselines is not good.

Qualitative results. In the qualitative experiments, we drive the model to generate new pose images by using pose sequences of different performers. We make a series of image results into a video to help the human eyes better distinguish the performance of different methods. The video results are included in the supplementary materials in the form of a compressed file.

Visual quality. The rendering results and metrics on the ZJU-MOCAP data are 512p resolution which we followed the popular protocol in [56, 62], while on our collected IN-THE-WILD data the resolution is 1080p. Both results show our superiority over SOTAs. To validate the reliability of these scores calculated with 512p, we compare our method with HumanNeRF on frames with 2K resolution and find that we still surpass HumanNeRF, as shown in Table 6. We provide additional visual comparisons based on higher-resolution frames (Figure 13). The logo and hand show better details than HumanNeRF in both low and high resolution.

More comparisons. To demonstrate the excellent performance of our method in similar tasks, additional compar-

Table 6. Results on subject 392 under different resolution.

Figure 13. Results on subject 392 under different resolutions.

		View	Prior	PSNR↑	SSIM↑	LPIPS↓
0.	TAVA [20]	>1	skeleton	26.607	0.968	0.032
4 7	SLRF [67]	24	nodes	26.152	0.969	0.024
MA	Posevocab [22]	24	SMPL	30.972	0.977	0.017
UHU	Posevocab [22]	1	SMPL	27.820	0.973	0.064
	Ours	1	SMPL	31.148	0.979	0.017
AP	SLRF [67]	24	nodes	23.61	0.905	-
loc	NPC [49]	>1	point clouds	21.88	-	0.134
N-N	SelfRecon [15]	1	SMPL	27.94	0.969	0.043
ЦZ	Ours	1	SMPL	29.36	0.974	0.022

Table 7. Comparison with more methods. Our method has shown significant advantages in comparison with more methods.

isons with methods that incorporate explicit information are provided in Table 7.

Dancing visualization. In addition to using cross-subject movements in our qualitative analysis to test the model's novel pose ability, we can also use dance movements from online videos to drive the model as presented in Figure 14.

Figure 14. Dancing results. Our results are very clean compared to the blurry and unnatural results of other methods.

Input PoseHumanNeRFMonoHumanOursFigure 15. Image synthesis results with full input on IN-THE-WILD DATA. Our method maintains good performance at joint junctions,
but the results of the baselines are blurry and have unnatural distortions.Ours

Figure 16. **Image synthesis results with full input on ZJU-MOCAP.** For Subject 386 (line 1), the baselines still have very poor image synthesis results. For Subject 392 and 393, there are still irregular deformations and artifacts in the image synthesis results, whereas our method achieves the best performance in visual comparison.

Figure 17. Comparison between full input and few-shot input. HumanNeRF [56] and MonoHuman [62] exhibit more artifacts and unnatural deformations with less data. MonoHuman [62] even produces hand missing. Our method maintains almost unchanged performance under the same testing conditions.

Table 8. Comparison of full input results on ZJU-MOCAP. Our method shows a leading advantage in LPIPS, which is aligned with human perception. Each data in the table represents the average value of all test frames' metrics in the corresponding video, which is consistent with the previous studies.

Methods		Subject377			Subject386	5	Subject387		
	PSNR ↑	SSIM↑	[†] LPIPS↓	PSNR↑	SSIM↑	[†] LPIPS↓	PSNR ↑	SSIM↑	[†] LPIPS↓
Ani-NeRF [40] HumanNeRF [56] MonoHuman [62] Ours	22.12 30.74 31.82 • 31.34	0.8790 0.9795 0.9822 0.9826 •	51.796 17.387 17.561 15.129 •	23.92 33.46 30.10 33.80 •	0.8545 0.9716 0.9561 0.9741 •	55.697 36.326 69.107 32.990 •	16.26 30.30 30.43 • 29.36	0.7850 0.9768 • 0.9755 0.9742	89.790 20.010 • 23.954 21.462
Methods	Subject392			Subject393			Subject394		
Wethous	PSNR ↑	SSIM↑	† LPIPS \downarrow	PSNR↑	SSIM↑	[†] LPIPS↓	PSNR ↑	SSIM↑	[†] LPIPS↓
Ani-NeRF [40] HumanNeRF [56] MonoHuman [62]	22.78 31.80 32.06 •	0.8610 0.9743 0.9749 •	67.744 26.811 27.043	20.37 29.80 • 29.69 29.50	0.8417 0.9708 • 0.9701	75.381 25.615 26.570	22.05 30.85 31.37 •	0.8537 0.9702 0.9720 •	69.188 22.783 • 23.521

Table 9. **Comparison of few-shot input results on ZJU-MOCAP.** On the most important metric LPIPS, our method demonstrates the best results. our method exhibits less performance degradation with few-shot input indicates that our method does not overly rely on data to fit the model, unlike previous methods.

Methods		Subject377			Subject386	:	Subject387		
	PSNR ↑	SSIM↑	[†] LPIPS↓	PSNR ↑	SSIM↑	[†] LPIPS↓	PSNR ↑	SSIM↑	[†] LPIPS↓
Ani-NeRF [40]	21.77	0.8313	66.532	24.48	0.8386	74.342	20.74	0.8279	65.747
HumanNeRF [56]	30.33	0.9799	18.510	31.47	0.9618	48.410	27.92	0.9610	39.941
MonoHuman [62]	31.02	0.9774	22.562	31.26	0.9601	56.916	28.5 😐	0.9619 😐	43.147
Ours	31.07 •	0.9806 😐	18.484 😐	32.44 😐	0.9644 😐	43.876 •	28.05	0.9612	39.733 😐
Methods	Subject392			Subject393			Subject394		
Wethous	PSNR ↑	SSIM↑	[†] LPIPS↓	PSNR ↑	SSIM↑	[†] LPIPS↓	PSNR ↑	SSIM↑	†LPIPS↓
Ani-NeRF [40]	22.49	0.8433	61.917	21.96	0.8384	59.169	21.65	0.8240	61.328
HumanNeRF [56]	31.55 😐	0.9747 😐	28.043	29.45 😐	0.9694 😐	26.930 😐	28.66	0.9629	36.507
MonoHuman [62]	31.48	0.9739	30.090	29.45 😐	0.9691	30.113	28.86 😐	0.9636 😐	36.139

Table 10. **Comparison of results on the IN-THE-WILD DATA.** Since IN-THE-WILD DATA is not captured in laboratory conditions and only contains monocular information, the accuracy of SMPL estimation is lower compared to ZJU-MOCAP, which leads to a decrease in overall performance metrics. However, this is more in line with real-world application scenarios. Our method demonstrates the best performance, especially in the LPIPS metric, which reflects image quality the most. Even with reduced input data, our method maintains excellent performance, while other methods experience a greater degree of decline.

Full Input		S 1			S2		S 3		
	PSNR ↑	SSIM↑	[†] LPIPS↓	PSNR ↑	SSIM↑	[†] LPIPS↓	PSNR ↑	SSIM↑	[†] LPIPS↓
HumanNeRF [56] MonoHuman [62]	32.94 32.99	0.9737 0.9725	43.259 46.272	26.65 26.74	0.9650 0.9683	41.505 42.198	27.32 27.72 •	0.9500 0.9509	59.620 66.400
Ours	33.72 •	0.9764 😐	42.343 •	26.43 •	0.9709 😐	39.174 🔾	27.54	0.9524 😐	57.408 😐
Few-shot Input		C 1			C2			62	
rew-shot mbut		51			S 2			\$3	
rew-shot input	PSNR↑	SSIM†	[†] LPIPS↓	PSNR ↑	S2 SSIM↑	[†] LPIPS↓	PSNR ↑	S3 SSIM↑	[†] LPIPS↓
HumanNeRF [56] MonoHuman [62]	PSNR↑ 33.37 33.58	SSIM↑ 0.9761 0.9744	[†] LPIPS↓ 45.012 50.561	PSNR↑ 25.82 26.57 ●	S2 SSIM↑ 0.9599 0.9640	[†] LPIPS↓ 43.326 45.955	PSNR↑ 27.27 27.48	S3 SSIM↑ 0.9495 0.9522	[†] LPIPS↓ 62.384 72.143