Supplementary Material for Point-VOS: Pointing Up Video Object Segmentation

Abstract

In this supplementary, we provide the experimental re-
sults of the additional simulations in Sec. I, the details for
annotating the Point-VOS Oops validation set in Sec. 2, the
statistics for Point-VOS datasets in Sec. 3, the implementa-
tion details in Sec. 4 and the additional qualitative results
in Sec. 5.

1. Additional Simulations

Farthest Point Sampling Strategy. In Sec. 3.1 of the main
paper, we ran a number of point simulation experiments on
DAVIS [13] and YT-VOS [22] to analyse the effect of us-
ing point annotations both during training and testing. For
these experiments, the simulated points are sampled ran-
domly from the available ground truth segmentation masks
for each frame.

In addition to sampling the points randomly, we also
consider using the farthest-point sampling (FPS) technique.
The FPS algorithm starts from some random initial point in
the given input point set, and then iteratively selects a sin-
gle point that has the largest distance from all the previously
sampled ones. For our point simulations, instead of starting
from a random point, we always start from a point that best
represents the center of the input mask. To sample this cen-
ter, we first generate Euclidean distance transforms from
the ground-truth segmentation masks for each foreground
object and the common background. We then sample the
point that has the largest distance from each of these dis-
tance transforms and further use these as the starting points
for the FPS algorithm. The FPS algorithm is then separately
applied on the points that represent each of the foreground
objects and the background starting from the corresponding
center point.

Similar to the point simulation experiments presented in
Sec. 3.1, we again use Point-STCN to train multiple mod-
els on different number of simulated points. Here again, we
do not apply any temporal sparsity. Also, note that in both
random and FPS point sampling strategies, we run each ex-
periment 5 times and report the mean score. In Fig. 1, we
show the results for the FPS point sampling strategy on the
DAVIS validation set. It can be seen that the performance
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Figure 1. FPS point sampling results on the DAVIS validation
set. We vary the number of sampled points per object for training
supervision and the number of sampled points on the reference
frame.

70.0% A

67.5%

65.0% -

62.5%

&F

" 60.0%

57.5% 1 %747

#Frames
—@— All Frames
—@— 20 Frame w/ Random Sampling
—@- 10 Frame w/ Random Sampling
7 Frame w/ Random Sampling
5 Frame w/ Random Sampling

55.0% A

52.5% A

1 2 3 4 5 10 20
First frame supervision (#Points)

Figure 2. Results on the DAVIS validation set for randomly
sub-sampling frames. We vary the number of randomly sampled
frames.
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of Point-STCN is much worse when we use FPS instead
of the random sampling strategy (see Fig. 2 in the main
paper), e.g., for FPS we achieve the best result by training
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Figure 3. Temporally dense 7 &F vs. temporally sparse 7 &F results. We get 18 methods (colored dots) from the leaderboard of the
DAVIS benchmark and evaluate them on the 4 different temporally sparse DAVIS validation sets. TEMP-3 shows the results evaluated on
3 sub-sampled frames, TEMP-4 on 4 sub-sampled frames, TEMP-5 on 5 sub-sampled frames, and TEMP-10 on 10 sub-sampled frames.

with 30 points, which is almost on par with using 10 points
as training supervision in the random point sampling strat-
egy. Thus, we decided to use the random point sampling
strategy for our point annotations.

Randomly Sub-sampling Frames. Along with the evenly-
spaced sub-sampling strategy explained in Sec. 3.1 of the
main paper, we also try to sub-sample frames randomly.
Similarly to evenly-spaced sub-sampling, starting from all
frames, we randomly sub-sample up to 20 frames for each
video. For training supervision, we keep again the setup
of 10 randomly sampled points per frame per object. Also,
we run each experiment 3 times for both evenly-spaced and
random sub-sampling strategies and report the mean score.

We demonstrate the results for the random sub-sampling
strategy on the DAVIS validation set in Fig. 2. We obtain
very similar results for both strategies. We cannot observe a
notable difference compared to Fig. 3 in the main paper, so
we decided to make use of the evenly-spaced sub-sampling

strategy.

Evaluating on temporally sparse videos. To annotate
the ground-truth segmentation masks for the evaluation of
the Point-VOS Oops (PV-Oops) benchmark, we also make
the following key design decision. As the consecutive
frames are extremely correlated and redundant, we question
whether evaluating the results on a sparse subset of frames
is sufficient. In that way, we would diminish the annotation
effort while annotating the validation set as well, increasing
cost and time-efficiency.

To this end, we run analysis experiments on DAVIS
benchmark results. First, we generate temporally sparse
validation sets from the DAVIS validation set by sub-
sampling 3, 4, 5, and 10 frames evenly spaced, i.e., we ob-
tain 4 temporally sparse validation sets consisting of sub-
sampled 3, 4, 5, or 10 frames. Then,we get the methods [1—
6, 9-12, 15-18, 20, 21, 23, 24] from the DAVIS benchmark
leaderboard, evaluate them on a sparse set of frames. Fi-



nally, we compare these results with the results on the tem-
porally dense validation set, i.e., the original DAVIS valida-
tion set with all frames. As seen in Fig. 3, the results are ex-
tremely correlated for all temporally sparse validation sets.
In other words, even with only 3 ground-truth frames per
object for evaluation, the ranking between methods does not
change in almost all cases (except when their performance
is extremely close to each other).

2. Annotating Point-VOS QOops Validation Set

We start annotating the Point-VOS Oops (PV-Oops) valida-
tion set by first annotating the reference frame with points.
We generate point-wise annotations on the sub-sampled
(evenly-spaced) 10 frames from each video and ask human
annotators to verify them in the same way as for the training
point annotations. Then, we check each video to decide the
reference frame. In each video, we assign the first frame
that contains at least 7 foreground points as the reference
frame and remove all frames before the reference frame. In
case, we cannot find a frame in the video with at least 7
foreground points, we eliminate the video. We also check
whether we have enough frames after the reference frame.
If there is no frame after the reference frame with at least 3
foreground points and 1 background point, we also drop the
video.

Afterwards, we annotate the ground-truth segmentation
masks for the evaluation of the PV-Oops benchmark. In-
formed by the simulation experiment for evaluating on a
sparse subset of frames (see Sec. 1), we decided to annotate
temporally sparse segmentation masks for the evaluation of
the PV-Oops benchmark with 3 ground-truth frames.

While annotating 3 ground-truth frames, we start by first
annotating the frame with the mouse trace segment for each
video. Note that the mouse trace comes from the location-
output questions of VidLN [19] for the PV-Oops dataset.
In the original VidLN location-output task (which we do
not consider in our work), a mask in the frame with the
mouse trace is approximately evaluated by comparing it to
the mouse trace. By annotating a segmentation mask for
this frame, we make sure that our annotations can be used
to replace the original VidLN evaluation, that compares the
predicted mask with the mouse trace, with a more precise
evaluation, that compares the predicted mask with the an-
notated mask.

After annotating the frame with mouse trace, we check
each video and eliminate the videos, if the frame with the
mouse trace is temporally before the reference frame, or ex-
actly on the reference frame. From the remaining videos,
we sub-sample (evenly-spaced) 3 frames from the frames
coming after the reference frame with point annotations,
and we check whether the frame with the mouse trace is
in the 3 sub-sampled frames. If the frame with the mouse
trace is in the 3 sub-sampled frames, we keep the other 2

Positive Negative Ambiguous

Dataset Videos Annotations Objects Points  Points Points
Point-VOS Oops 7.4K 93K 12K 541K 12M 18K
£ Point-VOS Kinetics 23.9K 965K 120K 52M 12.6M 253K
<
< Point-VOS DAVIS 60 600 145 97K 6K —

Point-VOS YouTube 3471 34.6K 6.4K 472K 346K —

Point-VOS Oops 991 3.5K 991 73K 99K 91
E Point-VOS DAVIS 30 1.9K 61 558 300 —
Point-VOS YouTube 507 614 1K 98K 6K —

Table 1. Statistics for the Point-VOS datasets. Annotations here
means summing up frames containing at least one annotated ob-
ject. Note that for Point-VOS DAVIS and Point-VOS YouTube,
we sampled the points from the ground truth masks, while for all
other datasets, we annotated new points.

sub-sampled frames and annotate them with ground-truth
masks. If the frame with the mouse trace is not in the 3 sub-
sampled frames, we drop the frame that is temporally clos-
est to the mouse trace frame and send the other 2 frames to
annotation.

3. Point-VOS Datasets Statistics

Overview. In Tab. 1, we present the detailed statistics for
the training and validation splits of the Point-VOS datasets.

Point-VOS Oops (PV-Oops) and Point-VOS Kinetics
(PV-Kinetics) are the datasets that we annotated with new
points. In total, we collected 19.7M points where 5.8M
points are annotated as positive points and 13.9M points as
negative points. Also, 271K points are annotated as am-
biguous points. We do not use any ambiguous annotations
in our experiments.

In PV-Oops, there are 541K positive points and 1.2M
negative points in the training split, and also 7.3K posi-
tive points and 9.9K negative points in the validation split.
In PV-Kinetics, there are 5.2M positive points and 12.6 M/
negative points.

In addition to the PV-Oops and PV-Kinetics datasets, we
also generated the Point-VOS versions of the DAVIS and
YouTube-VOS (YT-VOS) datasets. For Point-VOS DAVIS
(PV-DAVIS) and Point-VOS YouTube (PV-YT), we sample
the spatially temporally sparse points from the ground truth
masks. Since the original DAVIS and YT-VOS datasets are
massively smaller than PV-Oops and PV-Kinetics, the total
positive and negative points are also very much less in PV-
DAVIS and PV-YT. There are 9.7 K positive points and 6 K
negative points in the PV-DAVIS training split, 558 posi-
tive and 300 negative points in the PV-DAVIS validation
split. PV-YT contains 472K positive and 346K negative
points in the training split, and 9.8 K positive and 6 K neg-
ative points in the validation split. Note that there are fewer
annotations in both PV-DAVIS and PV-YT compared to the
original DAVIS and YT-VOS datasets as we sub-sample 10
frames.
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Figure 4. The distribution of frames for PV-Oops and PV-
Kinetics. The distribution of frames means summing up frames
in each video, which contains at least one positive point annota-
tion.

Frame Distribution. In addition to the detailed statistics,
we also analyze the distribution of frames in the training
splits of PV-Oops and PV-Kinetics. During the annotation
process, we provided 10 frames to the human annotators
for annotations. Here, the distribution of frames means, we
check each video after the annotation process and sum up
the frames in each video, which have at least one positive
point annotation.

Fig. 4 shows the frame distribution for PV-Oops (see
Fig. 4a) and PV-Kinetics (see Fig. 4b). As seen, more than
40% of the videos in both PV-Oops and PV-Kinetics have
all frames with positive point annotations (see red slice).
Also, more than 30% of the videos in both PV-Oops and
PV-Kinetics contain more than 5 frames with positive point
annotations (see R s and

slices).

Point Distribution. Finally, we analyze the distribution
of the positive and negative points in the training splits of
PV-Oops and PV-Kinetics. Here, the distribution of points
means reporting the total number of videos in the different
ranges of the number of point annotations.

We show the distribution of points in Fig. 5 for PV-Oops
(see Fig. 5a) and PV-Kinetics (see Fig. 5b). As seen, we
observe similar point distributions in both PV-Oops and PV-
Kinetics. As the size of the objects varies, the distribution
of the positive points has more probability mass on the left
than the distribution of the negative points in both PV-Oops
and PV-Kinetics. Since we fixed the number of background
points to 10 points for annotating, the distribution of the
negative points has probability mass at the center for both
PV-Oops and PV-Kinetics.

4. Implementation Details

Point-STCN. A major advantage of using point annota-
tions is that it can be used to train existing VOS models
without making drastic changes to either the inherent model
or the training strategy. We show this by easily adapting
STCN to work with our point annotations while keeping
most of the network structure intact. Specifically, we make

the following modifications to STCN: (i) The value encoder
of STCN now takes a set of sparse points (that we repre-
sent as a sparse segmentation mask) for each of the ref-
erence foreground objects in the first frame mask instead
of the dense pixel-level masks. To leverage these point
annotations, similar to the original STCN pre-processing
pipeline, we apply augmentations like affine transforma-
tions and convert the points into a mask that has only non-
zero elements on the locations of the points. We concate-
nate the point masks with the input image which is then
processed by the value encoder. (ii) Instead of using a boot-
strapped cross-entropy loss on the predicted dense posterior
probabilities, we use a point-wise cross entropy loss where
the loss is applied to only the output vectors at sparse point
locations that are annotated in the ground-truth. We use bi-
linear interpolation on the output probability map to approx-
imate the predictions on the precise point locations. During
training, we use both the positive and the negative points for
the loss computation. For each training sample, we sample
3 frames from a video. One of those frames is considered
the reference frame which we used for initialization. The
two other frames are considered the target frames, on which
we calculate the loss. Only the positive (foreground) points
are used as initialization in the reference (first) frame during
both training and testing, while both positive and negative
points are used to calculate the loss on the target frames.

DynaMITe Adaptation. DynaMITe [14] was originally
designed to process user interactions in the form of user
clicks. Since, for our point annotation scheme, only a
mouse trace is available on the reference frames for each
foreground object, we adapt DynaMITe to work with a trace
as input for generating a reference mask. Those reference
masks are later fed to STCN for propagation (see Sec. 3.2
of the main paper). To adapt DynaMITe, we first sample the
image features that correspond to each of the pixel-locations
covered by the input mouse trace, and perform a global av-
erage pooling operation to generate a single feature vector.
This feature vector is then projected linearly to generate a
query that corresponds with the trace, similar to the click
features in DynaMITe. This query is then used by the In-
teractive Transformer module in DynaMITe to generate the
output mask for the object of interest.

Training Details. = We train Point-STCN with points
and STCN with pseudo-masks on Point-VOS DAVIS (PV-
DAVIS) and Point-VOS YouTube-VOS (PV-YT) jointly for
a total of 38K iterations. The learning rate is reduced after
30K steps. On Point-VOS Oops (PV-Oops), Point-STCN
and STCN are trained in total 60K iterations, and the learn-
ing rate is reduced after SOK steps. On Point-VOS Kinet-
ics (PV-Kinetics), and also joint training on PV-Oops and
PV-Kinetics, we train Point-STCN and STCN in total 190K
iterations and reduce the learning rate after 150K steps.
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Figure 5. The distribution of the positive and negative points in PV-Oops and PV-Kinetics. The x-axis represents the different ranges
for the number of points, and the y-axis represents the total number of videos. Also, we show the precise numbers for the total videos at

the top of the bars.

Following the original STCN setup, when training
jointly on PV-DAVIS and PV-YT, we build a combined
dataset by repeating the PV-DAVIS dataset 5 times and
PV-YT 1 time, to compensate for the smaller size of PV-
DAVIS. Similarly, when training jointly on PV-Oops and
PV-Kinetics, we build a combined dataset by repeating PV-
Oops 5 times and PV-Kinetics 1 time in order to compensate

for the smaller size of PV-Oops.

Moreover, for each training of Point-STCN and STCN,
we use Adam [7] and start with a learning rate of 10~° and
reduce it to 1076 after a certain number of training steps
as indicated above. We set the weight decay to 10~7 and
the batch size to 4. We conduct all STCN and Point-STCN
trainings with 8 V100 GPUs, and all inference experiments



on a single 3090 GPU.
For training ReferFormer, we closely follow the setup
used by VidLN [19].

Hybrid Task. In Sec. 4.1 of the main paper, we introduced
the Hybrid task (a task in between VOS and Point-VOS).
In the VOS task, dense segmentation masks are used both
during training and for test-time initialization, while, in the
Point-VOS task, spatially temporally sparse point annota-
tions are used in both cases. For the Hybrid task, spatially
and temporally dense masks are used during training, while
only points are used on the reference frame at test-time.
This means that the Hybrid task follows the setup from VOS
at training time, while it follows the setup from Point-VOS
at test-time.

In the Hybrid setup, we make use of dense masks to train
Hybrid-STCN while we initialize the reference frame with
sparse points. Recall that STCN uses 3 frames during train-
ing, from which one is the reference frame and two are the
target frames. In the Hybrid setup, we initialize STCN with
points in the reference frame and apply a full mask loss in
the target frames. At test-time, Hybrid-STCN can then be
initialized with points and achieves better results than Point-
STCN, as we use more supervision during training.

5. Additional Qualitative Results

In Fig. 6 and Fig. 7, we provide the additional example point
annotations for Point-VOS Oops (PV-Oops) and Point-VOS
Kinetics (PV-Kinetics). We successfully annotated multi-
modal points for different and challenging scenes, and also
the objects from a large vocabulary.

In Fig. 8 and Fig. 9, we also show the examples
of ambiguous point annotations from PV-Oops and PV-
Kinetics, i.e. the point annotations where the human an-
notators indicated that they were unsure. We observe that
we have ambiguous point annotations in particular cases for
both PV-Oops and PV-Kinetics, e.g., if the given point is in
a challenging lighting condition or at the border.

In Fig. 10, Fig. 12, and Fig. 14, we present the track-
ing results of Point-STCN (trained with points) on Point-
VOS Oops (PV-Oops), Point-VOS DAVIS (PV-DAVIS)
and Point-VOS YouTube (PV-YT), respectively. Also,
in Fig. 11, Fig. 13 and Fig. 15, we demonstrate the results
of STCN [3] (trained with pseudo-masks) on PV-Oops, PV-
DAVIS and PV-YT, respectively.
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Figure 6. Additional example point annotations for Point-VOS Oops. We are able to have multi-modal point annotations in cluttered
scenes (first row), fast motion (third row), challenging lighting conditions (fourth row), and motion blur (fifth row). Green dots represent
positive points and red dots negative points.
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Figure 8. Example ambiguous point annotations from Point-
VOS Oops. We observe that the human annotators indicate unsure
if the given point is in challenging lighting condition (first row))
or at border (second row), or at motion blur (third row), or if the
object is ambiguous (fourth row). Green dots represent positive
annotations, red dots negative annotations, and gray dots ambigu-
ous annotations.
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Figure 9. Example ambiguous point annotations from Point-
VOS Kinetics. Similarly, the human annotators indicate unsure
if the given point is in challenging lighting condition (first col-
umn, first two rows) or at border (second column, first two rows),
or at motion blur (first column, last two rows), or if the object is
ambiguous (second column, last two rows). Green dots represent
positive annotations, red dots negative annotations, and gray dots
ambiguous annotations.



setup.

Figure 11. Tracking results of STCN [3] on PV-Oops. The model is trained on PV-Oops with DynaMITe [14] pseudo-masks, then
evaluated on 10 points setup.



Figure 12. Tracking results of Point-STCN on PV-DAVIS. The model is first pre-trained on PV-Oops and PV-Kinetics with points, then
fine-tuned on PV-DAVIS and PV-YT with points, and finally evaluated on the 10-point setup.

Figure 13. Tracking results of STCN [3] on PV-DAVIS. The model is pre-trained on PV-Oops and PV-Kinetics with pseudo-masks, then
fine-tuned on PV-DAVIS and PV-YT with pseudo-masks, and finally evaluated on 10 points setup. The pseudo-masks are generated from
SAM [8].



Figure 14. Tracking results of Point-STCN on PV-YT. The model is first pre-trained on PV-Oops and PV-Kinetics with points, then
fine-tuned on PV-DAVIS and PV-YT with points, and finally evaluated on the 10-point setup.

Figure 15. Tracking results of STCN [3] on PV-YT. The model is pre-trained on PV-Oops and PV-Kinetics with pseudo-masks, then
fine-tuned on PV-DAVIS and PV-YT with pseudo-masks, and finally evaluated on 10 points setup. The pseudo-masks are generated from
SAM [8].
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