
SpecNeRF: Gaussian Directional Encoding for Specular Reflections

Supplementary Material

A. Supplementary Video

For more information regarding the method, please visit
our project website at https://limacv.github.io/
SpecNeRF_web/. We also provide a supplementary video
for visual comparisons under a moving camera trajec-
tory, which can be accessed at https://youtu.be/
3nUooe3pVA0. We highly encourage readers to watch our
video, where our method produces results with better specu-
lar reflection reconstruction.

B. Gaussian Directional Encoding Proofs

Recall that we define each Gaussian as:

G(x) = exp
⇣
�
��Q(x� µ;q)� ��1

��2
2

⌘
, (11)

where µ is the position and � the scale of the Gaussian.
Q(x;q) applies the quaternion rotation q to a 3D vector x.
For ease of notation, we omit the subscript i (compared to the
main paper) as the same equation is applied to every Gaus-
sian. In practice, we optimize the inverse scale = ��1

instead of directly using �, to improve numerical stability.
We further define the basis function P(o,d) over a given

ray o+td with the Gaussian parameters (µ,�,q) as:

P(o,d) = max
t�0

G(o+ td). (12)

We start by applying the following variable substitution that
converts the ray origin o and direction d from world-space
into the space of the Gaussian (origin o and direction d):

o = Q(o� µ;q)� , (13)

d = Q(d;q)� . (14)

It follows that

G(o+ td) = exp
⇣
�kQ(o+ td� µ;q)� k22

⌘
(15)

= exp
⇣
�
��o+ td

��2
2

⌘
(16)

= exp
⇣
�o>o� 2o>dt� d

>
dt2

⌘
. (17)

Since the exponential function is monotonic, G is maximized
when the quadratic function (in t)

f(t) = �o>o� 2o>dt� d
>
dt2 (18)

reaches its maximum. Since the quadratic coefficient, �d
>
d,

is negative for any non-zero vector d, f(t) reaches its maxi-
mum when f 0(t) = 0, i.e. for t = t0 = � o>d

d
>
d

. Furthermore,

G(o + td) monotonically decreases for t � t0. Given that
t � 0, when t0  0, the G(o+td) reaches maximum always
at t = 0. To sum up, the maximum value of G(o+ td) falls
into the following two cases:

max
t�0

G(o+ td) =

8
<

:
exp

⇣
�
��o+ t0d

��2
2

⌘
t0 > 0

exp
⇣
�kok22

⌘
otherwise,

(19)
By substituting � o>d

d
>
d

for t0, this equation is the same as
Equation 6 in the main paper.

C. Implementation details

Figure 12 zooms into our model’s network architecture and
clarifies the role of each used MLP.

C.1. Model Structure

We list the model structure parameters in Table 3. We use
separate MLP heads to predict each property at each sample
location. Note that we use a lower resolution configuration
for normal hash encoding, because we find that constraining
the smoothness of the normal stabilizes the optimization
process and leads to better specular reflection reconstruction.
Normal parameterization. To predict normals, we first
output a 3-element vector n0

raw using the normal MLP with-
out any output activation and normalize it to get the predicted
normal n0 = n0

raw/ kn0
rawk2. However, in practice, we find

that this will occasionally lead to a normal flipping issue
when n0

raw is numerically small and n0 will flip its direction
with only a very small deviation of n0

raw during training. Fig-
ure 13 visualizes this issue. The flip of the predicted normal
will further lead to suboptimal normals derived from the
density gradient due to the normal prediction loss Lnorm. To
alleviate this normal flip issue, we correct the direction of
the predicted normal by forcing the angle between the final
normal n0 and the view direction to be smaller than 90°:

n0 = � sign(d · n0
raw)

n0
raw

kn0
rawk2

, (20)

where d is the ray direction. We can see from Figure 13 that
this normal correction operation helps us prevent the normal
flip, and yields a better normal prediction.

C.2. Training and Rendering Configuration

We use the Adam optimizer [21] to train our NeRF model
using the default parameter configurations in PyTorch [37]
for the optimizer, except that we set the learning rate to
0.005. When rendering a pixel, we first shoot rays from

1

https://limacv.github.io/SpecNeRF_web/
https://limacv.github.io/SpecNeRF_web/
https://youtu.be/3nUooe3pVA0
https://youtu.be/3nUooe3pVA0

Normaln’

Tints’

3D positionx

view dird

Hash
Encoding

SH
Encoding

Diffusecd’

Normal
MLP

Normal
Hash

Encoding

Density
MLP

Tint
MLP

Density
feature!’

Densityτ’
Diffuse
MLP

Roughness
MLP

Roughnessρ’

Specular
MLP

3D Gaussian
Directional
Encoding

Specularcs

Reflection
originor

Reflection
directiondr

Roughnessρ

Figure 12. We zoom in the MLPs and some important modules as in Figure 2. The detailed module configurations are shown in Table 3.

Table 3. The value for each parameter. The module names are
consistent with those shown in Figure 12. For all MLPs, we use
ReLU activations in hidden layers.

Module Configuration Value

SH Encoding Order 3

Tint MLP
of hidden layer 2
of neuron per layer 64
Output activation Sigmoid

Hash
Encoding

of levels 16
Hash table size 222

of feature dim. per entry 2
Coarse resolution 128
Scale factor per level 1.4

Density
MLP

of hidden layer 1
of neuron per layer 64
Output activation Exp
Density feature dim. 16

Diffuse
MLP

of hidden layer 2
of neuron per layer 64
Output activation Sigmoid

Roughness
MLP

of hidden layer 2
of neuron per layer 64
Output activation Softplus

Normal
Hash

Encoding

of levels 4
Hash table size 219

of feature dim. per entry 4
Coarse resolution 16
Scale factor per level 1.5

Normal
MLP

of hidden layer 1
of neuron per layer 64
Output activation None

Specular
MLP

of hidden layer 2
of neuron per layer 64
Output activation Sigmoid

the camera origin to the pixel locations, and then sample
points along each ray. Similar to Nerfstudio [44], we use two
levels of proposal sampling, guided by two density fields.

Ground Truth w/o normal corr. w/ normal corr.

Im
ag

e

Pr
ed

ic
te

d
no

rm
al

D
en

si
ty

gr
ad

ie
nt

Figure 13. An example of the normal flip issue. As indicated by
the green arrow, the predicted normal is occasionally flipped due
to small perturbation during training, which leads to artifacts in
rendering images and the density gradient. Our normal correction
(normal corr.) prevents the flip issue by optionally reversing the
normal direction based on the view direction.

Specifically, in the first round, we sample 256 points using
exponential distance. We set the far distance to a constant
value of 800 meters, and we determine the near distance
for each scene using the minimum distance between all the
structure-from-motion points and the viewing cameras. Then,
in each iteration of the proposal sampling process, we feed
the samples into the proposal network sampler and generate
new samples based on the integration weights of the input
samples. We sample 96 samples in the first iteration of the
proposal process, followed by 48 samples in the second. The
model structures of the proposal networks follow those in
the “nerfactor” model in Nerfstudio [44].

2

Blur kernel size = 1 9 17 33 65 129
B

lu
rr

ed
In

pu
t

Pr
ed

ic
tio

n

Figure 14. One example of the Gaussian initialization input (top) and predictions (bottom) for different scales.

C.3. Gaussian Parameter Optimization

To obtain optimal parameters for the Gaussian directional
encoding, we use an initialization stage to seed the Gaus-
sian parameters and specular MLP weights. The process is
illustrated in Figure 15. We optimize a preconvolved inci-
dent light field composed of our 3D Gaussian directional
encoding and the Specular MLP. We first apply a range of
Gaussian blurs to all input images using a series of standard
deviations, generating pyramids of blurry input images. In
our experiments, we first scale the input images to have 360
pixels along the longest axis. Then, we apply OpenCV’s
GaussianBlur [8] with kernel sizes (1, 3, 5, 9, 17, 33, 65,
129). Regions that involve the image border during blurring
are marked as invalid, resulting in a wider invalid border
with larger kernel size. Figure 14 showcases one example
view with some of the blur kernels used.

All valid blurred pixels compose our ray dataset for the
initialization stage. In each iteration, we sample 25,600 pix-
els from the ray dataset, and generate the corresponding ray
origin o, direction d, and the blur kernel size k. We train the
Gaussian parameters and Specular MLP using Adam [21]
with a learning rate of 0.001, and leave other parameters
as default. We supervise the output color using the corre-
sponding blurry color in the Gaussian pyramid using an L1
loss. We find this small network converges quickly, thus we
only train for 8,000 iterations, which takes around half an
hour to finish on one NVIDIA A100 GPU. We visualize
the fitted preconvolved incident light field in Figure 14. The
reconstructed preconvolved light field well-represents the
input with multiple blur levels. We also visualize the fitted
Gaussian blobs of two scenes in Figure 16. We can see that
some Gaussian blobs are aligned with the underlying objects
(e.g. the lamp on the ceiling).

Specular
MLP

3D Gaussian
Directional
Encoding

Output
Colorc

Ray origino

Ray directiond

Blur kernel
sizek

Specular
MLP

3D Gaussian
Directional
Encoding

Specularcs

Reflection
originor

Reflection
directiondr

Roughnessρ

Blurry
Colorck

supervision
Initialization Stage

Initialize Initialize

NeRF Optimization Stage

Figure 15. Illustration of the initialization stage. We optimize the
Gaussian parameters and the Specular MLP using the Gaussian-
blurred input images, and then use them as initialization for the
NeRF optimization stage.

SfM mesh Gaussian blobs Combined view

Figure 16. Visualization of the learned Gaussian blobs for two
scenes. We assign a random color for each Gaussian blob for better
visibility.

C.4. Losses

Recall that in our experiments, the final loss is a combination
of several terms:

L = Lc+Lprop+�distLdist+�monoLmono+�normLnorm. (21)

3

In this section, we follow the notation that i = 1, ..., N is
the sample point index along a ray. We omit the ray index as
each loss term has the same form for all rays. The loss term
is averaged over all rays within a training batch.

Reconstruction Loss. The reconstruction loss Lc is the
L1 norm between the predicted color c and the ground-truth
color cgt:

Lc = kc� cgtk1 . (22)

For the Eyeful Tower dataset, we compute the reconstruction
loss in the Perceptual Quantizer (PQ) color space, as in VR-
NeRF [53]. For other public datasets, we use the standard
sRGB color space.

Proposal Loss and Distortion Loss. The proposal loss
Lprop supervises the density field of the proposal network to
be consistent with that of the main NeRF. The distortion loss
Ldist is a regularization term for the density field of the main
NeRF. It consolidates the volumetric blending weights into
as small a region as possible. Please refer to Barron et al. [3]
for the detailed definitions and explanations of both losses.

Normal Prediction Loss. We encourage the predicted nor-
mals from the normal MLP to be consistent with the underly-
ing geometry of NeRF. For this, we use a normal prediction
loss Lnorm that supervises the normal n0

i predicted for ev-
ery sample point using the normal MLP and NeRF density
gradient gi:

Lnorm =
1

N

X

i

����n
0
i �

�gi

kgik

���� . (23)

To compute the gradient of the density ⌧ 0 with respect to
the input world coordinate x = (x, y, z), we could use the
analytical gradient, which is natively supported by PyTorch
[37]. However, we model the density field using a hash-
grid-based representation, which is prone to noisy gradients
and has poor optimization performance [28]. Therefore, we
adopt a modified version of the numerical gradient from
Neuralangelo [28]. To compute the gradient along the x-axis,
we use

rx⌧
0 =

⌧ 0(x+ ✏x)� ⌧ 0(x� ✏x)
2✏

, (24)

where ✏x = (✏, 0, 0). The equations for computing the gradi-
ent along the y- and z-axes can be derived analogously. Over-
all, rx⌧ involves sampling six additional points to query
the density value. Instead of predefining the schedule of the
✏ value during training, we compute a per-sample ✏ value
that is consistent with the cone tracing radius at the sample
location: ✏ = t ·r. Here, t is the ray-marching distance of
the sample point, and r is the base radius of a pixel at unit
distance along the ray.

Additional Losses. For the Eyeful Tower dataset, we also
deploy a depth supervision loss and an “empty around cam-
era” loss, following VR-NeRF [53]. For the depth loss, we
supervise the NeRF depth with the depth from structure-
from-motion mesh using L1 distance in the first 500 iter-
ations. For the “empty around camera” loss, we randomly
sample 128 points in the unit sphere around training cameras,
and regularize the density value to be zero. This reduces the
near-plane ambiguity as shown in FreeNeRF [55]. We set the
weights of the depth loss and “empty around camera” loss to
0.1 and 10, respectively.

D. Physical Interpretation of 3D Gaussians

Though a 3D Gaussian blob may appear similar to a point
light source, we would like to emphasize that the 3D Gaus-
sians do not represent explicit light sources, nor are they
specifically designed for modeling direct light alone. Instead,
they serve as basis functions for representing the scene’s
full 5D specular radiance field, including global illumina-
tion effects. One example can be seen in Figure 17. This is
analogous to how spherical Gaussians (SGs) represent a 2D
environment map.

Final Diffuse Specular

Figure 17. Our 3D Gaussians can model global illumination effects.
This is evident on the floor, where the indirect light from the room
is captured and represented through the specular component.

E. Additional Experiments

E.1. Number of Gaussians

We test the GPU memory usage of our Gaussian directional
encoding and the specular MLP under a series of Gaussians,

Figure 18. The GPU memory consumption of the Gaussian direc-
tional encoding and the Specular MLP with various number of
Gaussians. We test GPU memory with a batch size of 12,800 rays.
The green dashed line is the configuration used in our experiments.

4

Table 4. Quantitative comparisons on the Shiny Blender dataset
[47]. Our approach demonstrates comparable performance to Ref-
NeRF since the dataset assumes perfect 2D lighting conditions.

Methods PSNR " SSIM " LPIPS #
Ours 34.65 0.9615 0.0515
Ref-NeRF [47] 34.69 0.9619 0.0508

Ground Truth Ours Ref-NeRF [47]

Ba
ll

C
of

fe
e

Figure 19. Qualitative comparisons of two example test views from
Shiny Blender dataset [47].

and visualize the results in Figure 18. We can see that our
reflection model adds very little GPU memory overhead
compared to the approximately 8 GB of overall memory
used for training the whole pipeline.

E.2. Shiny Blender Dataset

We evaluate our method and the Ref-NeRF baseline on the
Shiny Blender dataset [47]. We utilize a re-implementation
of Ref-NeRF in NeRF-Factory [17]. To ensure a fair com-
parison, we adopt the same MLP backbone as used in NeRF-
Factory. We train both methods for 80,000 iterations for
each scene. The visual results are shown in Figure 19 and
the quantitative results are depicted in Table 4. Our method
achieves comparable performance to Ref-NeRF, which is
expected because all scenes in the dataset are lit by perfect
2D (far-field) environment light. Our method outperforms
Ref-NeRF under near-field lighting scenes as shown in the
paper.

E.3. Synthetic Dataset

We compare our method with several baselines on the FIPT
synthetic dataset [49]. In addition to the baselines described
in the main paper, we also compare with FIPT [49], a state-
of-the-art path-tracing-based inverse rendering approach. We
report the average PSNR, SSIM and LPIPS metrics for novel-
view synthesis. Since we have the ground-truth mesh for
the synthetic dataset, we also report the mean angular error
(MAE) used in Ref-NeRF [47] for evaluating the estimated
normal accuracy. The results in Table 5 show that our method
achieves the best novel-view synthesis quality and geometry

Table 5. Quantitative comparisons of novel-view synthesis and ge-
ometry quality on the FIPT synthetic dataset. Our method achieves
the best view synthesis quality, and is most accurate in terms of
geometry. We highlight the best numbers in bold.

Methods PSNR" SSIM" LPIPS# MAE�#

Ours 32.043 0.8657 0.1266 16.09

NeRF [34] 31.621 0.8586 0.1325 34.16
Ref-NeRF [47] 31.952 0.8650 0.1250 18.76
MS-NeRF [57] 31.441 0.8534 0.1345 42.19
FIPT [49] 28.322 0.6922 0.1379 0†

†Note that FIPT uses the ground-truth geometry.

accuracy. Interestingly, despite the use of ground-truth geom-
etry for the physically based inverse rendering approach, the
novel-view synthesis is worse than any NeRF-based base-
line by a large margin. This suggests that introducing a fully
physically based rendering model may be a disadvantage
when it comes to novel-view synthesis quality, at least com-
pared to NeRF-like approaches that are tailored specifically
for the view synthesis task.

E.4. Additional Results

We show additional comparisons and decomposition results
in Figure 20 and Figure 21. Our method achieves the best
visual quality as well as the predicted normal quality for
specular reflections.

5

Sh
in

y1

GT Test Image GT & SfM Normal Ours Ref-NeRF [47] MS-NeRF [57] NeRF [34]

Ey
ef

ul
To

w
er

Ap
ar

tm
en

t
Ey

ef
ul

To
w

er
O

ffi
ce

2
Ey

ef
ul

To
w

er
O

ffi
ce

2
Ey

ef
ul

To
w

er
W

or
ks

ho
p

N
IS

R
Li

vi
ng

Ro
om

2

Figure 20. Comparisons of novel-view synthesis quality and normal map visualizations on the Eyeful Tower [53] and NISR datasets [50].

6

Test Image

O
ur

s

Final Diffuse Specular Tint Roughness Normal

R
ef

-N
eR

F

Test Image

O
ur

s
R

ef
-N

eR
F

Test Image

O
ur

s
R

ef
-N

eR
F

Test Image

O
ur

s
R

ef
-N

eR
F

Test Image

O
ur

s
R

ef
-N

eR
F

Figure 21. Additional results for intermediate component visualizations of our approach compared to Ref-NeRF [47] on the Eyeful Tower
[53] and NISR datasets [50]. Our approach produces more accurate decompositions and normal maps.

7

	. Introduction
	. Related Work
	. Preliminaries
	. Method
	. Gaussian Directional Encoding
	. Optimizing the Gaussian Directional Encoding
	. Resolving the Shape–Radiance Ambiguity
	. Losses

	. Experiments
	. Comparisons
	. Ablation Studies

	. Discussion and Conclusion
	. Supplementary Video
	. Gaussian Directional Encoding Proofs
	. Implementation details
	. Model Structure
	. Training and Rendering Configuration
	. Gaussian Parameter Optimization
	. Losses

	. Physical Interpretation of 3D Gaussians
	. Additional Experiments
	. Number of Gaussians
	. Shiny Blender Dataset
	. Synthetic Dataset
	. Additional Results

