
Memory-Scalable and Simplified Functional Map Learning

Supplementary Material

7. Implementation Details

In this section we provide more detailed information on
the implementation of our model described in Figure 2
and Sec. 4.3.

Our model takes as input shapes using 128 WKS de-
scriptors computed from 128 eigenfunctions of the Laplace-
Betlrami operator. Similarly to [9, 23], each descriptor
function is normalized on the shape with respect to the stan-
dard L2 inner product on a mesh. These descriptors are then
fed to a DiffusionBlock with 4 Diffusion blocks of width of
256, in a standard manner [2, 9, 43, 46]. The main differ-
ence with these implementations is that we only output 32
feature functions instead of the 128 or 256 usually used.

Features produces by DiffusionNet are used in our
Differentiable ZoomOut block which first normalizes the
pointwise features, and then computes a scalable dense
map equivalent to standard two-branch networks, as shown
in Section 3 and Eq. (3). Using this map, an initial func-
tional map Cinit of size Kinit = 30 is computed, and is fed
into a ZoomOut algorithm [30] for 10 iterations with a spec-
tral upsampling step of 10, where the pointwise maps are
replaced by our scalable dense maps. This eventually pro-
duces our refined map Crefined of size Krefined = 130.

Our loss consists in 3 terms, a orthogonality loss
Lorth(Cinit) = ∥C⊤

initCinit − I∥22, a consistency loss
Lconsist(Cinit,Crefined) = ∥Cinit−Crefined∥22, and a Laplacian
bijectivity loss Llap(Cinit) = ∥∆ ⊙ Cinit∥22, where ⊙ de-
notes element-wise product and ∆ is obtained from [8, 37].
More precisely, if λ(1), λ(2) ∈ RKinit denote the vector of
eigenvalues of S1 and S2, then ∆ is defined element-wise
as

∆2
ij =


√
λ
(2)
i

1 + λ
(2)
i

−

√
λ
(1)
j

1 + λ
(1)
j

2

+

(
1

1 + λ
(2)
i

− 1

1 + λ
(1)
j

)2
(7)

This is an extension of the standard Laplacian commuta-
tivity loss, which has been used in most existing implemen-
tations since GeoFMaps [12].

We do not enforce orthogonality of Crefined, since
ZoomOut is proven to promote orthogonal functional
maps [30]. We notice that given a sound initialization,
ZoomOut produces great results, which inspires us mostly
to penalize Cinit. Furthermore, during the first iterations,
initial functional maps produced by the network have no

Figure 6. PCK curves on the SMAL dataset

guarantee to be sound, and we therefore tune down the con-
sistency loss Lconsist initially until the network converges
towards good initialization. The consistency loss then pro-
vides meaningful guidance to the network. In practice, we
increase the weight of this loss from 10−4 to 10−1 in 5
epochs using a multiplicative schedule.

The complete implementation is available at
https : / / github . com / RobinMagnet /
SimplifiedFmapsLearning.

8. More Baselines & Ablation

We here present additional results on the standard base-
lines presented in the manuscript. In particular, some
works [23, 46] provided multiple versions of their algo-
rithm. Furthermore, we display results from [9] using fur-
ther test-time optimization. Note that this test-time opti-
mization fine-tunes the network for each shape on the test
set and should be applied to all other methods for fairness.
All these additional baselines can be found on Table 4.

We additionally provide results on the SMAL
dataset [52], where we additionally show the result of
our pipeline without using the consistency loss (“w/o
Consistency”), which serves as an ablation study similar
to the one presented in [46]. However, in this ablation, we
still use the ZoomOut algorithm at test-time, only the con-
sistency loss was removed. PCK curves for ULRSSM [9]
and AttentiveFMaps [23] are also provided on Figure 6.

9. ZoomOut Algorithm [30]

The ZoomOut algorithm [30] is a simple functional map
refinement algorithm, which uses iterative conversions be-
tween functional and pointwise maps.



Train F S F+S

Test F S S19 F S S19 F S S19

BCICP [38] 6.1 - - - 11. - - - -
ZoomOut [30] 6.1 - - - 7.5 - - - -

SmoothShells [16] 2.5 - - - 4.7 - - - -
DiscreteOp [39] 5.6 - - - 13.1 - - - -

GeomFmaps [12] 3.5 4.8 8.5 4.0 4.3 11.2 3.5 4.4 7.1
Deep Shells [17] 1.7 5.4 27.4 2.7 2.5 23.4 1.6 2.4 21.1
NeuroMorph [18] 8.5 28.5 26.3 18.2 29.9 27.6 9.1 27.3 25.3
DUO-FMNet [14] 2.5 4.2 6.4 2.7 2.6 8.4 2.5 4.3 6.4

UDMSM [8] 1.5 7.3 21.5 8.6 2.0 30.7 1.7 3.2 17.8
ULRSSM [9] 1.6 6.4 14.5 4.5 1.8 18.5 1.5 2.0 7.9

ULRSSM (w/ fine-tune) [9] 1.6 2.2 5.7 1.6 1.9 6.7 1.6 2.1 4.6
AttentiveFMaps Fast [23] 1.9 2.6 5.8 1.9 2.1 8.1 1.9 2.3 6.3

AttentiveFMaps [23] 1.9 2.6 6.4 2.2 2.2 9.9 1.9 2.3 5.8
ConsistentFMaps [46] 2.3 2.6 3.8 2.4 2.5 4.5 2.2 2.3 4.3

ConsistentFMaps (dim 80) [46] 1.7 2.6 5.5 2.2 2.0 5.8 1.7 2.2 5.6

Ours 1.9 2.4 4.2 1.9 2.4 6.9 1.9 2.3 3.6

Table 4. Mean geodesic errors (×100) when training and testing on the Faust, Scape and Shrec19 datasets. Due to the fine-tuning strategy
on ULRSSM (w/ fine-tune), we do not hightlight its results. See text for details.

Method SMAL

ULRSSM [9] 6.9
ULRSSM (w/ fine-tune) [9] 3.5

AttentiveFMaps [23] 5.4
ConsistentFMaps [46] 5.4

Ours (w/o Consistency) 6.7
Ours 5.9

Table 5. Mean geodesic errors (×100) when training and testing
on the SMAL dataset.

Algorithm 1 The ZoomOut algorithm

Require: Initial pointwise map Π21 ∈ {0, 1}n2×n1 from
S2 to S1, eigenvectors Φ1 ∈ Rn×k1 and Φn×k2

2 on each
shape.

1: for k = kinit to kfinal do
2: Compute C12 = [Φ2]

†
[:,:k]Π21[Φ1][:,:k]

3: Compute Π21 = NN
(
[Φ1][:,:k]C

⊤
12, [Φ2][:,:k]

)
4: end for
5: Return C12, Π21

The algorithm is presented on Algorithm 1, where NN
denotes the nearest neighbor query between the rows of the
two arguments.

10. Adapting Scalable ZoomOut [26]
In [26], the authors present an approximation of the func-
tional map for dense shapes using only sparse samples.

This approximation allows running the ZoomOut algo-
rithm on a sparse subset of the vertices of both shapes, only
using a complete high dimensional nearest neighbor query
at the last step of the algorithm. This last step appears as
the heaviest speed bottleneck of the algorithm as presented
in [26].

When porting [26] to GPU, this query makes the GPU
run out of memory on very dense meshes, which we solve
by using our scalable dense maps.

However, this algorithm adds a layer of approximation,
which can potentially hinder the results. Furthermore, since
it only uses values at sparse samples, the gradient can
only propagates through these samples and not to the entire
vertex-wise embeddings. In particular, it is not possible to
use different samples each time the shape is used in training,
as the preprocessing time is not negligible. This refrains us
from using this adapted version within our learning frame-
work.

11. Dense Meshes
In this section, we provide more information on dense mesh
processing using our pipeline, using meshes from the origi-
nal version of the SHREC19 dataset [29].

While DiffusionNet needs to store the eigenvectors of
each shape of size N × K in memory, it is still able



Figure 7. We leverage on the capacity of DiffusionNet [43] to
perform on various discretization of the same shape. Left and right
are two shapes from the SHREC19 dataset [29]. We show on each
shape features obtained on the remeshed and original version of
the dataset.

Figure 8. Example of texture transfer of our method on the
SHREC19 [29] dataset using our pipeline.

to compute features quickly for each shape. Due to its
discretization-agnostic architecture, the features obtained
on the dense and remeshed version are similar, as noted on
Figure 7, where each mesh contains N = 2 · 105 vertices.
However, fitting a dense pointwise map would for this mesh
require 107 MiB of GPU memory, without even storing the
gradient, which is infeasible in most cases.

In contrast, our scalable dense map can easily compute
these maps. In particular, at test time when no gradient in-
formation is stored, our DifferentiableZoomOut has a neg-
ligible memory cost since intermediate maps don’t need to
be stored.

We show an example of texture transfer on another
pair of this dataset in Figure 8. Here, we used our net-
work, trained on the standard remeshed [38] versions of the
Faust [5] and Scape [1] datasets, and evaluate at test time on
shapes with around 105 vertices. We transform the output
functional map into a precise map [19]. This demonstrates
our pipeline can be trained on simple remeshed versions of
datasets, but then used at test time on denser shapes without
issues.


