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Supplementary Material

A. More Information about GigaGrounding

For the construction of GigaGrounding, we used images
pre-extracted from PANDA-Video by the providers. Both
the training and testing split are included, and there are 20
videos from varied scenes with different camera positions.
120-238 frames are extracted from each video, and each im-
age exhibited real-world scenes with a broad field-of-view,
high-resolution details, and numerous objects, thereby of-
fering diverse semantics. Readers may refer to [11] for
more detailed information about PANDA.

More example annotation results of GigaGrounding is
presented in Figure 7.

B. Brief Introduction to Baselines

The considered two-stage method is

* MATttNet [47]. This method decomposes expressions into
three modular components related to subject appearance,
location, and relationship to other objects, and then per-
forms visual grounding.

The one-stage baselines comprised

¢ ReSC [28]. This model uses a recursive sub-query con-
struction framework, which reasons between image and
query for multiple rounds and reduces the referring ambi-
guity step by step. It employs an anchor-based grounding
module.

* TransVG [7]. This model employs a visual transformer, a
linguistic transformer, and a visual-linguistic transformer
to encode and fuse information from the two modalities
and predict the corresponding spatial coordinates through
a coordinate regression process.

¢ RefTR [48].This model leverages a transformer architec-
ture. Features from two modalities are fused in the visual-
lingual encoder, and then the model learns to generate
contextualized lingual queries in the decoder, which are
decoded to directly regress the bounding box coordinates.

* SeqTR [29]. This model provides a universal network
for visual grounding by sequentially predicting coordi-
nate tokens.

¢ QRNet [49].This method has a transformer architecture
similar to TransVG, and proposes a query-modulated re-
finement network for adjusting intermediate features in
the visual backbone.

e SimREC [50].This paper builds a simple REC network
and explores multiple design variations, then properly

combines these findings to improve the grounding per-
formance.

C. Human evaluation strategy

We conducted a human evaluation to assess the perfor-
mance of our proposed method, which involved 10 partic-
ipants. Prior to the evaluation, participants received brief
training to acquaint themselves with the task. During the
evaluation, they were presented with randomly selected ex-
pressions from the test dataset and were instructed to iden-
tify objects within downsampled images to the best of their
abilities. Correct identifications were rewarded with mone-
tary compensation.

To mitigate potential cognitive fatigue, several measures
were implemented. Each participant was limited to evalu-
ating 20 samples, and intermittent breaks were scheduled
during the testing process. Instead of annotating bounding
boxes, participants were solely tasked with identifying the
target objects, omitting the need for precise localization,
which is a trivial task for human. To maintain evaluation
consistency and accuracy, guidance and supervision were
provided throughout the duration of the experiment.

This experimental setup was devised to ensure the ro-
bustness and reliability of the human evaluation, given the
intricate cognitive demands associated with the task.

D. More Implementation Details

For the baselines, we adhered to the official settings and
conducted appropriate hyperparameter tuning to optimize
the performance on GigaGrounding:

« MAttNet: For MAttNet, we adhered to all the official
settings with the exception of replacing the detector with
a Faster R-CNN produced by Detectron2 to extract vi-
sual features. The attribute labels in the training set were
produced using the same template parser as MAttNet to
identify color and generic attribute words. We also main-
tained the training settings, establishing a batch size of 1
and a learning rate of 4 x 10~

¢ ReSC: At the resolution of 640x 640, we set the batch
size to 8 and the learning rate to 10~%. At the resolution
of 1536x1536, we used the weight obtained from Giga-
Grounding at 640x640 for model initialization, and we
set the batch size to 2 and the learning rate to 10~%.

* TransVG: We eliminated the random crop augmentation
used in official work. At the resolution of 640x 640, we



used the weight obtained from RefCOCO for model ini-
tialization, and we set the batch size to 8. The learning
rate was set to 10~° for visual CNN and BERT, and 10~*
for other parameters. At the resolution of 1536x1536,
we used the weight obtained from GigaGrounding at
640x 640 for model initialization, and we set the batch
size to 4. The learning rate was set to 5 x 1072,

* RefTR: We used the ResNet-50 as the visual backbone
because the official source only provided the training re-
sults of RefCOCO on ResNet-50. We used the weight
obtained from RefCOCO to initialize the 640 x 640 Giga-
Grounding model. We set the batch size to 32, and the
learning rate was set to 10~%, while the learning rate of
the image backbone and context encoder was set to 1075,
At the resolution of 1536x 1536, we used the weight ob-
tained from RefCOCO, set the batch size to 8, and applied
the same learning rate to 10~

¢ SeqTR: For both 640x640 and 1536 1536 resolutions,
we initialized the model using the weight obtained from
RefCOCO. For the 640x 640 resolution, we set the batch
size to 64 and the learning rate to 2.5 x 10™%. As for the
1536 x 1536 resolution, we set the batch size to 8 and the
learning rate to 2.5 x 1074,

* QRNet: For both 640x640 and 1536 1536 resolutions,
the learning rate was set to 10~ for pre-trained param-
eters and 10~* for other parameters. For the 640 x 640
resolution, we set the batch size to 16, for the 1536 x
1536 resolution, we set the batch size to 8.

¢ SimREC: We implemented the multi-scale training strat-
egy mentioned in the paper, which significantly im-
proved the model’s performance on GigaGrounding. For
the 640x 640 resolution, we used a scale range from
480%x480 to 640x640. For the 1536x 1536 resolution,
we used a scale range from 640x640 to 1536x1536. The
learning rate was set to 5 x 107° and the batch size was
set to 8 for both resolutions.

* GlaZing: We trained the model with similar settings as
ReSC. We set the batch size to 4 and the learning rate to
1074

E. Complete Performance Stratification Re-
sults

The complete performance stratification results are delin-
eated in Tables 6 and 7. We undertook a comprehensive
analysis of the performance variability concerning expres-
sion length and B-box scale at a resolution of 1536x1536.
The two-stage method, MAttNet, exhibited poor perfor-
mance across all categories of breakdown. Two-stage meth-
ods typically employ frozen feature extractors pre-trained
on datasets such as MS COCO, which may not be suffice for
large-scale scene comprehension. All one-stage methods
exhibited a substantial performance decline as the expres-

sion length increased. For example the efficacy of ReSC
with expressions exceeding 21 words was only 60.2% of its
efficacy with expressions between 1 to 10 words. Regarding
the B-box scale, all one-stage methods performed subopti-
mally when processing boxes smaller than the first quartile
in scale, with QRNet, TransVG, and SeqTR exhibiting par-
ticularly poor results. We hypothesize that certain design
choices, such as strategies based on coordinate token pre-
diction for bounding box delineation and direct coordinate
regression for decoding, may struggle with accommodating
variations in the bounding box scale. Conversely, GlaZ-
ing showcased remarkable resilience, maintaining consis-
tent performance across a diverse array of difficulty levels.

F. Failure Cases Analyses of ReSC and GlaZ-
ing

Figure 8 illustrates example failure cases by ReSC at
15361536, each attributable to distinct causes. Approxi-
mately 40% of these failures originate from a “target object
feature mismatch”, suggesting that the model selected an
object with properties that only partially match the ground
truth. 34% of these failures are due to “inaccurate posi-
tion prediction”. Approximately 14% can be attributed to
“over-fuzziness due to downsampling”, where the target ob-
ject becomes too small to be clearly visible after downsam-
pling. An additional 12% of failures can be linked to a “ref-
erence object feature mismatch”, indicating that the model
incorrectly matched the reference object in multi-hop ex-
pressions.

Adhering to the same protocol, we conducted an analysis
of GlaZing, which revealed that 50% of the failures could
be attributable to target object feature mismatch, 40% of the
failures are due to inaccurate position prediction. 4% can
be ascribed to over-fuzziness due to downsampling, and 6%
are a consequence of reference object feature mismatch.

GlaZing’s performance was significantly enhanced by
the glance-to-zoom-in strategy. In Figure 9, we demonstrate
the effectiveness of this strategy. In Figure 9a, given the ex-
pression: “the woman in a red plaid dress carrying roll paper
in left hand in the middle of the picture”, the glance ground-
ing module (GGM) identified a woman in red in the center
of the image, which could be easily confused with the de-
scribed target due to the similarity in location and attributes.
Upon locking the region, in the zoomed-in grounding phase,
by grounding on a high-resolution patch, the described tar-
get was successfully identified. Figure 9b presents a case in-
volving a multi-hop expression. The GGM located the ref-
erence object mentioned in the expression, and with further
refinement by the Zoomed-in Grounding Module (ZGM),
the correct target was located.



Expr. length & proportion MAttNet ReSC QRNet SimREC TransVG RefTR SeqTR GlaZing
1-10 (16.99%) 6.5% 65.9% 44.4% 50.0% 42.4% 63.5% 529%  66.8%
11-20 (62.77%) 6.6% 47.8% 24.0% 31.6% 22.6% 373% 30.7%  63.5%
21+ (20.24%) 7.8% 397% 19.3% 21.8% 13.8% 349% 21.7%  62.6%

Table 6. Performance stratification by expression length for all methods.
B-box scale  MAttNet ReSC QRNet SimREC TransVG RefTR SeqTR GlaZing
s < Q1 7.0% 294%  4.0% 17.6% 4.5% 169%  9.5% 48.1%
Rl <s< Q2 6.2% 50.2%  20.2% 32.7% 19.3% 36.0% 27.7%  63.6%
QR2<s< @3 7.0% 582% 34.9% 36.7% 31.1% 50.8% 41.0%  72.8%
s> Q3 6.9% 60.7%  46.4% 46% 43.6% 60.8% 54.2%  70.9%

Table 7. Performance stratification by bounding box scale for all methods. Here, Q1, 2, and Q3 denote the first, second, and third
quartiles of bounding box scale, respectively.

G. Performance on Existing Visual Grounding

Benchmarks
RefCOCO RefCOCO+ RefCOCOg
Method testA  testB testA  testB ‘ val-g
ReSC 80.5% 72.3% | 68.7% 56.8% 63.1%
TransVG | 82.7% 78.4% | 70.7% 56.9% 67.0%
SeqTR | 86.5% 812% | 76.3% 64.9% 71.5%
GlaZing | 86.4% 82.3% | 69.3% 60.6% 72.5%

Table 8. Performance evaluations on previous VG benchmarks.

We also present the benchmark results of GlaZing on
previous VG datasets in Table 8. To conduct the evaluation,
we employed the GGM algorithm to process 640 x 640 im-
ages, while ACM accurately extracted a region of interest
measuring 320x320 from the original image. The results
depicted in the table affirm the commendable performance
of GlaZing across these established benchmarks.
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(b) Expression: the girl holding the boy in red to her left at the bottom of the picture.

Figure 9. Prediction results benefited from the glance-to-zoom-in strategy. Green boxes represent the ground-truth boxes in GigaGrounding,
blue boxes denote the prediction results from the Glance Grounding Module, and red boxes signify the prediction results from the Zoomed-
in Grounding Module.
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