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Overview
In the following, we outline the algorithm for the negative
image prompting for prompt inversion and also provide ad-
ditional qualitative results to show that the prompts gener-
ated with our PH2P approach are precise, readable, and can
be used for various downstream applications.

1. Negative Prompting
In Algorithm 2, we show the adaptation of our PH2P Al-
gorithm 1 to get prompts that contain the concepts from a
target image and at the same time do not contain concepts
specified in the negative image. The images thus generated
with the optimized prompt contain concepts in I exclud-
ing or removing the concepts present in Ineg. We find the
algorithm to perform well when removing concepts in com-
posed images (Figs. 6 and 9).

Algorithm 2: PH2P Prompt Inversion with Nega-
tive Image Prompting

1 Input: Diffusion model parameters: θ, Target image: x = E(I), Negative
image: xneg = E(Ineg), Initial prompt: S, Prompt embedding: ê,
Timesteps: [ta, T ]; Learning rate: λ, Optimization steps: N

2 for i← 1 to N do
/* Projection on feasible set */

3 ẽ = ProjE(ê)
/* Select diffusion timestep */

4 t = random([ta, T ])
/* Apply L-BFGS */

5 g =

LBFGSẽ

(
LLDM (xt, θ, t, f(ẽ))− LLDM (xneg

t , θ, t, f(ẽ))
)

6 ê = ê− λg

7 end
/* Delayed projection */

8 return ProjE(ê)

2. Additional Qualitative Results
In Tab. 6 we provide additional qualitative results compar-
ing the quality of the prompts from our PH2P approach with

the PEZ approach based on CLIP similarity. Here, we ob-
serve consistently better prompts. Images generated with
our inverted prompts reflect the concepts of target image.

Additionally, we show in Tab. 7 the prompts generated
with the standard Adam optimization (LDM+Adam) and
also consider the setting with all the timesteps for inversion
(LDM+ all t). We observe that the prompts generated with
our PH2P procedure are consistent with the concepts in the
target image. The prompts with LDM+Adam are short but
do not always contain the target concepts. This shows the
poor convergence of the standard SGD methods for hard
prompt inversion. The prompts obtained with LDM+ all
steps are longer than our PH2P procedure and tend to in-
clude words that do not provide any information on the con-
cepts in an image. Our PH2P prompt inversion, on the other
hand, provides prompts that are readable, precise, and con-
sistent with the content of the image.

Similarly, in Fig. 7 we show the regions in the target
image attended to by the optimized prompts which can be
leveraged for downstream tasks such as unsupervised se-
mantic segmentation as proposed in Wu et al. [49].

We also include additional examples for the application
of the PH2P procedure to multi-concept generation Fig. 8.
Our approach can faithfully compose images with diverse
concepts. Figure 9 shows example cases where concepts
can be removed from a set of target images using our PH2P
procedure. Given the negative images of the concepts to
be removed, PH2P with Algorithm 2 can be used to yield
a prompt that removes concepts from target (positive) im-
ages. These observations demonstrate that the quality of the
prompts generated with the PH2P procedure is representa-
tive of the vocabulary of the LDM [37] backbone.

3. Different text conditioning modules
The application of PEZ [48] with its CLIP-based loss is
limited to the CLIP-based text encoder. Our PH2P ap-
proach generalizes to any text conditioning module within
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Conditioning in text-to-image diffusion model

Target Image CLIP [37] BERT [37] T5 [40]
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Table 5. PH2P inversion with different text-to-image diffusion models. Prompt inversion with different conditioning modules yields
prompts with different levels of semantic information and fluency.

the framework of text-to-image diffusion models. As shown
in Tab. 5, with our PH2P approach, prompts can be gener-
ated from the BERT-based latent diffusion model and T5-
based Deepfloyd [40]1. Notably, different text encoders
yield prompts with varying fluency and semantic infor-
mation. While T5 generates fluent, high-quality prompts,
prompts from LDM with BERT conditioning module have
limited vocabulary.

1Implementation from https://github.com/deep-floyd/
IF.git

https://github.com/deep-floyd/IF.git
https://github.com/deep-floyd/IF.git
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Table 6. Qualitative Comparison. Target image, inverted prompts (from PEZ [48] and PH2P), and corresponding generated images.
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Table 7. Qualitative Comparison to Ablations. Qualitative comparison of the prompts inverted and the diverse images generated with
our PH2P to the baselines for ablation.

Target Image Attented regions in the target image for PH2P prompt inversion

Figure 7. Application of Unsupervised Segmentation. Additional results on illustration of the tokens and corresponding regions (that
can be used for unsupervised segmentation; see [49]) obtained for the target images. Note the accuracy of both prompts and corresponding
attention.
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Figure 8. Application of Evolutionary Multi-concept Generation with Proposed PH2P. Additional results on images generated with
the composed prompts are inverted with PH2P to create prompts which are further combined with prompts recovered from the new target
image.
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Figure 9. Application of Concept Removal with Negative Target Images. Additional results showing that PH2P yields a prompt that
removes the visual concept given in the negative image from the positive target image. The PH2P prompts can be used to generate diverse
images with removed concepts.
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