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A. Full Results
Firstly, we provide the complete results of MoDE when scaling up the number of coarse-grained clusters. As shown in

Table A, when more data experts are learned, the average accuracy on CLIP benchmark keeps improving.
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MetaCLIP 59.8 67.6 82.6 95.2 77.7 67.8 66.8 77.2 26.9 58.9 90.9 92.5 69.7 42.7 48.3 96.3 49.9 66.5 39.2 29.3 17.7 50.0 68.0 47.6 19.4 53.5 53.1
MoDE-2 61.2 68.7 84.1 95.3 78.6 69.5 67.0 80.8 30.9 60.6 91.0 92.9 71.9 40.8 50.4 96.3 51.3 67.9 44.2 31.4 18.3 51.3 69.0 47.4 23.2 52.6 54.4
MoDE-4 61.7 68.8 85.8 95.2 79.0 74.4 67.5 83.3 29.5 60.3 91.9 92.9 72.1 49.7 46.9 96.4 50.3 66.8 51.6 28.5 19.6 50.1 68.4 48.3 21.6 52.6 52.2
MoDE-8 63.4 69.3 88.1 95.6 80.1 76.0 68.2 87.7 46.7 60.9 91.2 93.4 77.1 46.5 47.2 97.1 58.3 67.7 52.7 27.4 18.5 50.1 68.6 48.2 25.2 53.3 52.1
MoDE-16 64.0 70.7 88.4 96.1 80.5 80.8 67.9 87.1 44.6 59.9 92.2 93.2 79.4 50.1 49.8 97.1 60.3 67.7 48.5 26.1 18.9 55.3 68.1 48.3 25.7 54.1 51.9
MoDE-32 64.0 69.6 88.2 95.9 80.8 80.1 68.3 88.9 44.1 59.9 92.6 93.5 83.0 42.9 46.9 97.4 56.2 67.3 48.8 30.7 19.2 58.0 68.2 48.1 30.6 53.5 50.2

Table A. Performance details of Fig. 3 when scaling MoDE-n based on ViT-B/32 on 2.5B image-caption pairs.

We noticed the work LiMoE [5] which follows conventional Deep Mixture of Expert models and trains a stack of Trans-
former MoE layers on all 3.6B image-caption pairs [7]. However, the number of parameters in a single LiMoE network is
much larger than a single dense baseline. As all of the network parameters are trained synchronously, it will cause huge
memory usage. Meanwhile, comparing with MoDE-4 trained on different data clusters while the total pre-train set has only
about 2.5B image-caption pairs, our system is more flexible and also achieve better results consistently.

Task Dataset ViT-B/32 ViT-B/16 ViT-L
MoDE LiMoE MoDE LiMoE MoDE (L14) LiMoE (L16)

zero-shot classification ImageNet 68.9 67.5 74.3 73.7 79.4 78.6
zero-shot text retrieval COCO 57.4 45.7 62.7 51.3 65.6 55.7

zero-shot image retrieval COCO 39.9 31.0 44.1 36.2 48.2 39.6

Table B. Performance comparison between MoDE and LiMoE [5]

Secondly, we summarize the results for robustness evaluation in Table C and zero-shot retrieval in Table D. The results in
each table are separated by the scale of pre-train dataset. Consistently, our approach can outperform the MetaCLIP Baseline
in all cases. MoDE also achieves the best score in most cases.

Approach ViT Avg. IN-Sketch IN-V2 IN-A IN-O IN-R Avg. IN-Sketch IN-V2 IN-A IN-O IN-R

OpenAI CLIP

B/32

49.4 42.3 56.0 31.5 47.8 69.4 - - - - - -

OpenCLIP 50.6 49.4 55.1 21.7 53.5 73.4 52.9 53.7 58.1 26.3 50.0 76.4
MetaCLIP 52.2 53.3 57.6 28.6 46.8 74.8 54.4 56.0 59.6 29.9 48.3 78.1
MoDE-2 53.0 53.9 57.9 29.4 48.0 75.7 55.2 57.1 60.5 31.2 48.4 79.0
MoDE-4 53.4 54.4 58.5 30.8 47.6 76.0 56.5 57.6 61.6 34.2 49.2 80.0

OpenAI CLIP

B/16

56.0 48.3 61.9 50.0 42.3 77.7 - - - - - -

OpenCLIP 54.8 52.4 59.7 33.2 50.7 77.9 56.7 56.1 62.3 38.2 46.3 80.6
MetaCLIP 57.7 57.9 62.6 47.0 39.2 81.8 60.1 60.2 65.0 49.5 41.6 84.2
MoDE-2 58.4 58.5 63.2 47.9 39.9 82.3 62.3 62.4 66.5 52.0 45.2 85.5
MoDE-4 59.0 58.8 63.7 49.2 40.4 82.9 63.3 62.8 67.1 55.7 44.5 86.6

OpenAI CLIP

L/14

64.1 59.6 69.8 70.7 32.3 87.9 - - - - - -

OpenCLIP 59.6 59.6 65.5 46.5 42.0 84.7 62.2 63.3 67.8 53.9 38.7 87.4
MetaCLIP 63.8 65.0 69.8 66.4 28.9 88.9 67.2 68.9 72.6 72.3 30.2 92.1
MoDE-2 64.0 65.2 70.0 66.9 28.9 89.0 67.6 69.3 72.8 73.0 30.6 92.3

MoDE-4 64.1 65.3 70.1 66.8 29.4 89.0 68.2 69.9 73.3 74.0 31.3 92.7
Pre-Train Dataset: 400M Image-Caption Pairs OpenCLIP:2.3B, MetaCLIP / MetaCLIP: 2.5B

Table C. Zero-Shot Robustness Evaluation. The results are separated by the scale of pre-train set. Entries in blue are the best ones.

B. Ablation Study Details for Clustering
Firstly, for ablation details on Clustering Strategy in Sec. 5.2, we show details in Table E for Table 6 and Table F for Fig. 5.



Approach
Text Retrieval Image Retrieval Text Retrieval Image Retrieval

COCO Flickr30k COCO Flickr30k COCO Flickr30k COCO Flickr30k
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ViT-B/32
OpenAI CLIP 50.2 75.0 83.5 78.9 94.9 98.2 30.4 56.0 66.9 58.8 83.6 90.0 - - - - - - - - - - - -

OpenCLIP 52.5 76.8 84.7 78.8 94.1 97.0 35.3 60.9 71.7 61.7 85.5 90.9 56.3 79.8 87.1 84.1 96.2 98.3 39.3 65.4 75.6 66.7 88.4 93.1
MetaCLIP 51.8 76.4 84.7 77.8 93.5 97.1 35.9 61.8 72.1 62.3 85.5 91.5 55.2 78.9 86.5 80.7 95.2 97.3 38.1 64.1 74.3 65.1 87.7 92.7
MoDE-2 53.3 76.7 84.8 78.6 94.3 96.9 36.4 62.1 72.6 63.0 86.1 91.8 56.7 80.2 87.5 82.8 95.1 98.2 39.5 65.3 75.3 66.4 89.0 93.6
MoDE-4 53.7 77.2 85.1 78.5 94.9 96.8 36.7 62.5 73.0 63.6 86.4 91.7 57.4 80.1 87.3 82.9 95.6 97.7 39.9 66.1 75.7 66.7 88.4 93.3

ViT-B/16
OpenAI CLIP 52.4 76.7 84.6 86.2 98.0 99.5 33.1 58.4 69.0 69.8 90.4 94.6 - - - - - - - - - - - -

OpenCLIP 55.4 79.7 86.9 83.4 96.8 98.5 38.4 63.6 73.9 65.7 88.3 93.0 59.5 81.8 88.6 86.2 98.0 99.5 42.3 67.7 77.1 69.8 90.4 94.6
MetaCLIP 56.4 79.9 87.1 85.7 97.2 98.7 40.0 65.3 75.3 67.6 89.6 94.2 59.4 80.6 87.8 85.5 97.4 98.9 41.4 67.2 76.9 70.7 90.8 94.5
MoDE-2 57.5 80.3 87.6 86.5 97.0 98.8 40.4 65.6 75.6 68.7 89.4 94.2 60.7 82.6 89.0 87.3 97.6 99.2 43.1 68.6 77.8 72.1 91.8 95.3
MoDE-4 57.7 81.1 88.1 86.6 97.5 98.8 41.0 66.2 75.8 68.7 90.0 94.2 62.7 82.9 89.8 89.4 98.0 99.6 44.1 69.5 78.7 72.6 91.8 95.4

ViT-L/14
OpenAI CLIP 56.3 79.4 86.6 85.2 97.4 99.2 36.5 61.0 71.1 64.9 87.2 92.0 - - - - - - - - - - - -

OpenCLIP 59.7 82.2 89.4 87.6 97.8 99.5 43.0 68.0 77.4 70.2 90.9 94.6 63.3 83.9 90.8 89.5 98.7 99.4 46.5 71.1 79.8 75.5 92.9 95.9
MetaCLIP 60.0 82.9 89.4 86.2 98.1 99.6 43.8 68.7 77.8 73.4 92.3 95.7 64.4 85.0 91.3 90.1 98.6 99.3 47.1 71.4 80.3 76.5 93.6 96.5
MoDE-2 60.8 82.6 89.4 87.7 98.1 99.5 44.2 68.6 77.8 73.4 92.5 95.8 65.2 85.3 91.6 90.9 98.9 99.6 47.9 72.1 80.6 77.2 93.7 96.6
MoDE-4 60.6 82.9 89.1 86.7 97.9 99.7 44.2 68.6 77.8 73.5 92.1 95.9 65.5 85.4 91.8 91.2 99.0 99.7 48.2 72.4 80.7 77.6 93.7 96.7

Pre-Train Dataset: 400M Image-Caption Pairs OpenCLIP:2.3B, MetaCLIP / MetaCLIP: 2.5B

Table D. Zero-shot Retrieval. The results are separated by the scale of pre-train set. Entries in blue are the best ones.
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400M Image-Caption Pairs
MetaCLIP 58.2 65.5 80.6 91.3 70.2 63.4 63.0 70.7 26.8 52.8 88.7 91.9 68.5 41.5 35.9 95.4 52.6 64.2 35.8 30.7 17.2 55.5 66.1 45.4 30.6 56.4 53.4
OneStep-2 58.0 65.0 80.4 91.3 69.9 62.2 62.5 69.0 27.1 52.7 88.5 91.7 67.3 40.2 32.3 95.0 54.8 63.9 36.2 36.6 16.7 54.5 66.4 45.1 26.4 57.9 54.0
CoarseCluster-2 58.5 66.1 81.1 91.0 70.6 65.3 63.1 71.8 27.1 53.5 89.0 92.2 68.7 45.2 33.5 95.4 52.0 63.7 34.9 34.2 17.3 54.3 66.1 45.5 29.3 56.6 54.6
MoDE-2 58.6 66.1 81.2 90.9 70.5 65.2 63.0 72.0 28.3 53.5 89.4 92.3 68.2 45.2 33.5 95.4 51.9 63.7 34.9 34.2 17.3 54.3 65.9 45.5 29.3 56.6 54.6

CoarseCluster-4 58.7 66.2 82.2 91.2 70.8 67.4 63.2 73.7 28.2 54.0 89.7 92.2 69.8 38.1 33.2 95.6 53.5 64.0 35.2 33.8 17.8 53.2 66.4 45.7 29.9 57.1 53.3
MoDE-4 59.0 66.4 82.3 91.3 70.9 67.0 63.7 73.8 30.1 52.6 89.9 92.1 69.2 37.9 33.2 95.7 53.5 64.1 35.2 33.9 17.1 58.4 66.6 45.9 30.0 58.0 54.5
2.5B Image-Caption Pairs
MetaCLIP 59.8 67.7 82.6 95.2 77.7 67.8 66.8 77.2 26.9 58.9 90.9 92.5 69.7 42.7 48.3 96.3 49.9 66.5 39.2 29.3 17.7 50.0 68.0 47.6 19.4 53.5 53.1
OneStep-2 59.8 67.6 82.3 94.8 77.5 67.8 66.3 76.8 26.4 58.1 90.9 92.0 68.7 45.1 47.6 96.1 50.1 65.9 43.6 29.8 17.6 49.7 67.7 47.2 20.2 53.6 51.8
CoarseCluster-2 60.6 68.6 81.9 95.1 77.8 68.7 68.0 77.8 27.3 57.2 90.3 92.6 68.4 44.7 50.3 96.3 50.7 67.2 47.1 33.2 18.4 50.6 69.6 48.2 19.1 52.5 53.2
MoDE-2 61.2 68.7 84.1 95.3 78.6 69.5 67.0 80.8 30.9 60.6 91.0 92.9 71.9 40.8 50.4 96.3 51.3 67.9 44.2 31.4 18.3 51.3 69.0 47.4 23.2 52.6 54.4

CoarseCluster-4 61.3 69.1 83.9 95.1 78.1 73.1 67.5 82.2 27.8 60.4 90.9 92.9 70.1 49.7 46.9 96.2 50.4 66.4 50.4 28.4 18.8 50.0 68.8 48.1 21.6 52.7 52.9
MoDE-4 61.7 68.8 85.8 95.2 79.0 74.4 67.5 83.3 29.5 60.3 91.9 92.9 72.1 49.7 46.9 96.4 50.3 66.8 51.6 28.5 19.6 50.1 68.4 48.3 21.6 52.6 52.2

Table E. Performance details for ablation study on clustering strategy in Table 6 (Sec. 5.2). The experiments are performed on ViT-B/32.
The results are separated by the scale of pre-train set.
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MetaCLIP 58.2 65.5 80.6 91.3 70.2 63.4 63.0 70.7 26.8 52.8 88.7 91.9 68.5 41.5 35.9 95.4 52.6 64.2 35.8 30.7 17.2 55.5 66.1 45.4 30.6 56.4 53.4
m = 2 58.0 65.0 80.4 91.3 69.9 62.2 62.5 69.0 27.1 52.7 88.5 91.7 67.3 40.2 32.3 95.0 54.8 63.9 36.2 36.6 16.7 54.5 66.4 45.1 26.4 57.9 54.0
m = 4 58.2 65.2 81.2 91.1 70.1 62.6 63.0 72.1 28.2 53.5 89.1 92.1 69.0 37.7 33.5 95.3 53.0 63.6 36.0 35.5 17.6 54.2 65.8 45.0 28.2 56.4 55.0
m = 32 58.4 66.0 81.2 91.4 70.7 64.9 63.1 71.7 28.0 53.2 88.8 92.1 69.0 38.1 32.9 95.4 53.1 64.2 36.3 34.0 17.4 54.1 66.0 45.6 29.0 56.3 55.2
m = 256 58.4 65.9 80.6 91.2 70.2 64.2 63.5 70.5 27.2 52.6 88.8 92.2 68.5 40.0 35.2 95.3 53.5 64.0 39.5 34.9 17.2 53.7 66.0 45.6 28.3 56.0 54.4
m = 512 58.5 65.9 81.2 91.2 70.3 64.6 63.6 72.0 29.0 52.5 89.2 92.0 69.7 40.0 35.3 95.5 52.9 63.2 39.1 34.9 17.1 53.7 66.1 45.2 27.4 56.0 54.6
m = 1024 58.6 66.1 81.2 90.9 70.5 65.2 63.0 72.0 28.3 53.5 89.4 92.3 68.2 45.2 33.5 95.4 51.9 63.7 34.9 34.2 17.3 54.3 65.9 45.5 29.3 56.6 54.6
m = 2048 58.7 65.8 81.4 91.2 70.4 66.1 63.3 72.1 29.6 51.5 89.1 92.4 70.2 43.0 33.2 95.1 53.1 63.8 32.9 32.7 17.1 57.9 66.7 45.2 31.5 56.1 54.9

Table F. Performance details of MoDE-2 when ablating the number of finegrained clusters in Step 1 (Fig. 5 in Sec 5.2). Experiments are
performed on ViT-B/32 on 400M image-caption pairs.

Then, for the embedding types, we provide the details of MoDE-2 in ??. We note that the SimCSE [2] can be trained via
unsupervised or supervised ways. The unsupervised training strategy utilizes dropout masks to generate two views from the
same sentence to build positive pair while the latter one uses two sentences which are of similar semantic meaning as positive
samples to each other. Regardless the training strategy, we found the average score on CLIP benchmark is the same.

Meanwhile, when both image and language embeddings are used for clustering, we concatenate their embeddings and we
experimentally found that adding the language and image embeddings pair-wisely cannot result in meaningful cluster. How-
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MetaCLIP 58.2 65.5 80.6 91.3 70.2 63.4 63.0 70.7 26.8 52.8 88.7 91.9 68.5 41.5 35.9 95.4 52.6 64.2 35.8 30.7 17.2 55.5 66.1 45.4 30.6 56.4 53.4
DINOv2 58.1 65.2 80.5 91.2 70.3 63.4 63.1 69.8 26.5 51.6 89.0 91.8 68.1 41.0 36.4 95.2 53.4 63.0 37.3 35.0 16.7 53.7 65.6 45.4 26.8 56.0 53.5
Image (CLIP Seed) 58.3 64.7 80.6 91.3 70.7 63.0 63.0 70.8 27.4 53.4 87.8 92.1 68.9 42.2 33.2 95.2 53.6 62.4 38.8 34.4 16.9 61.6 65.9 45.2 20.3 57.8 55.6
Image & Lang. (CLIP Seed) 58.4 65.5 80.3 91.3 70.2 63.4 63.0 70.3 27.7 52.0 88.7 91.8 68.3 40.0 35.3 95.1 54.4 64.4 38.9 36.0 16.7 54.0 66.2 45.7 27.4 56.6 54.6
Lang. (CLIP Seed) 58.3 65.2 80.7 91.3 69.8 64.8 62.6 71.9 26.9 52.3 88.8 91.7 68.6 39.0 34.1 95.2 54.1 63.1 38.1 33.8 16.8 54.8 66.1 45.2 27.6 57.5 55.8
SimCSE-UnSup 58.6 65.7 80.3 91.4 69.6 64.4 63.0 71.8 26.6 52.0 88.9 92.1 69.2 41.0 37.7 95.4 54.4 64.2 39.0 35.1 17.3 53.5 66.3 45.6 26.8 56.8 55.5
SimCSE-Sup 58.6 66.1 81.2 90.9 70.5 65.2 63.0 72.0 28.3 53.5 89.4 92.3 68.2 45.2 33.5 95.4 51.9 63.7 34.9 34.2 17.3 54.3 65.9 45.5 29.3 56.6 54.6

Table G. Performance details on CLIP evaluation benchmark for ablating the embedding types for clustering (Table 7 in Sec. 5.3). The
experiments evalutes MoDE-2 based on ViT-B/32 on 400M image-caption pairs.

ever, at inference time, the ensembling weights should be calculated for all image-class pairs in the zero-shot classification
task, which is computational heavy but provides very limited gain over the baseline.

C. Application in Retrieval-Enhanced Setup
The retrieval-enhanced setup [3] is to select & retrieve a subset of training data from a large corpus and only improve the

performance on tasks of interest. Through data clustering, we can also select the clusters given the task metadata as prior. We
use the SimCSE [2] to extract their embeddings and retrieve the nearest fine-grained clusters for each of them. Then, only a
single data expert trained on the selected clusters is used for evaluation. We take ImageNet as an example where the 1000
class names are used to retrieve clusters. As shown in Table H, efficiency of network training can be improved significantly
and the performance along the model scale can even be escalated.

Approach B/32 B/16 L/14 G/14
OpenAI CLIP 63.3 68.4 75.6 -

OpenCLIP 66.6 70.2 75.3 80.1
MetaCLIP 67.6 72.1 79.2 -

Ours 71.4 75.3 80.3 -

Table H. Performance comparison on ImageNet in retrieval-enhanced setup.
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ViT-B/32
OpenAI CLIP 56.6 63.4 83.7 89.8 65.1 53.7 62.0 59.7 19.6 44.0 87.2 87.4 66.9 48.2 46.6 97.1 44.9 61.0 32.6 28.7 17.2 62.5 63.9 48.0 23.6 56.4 58.6
OpenCLIP 61.5 66.6 82.0 93.6 75.8 66.0 68.3 86.0 23.9 56.1 90.5 91.9 70.5 70.0 50.4 96.6 49.3 65.7 49.3 32.7 16.7 51.7 64.9 45.6 24.2 52.4 57.2
MetaCLIP 59.8 67.6 82.6 95.2 77.7 67.8 66.8 77.2 26.9 58.9 90.9 92.5 69.7 42.7 48.3 96.3 49.9 66.5 39.2 29.3 17.7 50.0 68.0 47.6 19.4 53.5 53.1
Ours 61.9 70.1 85.4 95.7 80.1 74.4 67.0 81.2 36.4 58.5 91.4 93.5 72.7 44.7 42.2 96.8 53.0 69.1 41.8 35.8 18.6 58.7 69.8 48.9 21.7 49.7 51.3
ViT-B/16
OpenAI CLIP 59.6 68.3 88.8 90.8 68.2 55.6 64.0 64.6 24.0 45.1 88.9 89.1 69.4 51.8 53.0 98.2 54.8 65.5 43.3 21.7 22.8 56.3 68.5 52.3 25.5 58.7 60.5
OpenCLIP 62.4 70.2 86.2 94.9 76.9 70.5 70.6 88.2 26.6 56.3 90.4 93.1 71.0 65.8 53.3 97.9 55.2 68.3 48.3 11.9 20.3 51.2 68.1 48.9 24.8 53.0 59.5
MetaCLIP 63.5 72.1 88.3 95.7 79.0 71.4 68.5 82.9 30.3 62.1 91.7 93.3 73.9 66.1 47.0 98.4 51.1 71.1 46.6 16.6 22.7 50.5 73.0 52.5 30.8 57.4 59.0
Ours 64.8 74.0 89.8 96.3 81.2 76.2 69.4 85.3 39.1 58.4 92.8 93.8 75.9 57.4 48.3 98.6 54.8 72.3 46.5 28.0 23.3 50.0 74.3 53.4 29.2 57.8 58.4
ViT-L/14
OpenAI CLIP 65.7 75.5 93.0 95.6 78.3 63.3 66.8 77.8 31.3 55.3 93.6 93.3 79.3 76.4 56.9 99.4 61.9 70.9 50.6 19.2 31.9 50.1 75.7 60.2 22.3 59.7 68.9
OpenCLIP 65.7 74.0 88.6 95.8 78.3 73.5 73.5 91.4 34.6 61.2 92.7 93.3 74.4 64.4 53.9 98.5 58.6 71.9 51.6 26.1 24.4 58.0 73.3 52.0 27.4 55.1 60.4
MetaCLIP 69.8 79.2 93.4 97.6 84.2 80.1 73.8 88.7 44.6 68.1 94.7 95.4 81.8 64.4 55.1 99.3 59.2 74.6 56.3 29.7 34.0 67.3 81.6 62.0 25.9 58.0 66.7
Ours 70.0 79.4 93.7 97.7 85.0 81.6 73.8 89.2 47.5 68.3 95.7 95.4 83.8 69.5 52.9 99.4 62.4 74.1 59.1 29.3 34.3 58.4 81.8 62.2 23.9 57.1 65.1

Table I. Performance on CLIP evaluation benchmark via in Retrieval-Enhanced setup. The class names of all 26 tasks are jointly used to
determine the data clusters. OpenCLIP is trained on LAION-2B with 2.3B image-caption pairs. OpenAI CLIP is trained on WIT400M and
its results are included here for complete result summary purpose only.

Besides using the class names of a single dataset to retrieve the most important finegrained data clusters, we can also use
the class names of all tasks in CLIP benchmark. The detailed results are summarized in Table I.



D. Downstream Evaluation with Vision Encoders
Besides zero-shot generalization, the set of vision encoders can also be directly ensembled in downstream application.

We use ImageNet for evaluation and assume the language metadata such as class names is not available. As such, all vision
encoders are equally weighted by default.

Firstly, we evaluate the robustness by ensembling the encoder outputs. Specifically, for each image, we concatenate
the outputs from all (n) vision encoders as the image feature and feed it into a linear layer for classification. To maintain
reasonable training cost, only linear probing is considered where we exclusively train the linear classifier from scratch and
fix all vision encoders. As shown in Table J, our MoDE achieves consistent and clear performance gain over MetaCLIP
Baseline.

Model Linear Probe∗ Linear Probe
ViT-B/32 ViT-B/16 ViT-L/14 ViT-B/32 ViT-B/16 ViT-L/14

MetaCLIP 69.3 73.3 80.3 67.5 73.8 82.3
MoDE-2 68.9 73.8 80.6 71.3 76.9 83.9
MoDE-4 69.1 74.5 80.6 74.1 79.6 84.7

∗: Initialize classifier with language embeddings as in OpenCLIP [6].

Table J. Performance comparison on ImageNet via linear probing on concatenated features.

For comparison, we take MoDE-4 with ViT-B/16 vision encoders as an example and summarize the accuracy, for each
vision encoder, via linear probing and finetuning (i.e., all parameters are trained). We can find that linear probing on the
concatenated features achieves higher score than finetuning a single model but with much less training cost, which further
indicates the great potential of efficiency by our framework.

Data Experts Zero-Shot Linear Probe∗ Linear Probe Finetune
MetaCLIP 72.1 73.3 73.8 76.7

0 63.3 66.4 67.3 75.7
1 68.5 71.3 72.0 76.9
2 65.2 68.2 68.8 76.3
3 72.9 74.9 74.2 77.2

∗: Initialize classifier with language embeddings as in OpenCLIP [6].

Table K. Accuracy on ImageNet for each ViT-B16 vision encoder of data experts in MoDE-4.

Then, as shown in Table K, a strong correlation between the zero-shot classification and linear probing & finetuning appli-
cation. The expert model achieving higher zero-shot accuracy also hits the best score in both linear probing and finetuning.
In this way, by training data expert on each coarse-grained cluster, we increase the quality negative within each mini-batch to
learn stronger vision encoders effectively.

Meanwhile, as all vision encoders are separately trained, the learned embedding spaces are not necessarily aligned with
each other. As a result, we experimentally found that adding the model outputs element-wisely in model ensembling does
not introduce gain, e.g., for MoDE-4 with ViT-B/16 encoders, the accuracy is only 74.5 compared with 79.6 in Table J.

Approach MetaCLIP MoDE-2 MoDE-4 MoDE-8 MoDE-16 MoDE-32
Acc. 73.7 74.0 74.2 73.9 74.1 74.1

Table L. Accuracy on ImageNet via parameter averaging.

Finally, in addition to directly aggregate the feature outputs by all data experts, the parameters learned in MoDE can also
be ensembled via averaging and then used as initialization of a single network for finetuning. As shown in Table L, we use
ViT-B/32 vision encoder, and achieve consistent gain over MetaCLIP Baseline.



E. Implementation Detail
Clustering. We first sample 100M captions from the 400M image-caption pairs to learn the cluster centers in an unsuper-
vised manner. Then, we use nearest neighbor to determine the cluster assignment for all other samples in the 400M as well
as 2.5B dataset. We also observed that the cluster centers learned by using less than 2M samples can also result in similar
clustering assignments using spherical K-means clustering [1] via FAISS [4]. In practice, we observed that the balanced K-
means clustering algorithm does not necessarily enforce strict balance regarding the distribution of the clusters. For example,
for the two coarse-grained clusters on 400M dataset used to train MoDE-2, the number of samples for each cluster are around
170M and 230M respectively. Consequently, as mentioned for Random-2 in Sec. 5.1, mimic the size of subsets by MoDE-2
in the random splitting for fair comparison.

Similarity matrix. For task-level adaptation, as mentioned in Sec. 3.4, we use the nearest neighbor fine-grained cluster
(argmaxs∈S Al,s) for each class l ∈ L. In other words, we apply a maximum filter for each row, i.e., Al, where the non-
maximum values are reset as 0, i.e., Al,s′ = 0 if s′ ̸= ŝ where ŝ = argmaxs∈S Al,s. Then, we set λ = 5 according to our
experimental cross validation.

Routing Weights. As described in Eq. (6), the routing weight p(c|T) of a data expert f(·|c) is essentially obtained via
softmax normalization. At inference time, we note the routing weights should be reasonably distant from each other. Conse-
quently, given the classification task with the class names L, we use the number of classes |L| to roughly adjust the weights.
Firstly, when |L| is small, e.g., |L| < 10, though only one data expert can be activated, the selection could be sensitive to noisy
routing. Then, we soften the values in A by multiplying exp(0.5−

√
|L|) to ensemble two data experts in most cases. Then,

when |L| is large, e.g., |L| > 200, the normalized weights tend to be over-smooth, we thus use a much smaller temperature
by dividing the λ by log(|L|). Then, we can only select a few data experts and have low-entropy routing weights.
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