
Rewrite the Stars

Supplementary Material

This supplementary document elaborates on the imple-
mentation details of DemoNet, as showcased in Figure 1,
Table 3, and Table 2. It also covers the simple network used
in visualizing the decision boundary, illustrated in Figure 2,
and the implementation of our StarNet presented in Table 6
(details can be found in Section A). Moreover, we provide
a more granular view of decision boundary visualization in
Section B. Sections C delves into our exploratory studies
on ultra-compact models.The analysis of activations is pre-
sented in Sec. D. Additionally, a detailed examination of
block design is discussed in Section E.

A. Implementation Details
A.1. Model Architecture

DemoNet In our isotropic DemoNet, featured in Fig. 1,
Table 3, and Table 2, detailed implementation is provided in
Algorithm 1. We adjust the depth or width values to facilitate
the experiments showcased in the aforementioned figures
and tables.

Algorithm 1 PyTorch codes of network illustrated in Fig. 1.

demo-code for our DemoNet in Fig. 1.
We build an isotropic network with depth 12.
params: dim: width of network; mod: "star" or "sum".

import torch.nn as nn
from torch.nn import Sequential as Seq
import torch.nn.functional as F

class Blk(nn.Module):
def __init__(self, dim, mod="sum"):
super().__init__()
self.mod=mod
self.norm = nn.LayerNorm(dim)
self.dwconv = nn.Conv2d(dim,dim,7,1,3,groups=dim)
self.f = nn.Linear(dim, 6 * dim)
self.g = nn.Linear(3*dim, dim)

def forward(self, x):
input = x
x = self.dwconv(self.norm(x).permute(0,3,1,2))
x = self.f(x.permute(0,2,3,1))
x1, x2 = x.split(x.size(-1)//2, dim=-1)
x = F.gelu(x1)+x2 if self.mod == "sum" \\

else F.gelu(x1)*x2
x = self.g(x)
x = input + x
return x

class DemoNet(nn.Module):
def __init__(self, dim=128, mod="star", depth=12):
super().__init__()
self.num_classes = 1000
self.stem = nn.Conv2d(3, dim, 16, 16)
self.net=Seq(*[Blk(dim,mod) for _ in range(depth)])
self.norm = nn.LayerNorm(dim)
self.head = nn.Linear(dim, self.num_classes)

def forward(self, x):
x = self.net(self.stem(x).permute(0,2,3,1))
return self.head(self.norm(x.mean([1, 2])))

DemoNet for 2D Points For the illustration of 2D points,
as shown in Fig. 2, we have further simplified the DemoNet
structure. In this adaptation, all convolutional layers within
the original DemoNet have been removed. Additionally,
we replaced the GELU activation function with ReLU to
streamline the architecture. The details of this simplified
DemoNet are outlined in Algorithm 2.

Algorithm 2 PyTorch codes of network illustrated in Fig. 2.

demo-code for Network in Fig. 2.
We build an isotropic network with depth 4, width

100
params: mod: "star" or "sum".

import torch.nn as nn
from torch.nn import Sequential as Seq
import torch.nn.functional as F

class Blk(nn.Module):
def __init__(self, dim, mod="sum"):
super().__init__()
self.mod=mod
self.norm = nn.LayerNorm(dim)
self.f = nn.Linear(dim, 6 * dim)
self.g = nn.Linear(3*dim, dim)

def forward(self, x):
input = x
x = self.f(self.norm(x))
x1, x2 = x.split(x.size(-1)//2, dim=-1)
x = F.relu(x1)+x2 if self.mod == "sum" \\

else F.relu(x1)*x2
x = self.g(x)
x = input + x
return x

class DemoNet2D(nn.Module):
def __init__(self, dim=100, mod="star", depth=4):
super().__init__()
self.num_classes = 2
self.stem = nn.Linear(2, dim)
self.net=Seq(*[Blk(dim,mod) for _ in range(depth)])
self.norm = nn.LayerNorm(dim)
self.head = nn.Linear(dim, self.num_classes)

def forward(self, x):
x = self.net(self.stem(x))
return self.head(self.norm(x))

StarNet For ease of reproduction, we include a separate
file in the supplementary materials dedicated to our Star-
Net. Detailed information regarding its architecture is also
available in Section 4.1.

A.2. Training Recipes
We next provide detailed training recipe for each experiment.

DemoNet For all DemoNet variants, we utilize a consistent
and standard training recipe. While it’s acknowledged that
specialized and finely-tuned training recipes could better suit
different model sizes and potentially yield enhanced perfor-

mance, as in the cases of DemoNet(width=96, depth=12) (ap-
proximately 1.26M parameters) and DemoNet(width=288,
depth=12) (approximately 9.68M parameters), achieving su-
perior performance with DemoNet is not the primary goal
of this work. Our objective is to provide a fair comparison
among the various DemoNet variants; hence, the same train-
ing recipe is applied across all. Details of this training recipe
for DemoNet are presented in Table 10.

config value
image size 224
optimizer AdamW [39]
base learning rate 4e-3
weight decay 0.05
optimizer momentum �1,�2=0.9,0.999
batch size 2048
learning rate schedule cosine decay [38]
warmup epochs 5
training epochs 300
AutoAugment rand-m9-mstd0.5-inc1 [11]
label smoothing [41] 0.1
mixup [64] 0.8
cutmix [62] 1.0
color jitter 0.4
drop path [31] 0.
AMP False
ema 0.9998

Table 10. DemoNet training setting.

DemoNet for 2D Points Given the inherent simplicity
of 2D points, we have eliminated all data augmentation
processes and reduced the number of training epochs. The
specific training recipe employed for this streamlined process
is detailed in Table 11.

config value
optimizer SGD
base learning rate 0.1
minimal learning rate 0.005
learning rate schedule cosine decay [38]
weight decay 2e-4
optimizer momentum 0.9
batch size 32
training epochs 30

Table 11. Simplified DemoNet for 2D points training setting.

StarNet Owing to its small model size and straightforward
architectural design, StarNet necessitates fewer augmenta-
tions for training regularization. Importantly, we opted

config value
image size 224
optimizer AdamW [39]
base learning rate 3e-3
weight decay 0.025
optimizer momentum �1,�2=0.9,0.999
batch size 2048
learning rate schedule cosine decay [38]
warmup epochs 5
training epochs 300
AutoAugment rand-m1-mstd0.5-inc1 [11]
label smoothing [41] 0.1
mixup [64] 0.8
cutmix [62] 0.2
color jitter 0.
drop path [31] 0.(S1/S2/S3), 0.1(S4)
AMP False
EMA None
layer-scale None

Table 12. StarNet variants training setting.

not to use the commonly employed Exponential Moving
Average (EMA) and learnable layer-scale technique [54].
While these methods could potentially enhance performance,
they may obscure the unique contributions of our work. The
detailed training recipe for various StarNet models is pro-
vided in Table 12.

A.3. Latency Benchmark Settings

All models listed in Table 6 have been converted from Py-
torch code to the ONNX format [13], to enable latency eval-
uations on different hardware: CPU (Intel Xeon CPU E5-
2680 v4 @ 2.40GHz) and GPU (P100). We have conducted
benchmarks with a batch size of one, mirroring real-world
application scenarios. The benchmark involves a warm-up
of 50 iterations, followed by the computation of the average
latency over 500 iterations. It’s important to note that all
models were benchmarked on the same device to ensure
fairness in comparisons. For CPU benchmarks, we utilize 4
threads to optimize performance. In the case of GPU evalu-
ations, we’ve adapted the pointwise convolutional layer in
StarNet to a linear layer, incorporating a permutation oper-
ation. This modification was prompted by observations of
marginally faster inference speeds. It’s important to note that,
mathematically, a pointwise convolutional layer is equivalent
to a linear layer. Therefore, this change does not lead to any
variances in performance or alterations in the architecture of
our StarNet.

Thanks to MobileOne [55], we have utilized their open-
sourced iOS benchmark application for all CoreML models.
Our latency benchmark settings follow those used in Mo-

Train Acc. 87%

Train Acc. 96%

Train Acc. 86%

Train Acc. 96%

Train Acc. 85%

Train Acc. 95%

su
m

st
ar

Train Acc. 84%

Train Acc. 95%

Figure 5. 4-run results of sum and star operations.

[sum, sum, sum, star][sum, sum, star, sum][sum, star, sum, sum][star, sum, sum, sum][sum, sum, sum, sum]

(a) Replace sum with star for single block, from first to last.

[star, star, star, star][star, star, star, sum][star, star, sum, sum][star, sum, sum, sum][sum, sum, sum, sum]

(b) Progressively replace sum with star, from first to last.

[sum, sum, sum, sum][sum, sum, sum, star][sum, sum, star, star][sum, star, star, star][star, star, star, star]

(c) Progressively replace star with sum, from first to last.

Figure 6. More comprehensive analyses on decision boundary.

bileOne, with the only difference being the inclusion of
additional models in our tests. We have observed that the
initial run of the iOS benchmark consistently yields slightly
faster results. To account for this, each model is run three
times, and we report the latency of the final run. Although
there are minor latency variations when testing on iPhone,
these discrepancies (typically less than 0.05 ms) do not affect
our analysis.

B. Decision Boundary Visualization
We provide more analyses for the decision boundary visual-
ization, as shown in Fig. 2.

Firstly, as a supplement to Fig. 2, we present more com-
prehensive results. The decision boundary can exhibit sig-
nificant variation due to randomness in different tests. To
illustrate this, we display the decision boundaries from an
additional four runs (with no fixed seed) in Fig. 5. As evi-
denced, the star operation not only surpasses the summation
operation in representational capability, but it also demon-
strates greater robustness, exhibiting minimal variance.

Next, our investigation extends to a more in-depth analy-
sis of the decision boundary. Considering the network has
4 blocks, we experimented with a mix of summation and
star operations, applying them in various combinations as

Degree: 4 Degree: 5 Degree: 6 Degree: 7 Degree: 8

Gamma: 4 Gamma: 5 Gamma: 6 Gamma: 7 Gamma: 8

po
ly

rb
f

Figure 7. Adjusting hyper-parameters for rgb-SVM and poly-SVM.

Variant width depth expand Params FLOPs
StarNet-050 16 [1, 1, 3, 1] 3 0.54M 92.8M
StarNet-100 20 [1, 2, 4, 1] 4 1.04M 187.1M
StarNet-150 24 [1, 2, 4, 2] 3 1.56M 229.0M

Table 13. Configurations of very small StarNets. We vary the
embed width, depth, and MLP expansion ratio to StarNets at 0.5M,
1.0M, and 1.5M parameters.

demonstrated in Figure 6. The visual results from this ex-
ploration suggest that employing star operations in the early
blocks of the network yields the most significant benefits.
Impact of hyper-parameters in SVM. It should be noted
that parameters adjustments will lead to different visual-
ization results, which may challenge our claim based on
Fig. 2. However, the change is not significant due to the in-
trinsic differences between ploy and rbf kernels, as shown in
Fig. 7. Our star-based network decision boundary is consis-
tently similar to the decision boundary of poly-SVM. Hence,
not only theoretical proof, our visual experiments also hold
firmly.

C. Exploring Extremely Small Models

In this section, we explore the performance of StarNet un-
der extremely small parameters (around 0.5M, 1.0M, and
1.5M). For these extremely small variants, we further tune
the MLP expansion ratio besides block number and base
embedding width. The detailed configurations of these very
small variants are presented in Table 13.

In this section, we delve into the performance of StarNet
when configured with extremely small number of parameters,
specifically around 0.5M, 1.0M, and 1.5M. For these ultra-
compact variants, we go beyond just adjusting the block
number and base embedding width; we also finely tune the
MLP expansion ratio. The specific configurations for these
very small StarNet variants are detailed in Table 13.

The results presented in Table 14 demonstrate that our
ultra-compact variants of StarNet are also promising in per-
formance. When compared to MobileNetv2-050, which is
trained for longer training period and introduces approx-
imately 25% more parameters (1.97M vs. 1.56M), our
StarNet-150 variant still outperforms in both top-1 accuracy
and speed on mobile devices.

DW-Conv

FC FC

*
FC

DW-Conv

!

4! 4!
ReLU6

BN

!

!
BN

(a) Block I (default)

DW-Conv

FC

FC

DW-Conv

!

6!
ReLU6

BN

!

!

BN

*

(b) Block II

DW-Conv
FC

FC
DW-Conv

!
13 − 1 $

ReLU6

BN

!

!
BN

*
FC 13 − 1 $

(c) Block III

DW-Conv
FC

*
FC

DW-Conv

!

6! ReLU6
BN

!

!
BN

(d) Block IV

DW-Conv
FC

*
FC

DW-Conv

!

6!
ReLU6

BN

!

!
BN

(e) Block V

Figure 8. We provide more studies on the block design of StarNet. Block I is the default design used in our StarNet, and the standard star
operation as we discussed. Block II and Block III can be considered as instantiations of special case II as presented in Sec.3.3. Block IV
and Block V can be considered as instantiations of special case III. We vary the expansion ratio to ensure all the block variants have same
parameters and FLOPs for fair comparison. Skip connection is ignored for simplicity.

Model Top-1 Params FLOPs Latency (ms)
(%) (M) (M) Mobile GPU CPU

MobileNetv2-050* 66.0 1.97 104.5 0.7 1.4 1.5
StarNet-050 55.7 0.54 92.8 0.5 1.0 1.3
StarNet-100 64.3 1.04 187.1 0.6 1.3 2.3
StarNet-150 68.0 1.56 229.0 0.6 1.5 2.6

Table 14. Performance of extremely small StarNet variants
on ImageNet-1k. All our StarNet are trained with 300 epochs
following the training recipe of StarNet-S1. MobileNetv2-050* is
taken from the timm library [59], trained with 450 epochs.

Width 96 128 160 192 224 256 288
w/ act. 57.6 64.0 68.2 71.7 73.9 75.3 76.1
w/o act. 57.6 64.0 67.5 70.5 73.0 75.3 75.7
acc. gap - - 0.7↓ 1.2↓ 0.9↓ - 0.4↓

Table 15. Comparison of removing all activations in DemoNet
(using star operation) with different widths. We set the depth to
12. We gradually increase the width by a step of 32.

D. Activation Analysis
D.1. Analysis on removing all activations

In Sec. 3.5, we explored the possibility of eliminating all ac-
tivation functions, presenting preliminary findings in Table 4
and Table 9. This section delves deeper into the detailed
analyses of removing all activations. Utilizing DemoNet
as our model for illustration, we provide further results in
Table 15 and Table 16.

In most cases, we observe slightly performance drop
when removing all activation from DemoNet (using star
operation). However, an intriguing observation emerged: in
some instances, the removal of all activations resulted in
similar or even better performance. This was notably evident
when the depth values were set to 14, 16, 18, and 22, as
detailed in Table 16. This phenomenon implies that the star

Depth 10 12 14 16 18 20 22
w/ act. 70.3 71.8 72.9 72.9 73.9 75.4 75.4
w/o act. 69.4 70.5 72.6 73.5 74.2 74.7 75.5
acc. gap 0.9↓ 1.3↓ 0.3↑ 0.6↑ 0.3↑ 0.7↓ 0.1↑

Table 16. Comparison of removing all activations in DemoNet
(using star operation) with different depths. We set the width to
192. We gradually increase the depth by a step of 2.

Act. ReLU GELU LeakyReLU HardSwish ReLU6
max(0, x) x

2 �1 + erf � x√
2
�� max(0.01x,x) xReLU6(x+3)

6 min(max(0, x),6)
Acc. 77.6 77.8 77.7 77.7 78.4

Table 17. Performance of different activations in StarNet-S4.

operation may inherently provide sufficient non-linearity,
akin to what is typically achieved through activation lay-
ers. We believe that a more thorough investigation in this
direction could yield valuable insights.

D.2. Exploring activation types
In our StarNet design, we adopt the ReLU6 activation func-
tion, following MobileNetv2. Additionally, we have exper-
imented with various other activation functions, with the
results of these explorations presented in Table 17. Empiri-
cally, we found that StarNet-S4 delivers the best performance
when equipped with the ReLU6 activation function.

E. Exploring Block Designs
We provide detailed ablation studies on the design of StarNet
block. To this end, we present five implementation of star
operation in StarNet, as illustrated in Fig. 8. Of note is that
Block I can be considered as a standard implementation of
star operation, Block II and Block III can be considered as in-
stantiations of special case II, which is discussed in Sec.3.3,
Block IV and Block V can be considered as different imple-

Star Op. Design Top-1
Standard Block I 78.4

Case II Block II 74.4
Block III 74.4

Case III Block IV 78.5
Block V 78.6

Table 18. Performance of different block designs. The detailed
implementation of each block can be found in Fig. 8.

mentations of special case III. All the block variants have
same parameters and FLOPs via varying expansion ratio, en-
suring same computational complexity for fair comparison.
We test all these block variants based on StarNet-S4 archi-
tecture, and report the performance in Table 18. Empirically,
we see strong performance for Block I, Block IV, and Block
V, while Block II and Block III perform worse. The detailed
results suggest that the strong performance stems from the
star operation rather than specific block design. We consider
the default star operation (Block I) as the essential building
block in our StarNet.

We have conducted detailed ablation studies on the de-
sign of the StarNet block. To this end, we explored five
different implementations of the star operation in StarNet,
as depicted in Fig.8. Notably, Block I represents a standard
implementation of the star operation. Blocks II and III are
instantiations of the special case II, discussed in Sec.3.3,
while Blocks IV and V offer alternative takes on special
case III. All these block variants maintain the same number
of parameters and FLOPs by adjusting the expansion ratio,
ensuring same computational complexity for a fair compari-
son. These block variants were tested within the StarNet-S4
architecture framework, with their performance detailed in
Table18. Empirically, Blocks I, IV, and V demonstrated
strong performance, with minimal performance gap. These
findings suggest that the effectiveness is more attributable
to the star operation itself rather than to the specific design
of the blocks. Therefore, we use the default star operation
(Block I) as the foundational block in our StarNet.

F. More Latency Analysis on StarNet
CPU latency Visualization. To better understand the latency
of the proof-of-concept model StarNet, we further plot the
CPU-latency trade-off in Fig. 9.
Mobile Device latency Robustness. In Table 6, we pre-
sented the mobile device latency, which is tested on a
iPhone13 mobile phone. We further conducted latency
testing on 4 different mobile devices, including iPhone12,
iPhone12 Pro Max, iPhone 13, and iPhone14, to test the
latency stability of different models. Results in Tab. 19
demonstrate that, despite varying latency results for some
models, StarNet always shows stable inference across differ-
ent phones, attributed to its simple design.

Figure 9. CPU Latency vs. ImageNet Accuracy. Low-accuracy or
high-latency models are removed for better visualization.

Table 19. Supplementary of Table 6. We further test model latency
on four iPhone devices, including iPhone12, iPhone12Pro Max,
iPhone13, and iPhone14. The average latency and variance are
reported in the last column. We mark most stable models in green
color and most unstable models in red.

Model Top-1 iPhone devices Latency (ms)
(%) 12 12PM 13 14 avg±std

MobileOne-S0 71.4 0.7 0.7 0.7 0.7 0.7±0.02
ShuffleV2-1.0 69.4 4.1 4.1 0.8 0.8 2.4±1.66
MobileV3-S0.75 65.4 5.5 5.3 6.5 6.6 6.0±0.59
GhostNet0.5 66.2 10.0 7.3 9.7 8.8 8.9±1.05
MobileV3-S 67.4 6.5 5.8 7.5 7.7 6.9±0.75
StarNet-S1 73.5 0.7 0.7 0.7 0.7 0.7±0.00

MobileV2-1.0 72.0 0.9 0.9 1.0 0.9 0.9±0.04
ShuffleV21.5 72.6 5.9 5.9 1.2 1.2 3.5±2.34
M-Former-52 68.7 6.6 6.3 8.3 8.2 7.4±0.93
FasterNet-T0 71.9 0.7 0.7 0.8 0.7 0.7±0.02
StarNet-S2 74.8 0.7 0.8 0.8 0.8 0.8±0.01

MobileV3-L0.75 73.3 10.9 11.4 12.4 14.2 12.2±1.26
EdgeViT-XXS 74.4 1.8 1.8 1.2 1.2 1.5±0.31
MobileOne-S1 75.9 0.9 0.9 0.9 0.9 0.9±0.03
GhostNet1.0 73.9 7.9 7.4 10.1 10.2 8.9±1.28
EfficientNet-B0 77.1 1.6 1.5 1.7 1.7 1.6±0.10
MobileV3-L 75.2 11.4 12.9 15.1 14.9 13.6±1.52
StarNet-S3 77.3 0.9 0.9 0.9 0.9 0.9±0.02

EdgeViT-XS 77.5 3.5 3.5 1.6 1.6 2.5±0.96
MobileV2-1.4 74.7 1.1 1.2 1.3 1.3 1.2±0.08
GhostNet1.3 75.7 9.7 9.0 12.4 12.5 10.9±1.57
ShuffleV2-2.0 74.9 19.9 16.9 1.8 1.5 10.0±8.44
Fasternet-T1 76.2 0.9 0.9 1.0 1.0 1.0±0.03
MobileOne-S2 77.4 1.0 1.1 1.2 1.2 1.1±0.07
StarNet-S4 78.4 1.0 1.0 1.1 1.1 1.1±0.03

	. Introduction
	. Related Work
	. Rewrite the Stars
	. Star Operation in One layer
	. Generalized to multiple layers
	. Special Cases
	. Empirical Study
	Empirical superiority of star operation
	Decision Boundary comparison
	Extension to networks without activations

	. Open Discussions & Broader Impacts

	. Proof-of-Concept: StarNet
	. StarNet Architecture
	. Experimental Results
	. More Ablation studies
	. Conclusion
	. Implementation Details
	. Model Architecture
	. Training Recipes
	. Latency Benchmark Settings

	. Decision Boundary Visualization
	. Exploring Extremely Small Models
	. Activation Analysis
	. Analysis on removing all activations
	. Exploring activation types
	. Exploring Block Designs
	. More Latency Analysis on StarNet

