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A. Appendix

A.1. Dataset Documentation

A.1.1 Datasheet

In this section we answer the Datasheet for Datasets ques-
tionnaire [5] to document FISBe, the FlyLight Instance
Segmentation Benchmark dataset. It contains information
about motivation, composition, collection, preprocessing,
usage, licensing as well as hosting and maintenance plan.

A.1.1.1 Motivation

For what purpose was the dataset created? Was there a
specific task in mind? Was there a specific gap that needed
to be filled? Please provide a description.

Segmenting individual neurons in multi-neuron light mi-
croscopy (LM) recordings is intricate due to the long, thin
filamentous and widely branching morphology of individ-
ual neurons, the tight interweaving of multiple neurons, and
LM-specific imaging characteristics like partial volume ef-
fects and uneven illumination. These properties reflect a
current key challenge for deep-learning models across do-
mains, namely to efficiently capture long-range dependen-
cies in the data. While methodological research on this
topic is buzzing in the machine learning community, to date,
respective methods are typically benchmarked on synthetic
datasets. To fill this gap, we created the FlyLight Instance
Segmentation Benchmark dataset, to the best of our knowl-
edge, the first publicly available multi-neuron LM dataset
with pixel-wise ground truth and the first real-world bench-
mark dataset for instance segmentation of long thin filamen-
tous objects.

Who created this dataset (e.g., which team, research
group) and on behalf of which entity (e.g., company, in-
stitution, organization)?
This dataset was created in a collaboration of the Max-
Delbrueck-Center for Molecular Medicine in the Helmholtz
Association (MDC) and the Howard Hughes Medical Insti-
tute Janelia Research Campus. More precisely, the Kain-
mueller lab at the MDC and the Project Technical Resources
Team at Janelia.

Who funded the creation of the dataset? If there is an
associated grant, please provide the name of the grantor and
the grant name and number.

Howard Hughes Medical Institute Janelia Research Campus
and Max-Delbrueck-Center for Molecular Medicine in the
Helmholtz Association (MDC) funded the creation of the
dataset.

A.1.1.2 Composition

What do the samples1 that comprise the dataset repre-
sent (e.g., documents, photos, people, countries)? Are
there multiple types of samples (e.g., movies, users, and
ratings; people and interactions between them; nodes and
edges)? Please provide a description.

The dataset consists of 3d multi-neuron multicolor light mi-
croscopy images and their respective pixel-wise instance
segmentation masks. The ”raw” light microscopy data
shows neurons of the fruit fly Drosophila Melanogaster ac-
quired with a technique called MultiColor FlpOut (MCFO)
[15, 18]. Fruit fly brains of different transgenic lines (e.g.

1We changed instances to samples when refering to images of the
dataset to not use the term ambiguously; instead we only use instances
to refer to object instances in images.
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GAL4 lines [9]) were imaged, each transgenic line tags a
different set of neurons. There are multiple MCFO images
of the same transgenic line, where each MCFO image ex-
presses (shows) a stochastic subset of the tagged neurons.
The neurons contained in each image were manually anno-
tated by trained expert annotators. The dataset is split into
a completely labeled (all neurons in the image are manually
segmented) and a partly labeled (a subset of neurons in the
image is manually segmented) set.

How many samples/instances are there in total (of each
type, if appropriate)?

The completely labeled set comprises 30 images with 139
labeled neurons in total, and the partly labeled set comprises
71 images with 451 labeled neurons in total.

Does the dataset contain all possible samples or is it a
subset (not necessarily random) of samples from a larger
set? If the dataset is a sample, then what is the larger set? Is
the sample representative of the larger set (e.g., geographic
coverage)? If so, please describe how this representative-
ness was validated/verified. If it is not representative of the
larger set, please describe why not (e.g., to cover a more
diverse range of instances, because instances were withheld
or unavailable).

The dataset contains a subset of 101 images from the ”40x
Gen1” set of [15]. The full ”40x Gen1” set consists of
46,791 images of 4575 different transgenic lines. From this
set, we selected relatively sparse images in terms of number
of expressed neurons which seemed feasible for manual an-
notation. Thus, our dataset is not representative for the full
”40x Gen1” MCFO collection.

What data does each sample consist of? “Raw” data
(e.g., unprocessed text or images) or features? Is there
a label or target associated with each sample? Please
provide a description.

Each sample consists of a single 3d MCFO image of
neurons of the fruit fly. For each image, we provide
a pixel-wise instance segmentation for all separable
neurons. Each sample is stored as a separate zarr
file (”Zarr is a file storage format for chunked, com-
pressed, N-dimensional arrays based on an open-source
specification.” https://zarr.readthedocs.io). The image
data (”raw”) and the segmentation (”gt instances”) are
stored as two arrays within a single zarr file. The
segmentation mask for each neuron is stored in a sep-
arate channel. The order of dimensions is CZYX. In
Python the data can, for instance, be opened with:

import zarr
raw = zarr.open(

<path_to_zarr>,
path="volumes/raw")

seg = zarr.open(
<path_to_zarr>,
path="volumes/gt_instances")

Zarr arrays are read lazily on-demand. Many functions that
expect numpy arrays also work with zarr arrays. The arrays
can also explicitly be converted to numpy arrays with:

import numpy as np
raw_np = np.array(raw)

Is any information missing from individual samples? If
so, please provide a description, explaining why this infor-
mation is missing (e.g., because it was unavailable). This
does not include intentionally removed information, but
might include, e.g., redacted text.

Not all neuronal structures could be segmented within all
images of the provided dataset. Mainly, there are two rea-
sons: (1) there are overlapping neurons with the same or a
similar color that could not be separated due to the partial
volume effect, and (2) some neuronal structures cannot be
delineated correctly in the presence of noisy background in
the same color as the neuron itself. In the completely la-
beled set all neuronal structures have been segmented, in
the partly labeled set some structures are missing.

Are relationships between individual samples made ex-
plicit (e.g., users’ movie ratings, social network links)?
If so, please describe how these relationships are made ex-
plicit.

Yes, one transgenic line is often imaged multiple times as
only a stochastic subset of all tagged neurons is visible per
MCFO image. Moreover, the same neuron might be tagged
in multiple transgenic lines.

Are there recommended data splits (e.g., training, de-
velopment/validation, testing)? If so, please provide a
description of these splits, explaining the rationale behind
them.

Yes, we provide a recommended data split for training, val-
idation and testing. The files in the provided download are
presorted according to this recommendation. When split-
ting the data into sets, we made sure that images of the same
transgenic lines are in the same split and paid attention to
having similar proportions of images with overlapping neu-
rons as well as having a similar average number of neurons
per image in each split.

Are there any errors, sources of noise, or redundancies
in the dataset? If so, please provide a description.

There might be uneven illumination resulting in gaps within
neurons in the raw microscopy images as well as the corre-
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sponding annotations. This is intrinsic to this kind of light
microscopy images.

Is the dataset self-contained, or does it link to or oth-
erwise rely on external resources (e.g., websites, tweets,
other datasets)? If it links to or relies on external re-
sources, a) are there guarantees that they will exist, and re-
main constant, over time; b) are there official archival ver-
sions of the complete dataset (i.e., including the external
resources as they existed at the time the dataset was cre-
ated); c) are there any restrictions (e.g., licenses, fees) as-
sociated with any of the external resources that might apply
to a future user? Please provide descriptions of all external
resources and any restrictions associated with them, as well
as links or other access points, as appropriate.

Yes, the dataset is self-contained. There is an external, ad-
ditional source of raw images that could potentially be used
for self-supervised learning. The raw images in our dataset
are a subset of the released MCFO collection of the Fly-
Light project [15]. The whole collection can be downloaded
at https://gen1mcfo.janelia.org. Note though that there are
no segmentation masks available for these images.

Does the dataset contain data that might be considered
confidential (e.g., data that is protected by legal privilege
or by doctor-patient confidentiality, data that includes
the content of individuals non-public communications)?
If so, please provide a description.

No.

A.1.1.3 Collection Process

How was the data associated with each sample ac-
quired? Was the data directly observable (e.g., raw
text, movie ratings), reported by subjects (e.g., survey re-
sponses), or indirectly inferred/derived from other data
(e.g., part-of-speech tags, model-based guesses for age or
language)? If data was reported by subjects or indirectly in-
ferred/derived from other data, was the data validated/veri-
fied? If so, please describe how.

The content of the raw images was directly recorded using
confocal microscopes. The annotations were created manu-
ally.

What mechanisms or procedures were used to collect the
data (e.g., hardware apparatus or sensor, manual hu-
man curation, software program, software API)? How
were these mechanisms or procedures validated?

Imaging was performed using eight Zeiss LSM 710 or
780 laser scanning confocal microscopes (for more in-
formation on the imaging process see [15]). Two
trained expert annotators manually segmented and proof-
read each other to segment the neurons in these im-

ages using the interactive rendering tool VVD Viewer
(https://github.com/JaneliaSciComp/VVDViewer).

If the dataset is a sample from a larger set, what was the
sampling strategy (e.g., deterministic, probabilistic with
specific sampling probabilities)?
We manually selected images from the larger ”40x Gen1”
collection. We chose images that contained a sparse set of
neurons and that contained neurons that preferably were not
contained in previously selected images.

Who was involved in the data collection process (e.g.,
students, crowdworkers, contractors) and how were
they compensated (e.g., how much were crowdworkers
paid)?
The data collection process was done by full time employ-
ees at the Howard Hughes Medical Institute Janelia Re-
search Campus and the Max-Delbrueck-Center for Molec-
ular Medicine in the Helmholtz Association (MDC).

Over what timeframe was the data collected? Does this
timeframe match the creation timeframe of the data as-
sociated with the samples (e.g., recent crawl of old news
articles)? If not, please describe the timeframe in which the
data associated with the samples was created.

MCFO selection and manual annotation were mainly done
in 2018 and 2019. The respective acquisition date of
the MCFO sample is noted within the sample name in
”YYYYMMDD” format. Most samples of our dataset were
acquired in 2017 and 2018.

Were any ethical review processes conducted (e.g., by an
institutional review board)? If so, please provide a de-
scription of these review processes, including the outcomes,
as well as a link or other access point to any supporting doc-
umentation.

There was no ethical review process conducted as we did
not record any new animal data, the dataset does not relate
to people and it does not contain confidential data.

Does the dataset relate to people? If not, you may skip
the remaining questions in this section.

No.

A.1.1.4 Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data
done (e.g., discretization or bucketing, tokenization,
part-of-speech tagging, SIFT feature extraction, re-
moval of instances, processing of missing values)? If so,
please provide a description. If not, you may skip the re-
mainder of the questions in this section.

The following preprocessing was done for each image: The
central brain and part of the ventral nerve cord (VNC) were
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recorded in tiles by the light microscope. The tiles were
stitched together and distortion corrected (for more infor-
mation see [26]).

Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unantici-
pated future uses)? If so, please provide a link or other
access point to the “raw” data.
The original images are available at
https://gen1mcfo.janelia.org.

Is the software used to preprocess/clean/label the sam-
ples available? If so, please provide a link or other access
point.
The image processing, such as distortion correction and
stitching, is done by using the open-source software Janelia
Workstation [21].

A.1.1.5 Uses

Has the dataset been used for any tasks already? If so,
please provide a description.
In [13], an earlier, unpublished version of our dataset has
been used to qualitatively evaluate PatchPerPix, a deep
learning-based instance segmentation method. The trained
model was then applied to ∼40.000 samples of the MCFO
collection [14, 15] to search for given neuronal struc-
tures extracted from electron microscopy (EM) data [23].
PatchPerPix is also used as one of three baselines to show-
case this published version of our dataset.

Is there a repository that links to any or all papers or
systems that use the dataset? If so, please provide a link
or other access point.
As they are getting published, we will reference them at
https://kainmueller-lab.github.io/fisbe

What (other) tasks could the dataset be used for?
The dataset can be used for a wide range of method devel-
opment tasks such as capturing long-range dependencies,
segmentation of thin filamentous structures, self- and semi-
supervised training or denoising. Advances in these areas
can in turn facilitate scientific discoveries in basic neuro-
science by providing improved neuron reconstructions for
morphological and functional analyses.

A.1.1.6 Distribution

Will the dataset be distributed to third parties outside
of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created? If so, please
provide a description.
The dataset will be publicly available.

How will the dataset be distributed (e.g., tarball on web-
site, API, GitHub) Does the dataset have a digital object
identifier (DOI)?
The dataset will be distributed through zenodo (DOI:
10.5281/zenodo.10875063) and our project page
https://kainmueller-lab.github.io/fisbe.

When will the dataset be distributed?
With publication of the accompanying paper.

Will the dataset be distributed under a copyright or
other intellectual property (IP) license, and/or under ap-
plicable terms of use (ToU)? If so, please describe this li-
cense and/or ToU, and provide a link or other access point
to, or otherwise reproduce, any relevant licensing terms or
ToU, as well as any fees associated with these restrictions.
The dataset will be distributed under the Creative Com-
mons Attribution 4.0 International (CC BY 4.0) license
(https://creativecommons.org/licenses/by/4.0/).

Have any third parties imposed IP-based or other re-
strictions on the data associated with the samples? If
so, please describe these restrictions, and provide a link or
other access point to, or otherwise reproduce, any relevant
licensing terms, as well as any fees associated with these
restrictions.
All MCFO images have previously been made publicly
available by [15] under the same license (CC BY 4.0) at
https://gen1mcfo.janelia.org.

A.1.1.7 Maintenance

Who will be supporting/hosting/maintaining the
dataset?
Lisa Mais supports and maintains the dataset.

How can the owner/curator/manager of the dataset be
contacted (e.g., email address)?
Lisa Mais and Dagmar Kainmueller can be contacted at
{firstname.lastname}@mdc-berlin.de.

Is there an erratum? If so, please provide a link or other
access point.
Errata will be published at https://kainmueller-
lab.github.io/fisbe.

Will the dataset be updated (e.g., to correct labeling er-
rors, add new samples, delete samples)? If so, please de-
scribe how often, by whom, and how updates will be com-
municated to users (e.g., mailing list, GitHub)?
The dataset will be updated to correct erroneous segmenta-
tion and potentially to add new samples and annotations.
It will be updated when a relevant number of updates
has accumulated. Updates will be communicated through
https://kainmueller-lab.github.io/fisbe.

4

https://gen1mcfo.janelia.org
https://kainmueller-lab.github.io/fisbe
https://zenodo.org
https://zenodo.org/doi/10.5281/zenodo.10875063
https://kainmueller-lab.github.io/fisbe
https://creativecommons.org/licenses/by/4.0/
https://gen1mcfo.janelia.org
https://kainmueller-lab.github.io/fisbe
https://kainmueller-lab.github.io/fisbe
https://kainmueller-lab.github.io/fisbe


Will older versions of the dataset continue to be support-
ed/hosted/maintained? If so, please describe how. If not,
please describe how its obsolescence will be communicated
to users.
We publish our dataset on zenodo. Zenodo supports ver-
sioning, including DOI versioning. Older versions of the
dataset will thus stay available.

If others want to extend/augment/build on/contribute to
the dataset, is there a mechanism for them to do so? If
so, please provide a description. Will these contributions
be validated/verified? If so, please describe how. If not,
why not? Is there a process for communicating/distributing
these contributions to other users? If so, please provide a
description.
We welcome contributions to our dataset. Errata, new
samples and annotations and other contributions can
be contributed via github issues at https://kainmueller-
lab.github.io/fisbe. We will verify such contributions and
update the dataset accordingly.

A.1.2 How to Open and View Image Files

We recommend viewing the FISBe dataset with napari [17].
The following instructions have been tested with Linux.
While they should also work for Windows and MacOS, they
might require some small changes. Please follow the offi-
cial installation instructions (https://napari.org/stable/):

conda create -y -n napari-env -c \
conda-forge python=3.9

conda activate napari-env
pip install "napari[all]" zarr

Then save the following Python script (also included in the
provided download of our dataset):

import zarr, sys, napari

raw = zarr.load(
sys.argv[1], path="volumes/raw")

gts = zarr.load(
sys.argv[1], path="volumes/gt_instances")

viewer = napari.Viewer(ndisplay=3)
for idx, gt in enumerate(gts):

viewer.add_labels(
gt, rendering='translucent',
blending='additive', name=f'gt_{idx}'

)
viewer.add_image(raw[0], colormap="red",

name='raw_r', blending='additive')
viewer.add_image(raw[1], colormap="green",

name='raw_g', blending='additive')
viewer.add_image(raw[2], colormap="blue",

name='raw_b', blending='additive')
napari.run()

Execute it from the command line to view the image:
python <script_name.py> <path-to-file>/

R9F03-20181030_62_B5.zarr
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Figure 5. Exemplary challenges for many-to-many matching with
overlaps. (a) One predicted instance lies completely within an
overlapping gt region, but it should only be assigned to one of
them; (b) one predicted instance covers one gt and merges with
an overlapping gt region, here it should be assigned to the single
gt and one of the overlapping ones; and (c) three overlapping pre-
dicted instances cover two overlapping gt instances, here only two
predicted instances should be matched to the two gt instances re-
spectively (the other predicted instance should rather only count
as false positive than as false split). As there are plenty of scenar-
ios how gt and predicted instances can overlap, special treatment
for overlapping regions is difficult and error-prone. However, our
proposed algorithm (see Alg. 1 in the main paper) naturally han-
dles such overlaps by keeping track of already matched pixels (as
opposed to only on the level of instances).

A.2. Extended Metrics Information

Table 2 summarizes all used metrics with their localization
criterion and matching. Fig. 5 highlights some of the chal-
lenges of computing a consistent many-to-many matching
for overlapping instances. Fig. 6 visualizes and quantifies a
comprehensive set of different edge cases of our evaluation
metrics.

Table 2. Overview of localization criterion and matching algo-
rithm for used scores. Last line shows cardinalities of the ground
truth-to-prediction relationships.

Score avF1 C FS FM clDiceTP

Loc. clDice clPrec. clRecall clRecall clDice

Match.
greedy greedy greedy greedy greedy
1:1 1:n n:m n:m 1:1

A.3. Extended Baseline Information and Results

We describe our three baseline methods in the follow-
ing sections, namely PatchPerPix in Sec. A.3.1, Flood
Filling Networks in Sec. A.3.2 and Duan et al.’s color
clustering in Sec. A.3.3. The evaluation code is avail-
able here: https://github.com/Kainmueller-Lab/evaluate-
instance-segmentation. Please see Table 3 and 4 for the ex-
tended quantitative results. Qualitative results for all three
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

S avF1 C clDiceTP #Pred TP FP FS FN FM

(a) 1.0 1.0 1.0 1.0 2 2 0 0 0 0

(b) 0.0 0.0 0.0 0.0 0 0 0 0 2 0

(c) 0.0 0.0 0.0 0.0 1 0 1 0 2 1

(d) 0.47 0.44 0.5 0.67 1 1 0 0 1 1

(e) 0.5 0.0 1.0 0.0 31 0 31 30 2 0

(f) 0.58 0.67 0.51 0.68 2 2 0 0 0 0

(g) 0.58 0.67 0.5 1.0 1 1 0 0 1 0

(h) 0.5 0.5 0.52 1.0 2 1 1 0 1 0

(i) 0.68 0.36 1.0 1.0 9 2 7 0 0 0

F10.1 F10.2 F10.3 F10.4 F10.5 F10.6 F10.7 F10.8 F10.9

(d) 0.67 0.67 0.67 0.67 0.67 0.67 0.0 0.0 0.0

(f) 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0

(g) 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67

(h) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

(i) 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36

Figure 6. Quantitative assessment of a number of different edge cases of our evaluation metrics (outline: ground truth, color: predictions,
th = 0.5), highlighting their applicability and validity for FISBe. In (a) we have a perfect prediction, the score is perfect and there are
no errors. In (b) we have no prediction, the score is zero and we have as many FN as there are instances. In (c) we have one prediction
that covers the whole image; as the clDice value is too low, there is no TP, so avF1 is still zero. When computing the clPrecision for the
predicted instance, the corresponding skeleton will likely have the largest overlap with the ground truth background and will be matched
to it. Thus, C will be zero as well. In (d) we have a perfect foreground segmentation but the two ground truth instances are merged; the
predicted instance is assigned to one of the ground truth instances, resulting in C = 0.5. Assuming clDice = 0.67 for the one match (and
thus clDiceTP = 0.67), we have F1 = 0.67 for th < 0.7 and 0 otherwise. In (e) we again have a perfect foreground segmentation but there
are many small instances; clDice for each pair of predicted and ground truth instances is < 0.1, thus avF1 = 0 and clDiceTP = 0; however,
C = 1.0 because both instances are completely covered (and multiple predicted instances can be matched to one ground truth instance). In
(f), (g) and (h) overall slightly more than half of the total ground truth is covered; in (f) both instances are covered slightly more than half;
in (g) one instance is covered completely and the other is not; in (h) one instance is covered completely and only a tiny part of the other; to
distinguish the cases quantitatively, one has to look at the details: about the same amount of ground truth is covered, thus C has a similar
value; in (f) clDiceTP is worst as both predicted instances are counted as TP, yet both only cover just over half of their respective ground
truth instance; furthermore, while avF1 is identical for (f) and (g), when looking at the full range of F1th values there are more differences:
in (f) there are 2 TP for th < 0.7, resulting in F1 being equal to 1 for smaller thresholds and equal to 0 for larger thresholds; in (g) there is
1 TP for the full range of thresholds, but also 1 FN; in both cases this results in avF1 = 0.67; finally in (h) there is 1 TP for the full range
of thresholds, 1 FN as in (g), but also 1 FP, resulting in avF1 = 0.5. In (i) we have a perfect prediction as in (a), but in addition we have
a number of small FP, due to noise categorized as foreground; the coverage values are not affected, but the avF1 value drops. One could
argue that (h) should be better than (g) as more is detected; however, if a prediction is too small, it is, in general, more likely to be noise.
One could also argue that (d) should better than (g), as both neurons are detected, just merged; however, for downstream tasks having one
fully correct instance that can directly be used is often more valuable than first having to manually fix errors.
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baselines are shown in Fig. 7 and a visualization of typical
error types for PatchPerPix is presented in Fig. 8.

A.3.1 PatchPerPix

We use PatchPerPix [13] with a 3-level 3d U-Net [1, 22]
with 20 initial feature maps, tripled at each downsampling
layer. The predicted patches are of size 7 × 7 × 7 pix-
els. We use the base model without the additional patch
decoder. In addition to the patches the model is trained
to predict how many instances there are per pixel (numinst
in the code) modelled as a categorical prediction task with
the categories: zero, one and more than one instance. We
use PyTorch [19] in combination with gunpowder [6] for
training with the following standard random augmentations:
Elastic, Intensity, Flipping. We add the following augmen-
tations: Overlay (overlaying two random image crops to
simulate denser images), Permute (randomly permute color
channels), Hue (random rotation of the color wheel). We
train the model only on the completely labeled data as the
training is not directly applicable to partly labeled data.

The models are trained for 300k iterations with a learn-
ing rate of 0.0001 using Adam[10], storing weight check-
points every 10k iterations. We use a batch size of 2 and
train on random crops. As most images are in large part
background, we sample foreground and areas where neu-
rons overlap with higher probability. The exact ratios de-
pend on the model and are detailed in the respective pro-
vided configuration files. The training code is available
here: https://github.com/Kainmueller-Lab/PatchPerPix.

We select the best checkpoint, the best patch threshold
and the best threshold for the numinst prediction based on
the validation set and report both the validation results and
the final results on the test set (both combined and sep-
arately for the completely labeled and the partly labeled
dataset). We observed that the models tend to overestimate
the case of a single neuron in a given region and underes-
timate background and neuron overlaps. To counter this,
instead of using a simple argmax, we additionally select
an optimal threshold based on the validation results.

PatchPerPix can only handle overlaps up to the size of
the patch size. As its instance assembly step is compu-
tationally demanding for 3d data, the currently applicable
patch size is restricted. In order to be able to handle larger
overlaps, PatchPerPix needs to be scaled up in future work.

A.3.2 Flood Filling Networks

For Flood Filling Networks (FFN) we mainly follow the
proposed architecture from [7] and the publicly available
code2. We use 12 stacked convolution modules with skip

2original code: https://github.com/google/ffn; and adapted for FISBe:
https://github.com/Kainmueller-Lab/ffn

connections in between, where each convolution module
consists of two 3d convolution layers. The field of view
(FoV) size, which corresponds to the spatial dimensions of
the network’s input and output size, is 33×33×33 and we
adapted the network to work with three input channel. FFNs
move their current FoV by a short distance after each up-
date to be able to trace the entire object. For this, we use the
cuboid movement policy described in [8] with step size 8
for each dimension. We apply standard data augmentation
by flipping and permuting spatial axis. We train the models
for 2m iterations with batch size 4. The sampling strategy
is the same as in the original work.

During training we use seeds (starting position of the
FoV) generated from ground truth. For prediction we create
the seeds as follows: We convert the three channel input to
a grayscale volume and threshold it to obtain a foreground
mask, where we filter out small connected components. Fi-
nally, we take local maxima on the corresponding distance
transform map. We determine both thresholds (foreground
and small connected components size) during validation.
Aside from that, we choose the best checkpoint, the best
FoV movement threshold and the best final segmentation
threshold based on validation.

We train and test FFNs both on only the completely la-
beled dataset and on the full dataset. In contrast to Patch-
PerPix, FFNs only consider one instance at a time, which
means that there are no changes necessary to train FFNs on
partly labeled samples.

A.3.3 Color Clustering

Duan et al. [2] propose a non-learnt color clustering algo-
rithm based on [24] to segment mouse neurons in Brainbow
[11] images. Brainbow is a stochastic labeling technique
to image neurons in unique colors with light microscopy.
This assumption does not hold for our FISBe dataset, where
multiple neurons and abundant noise can be of the same
color. Thus, some steps of the pipeline (denoising, super-
voxel generation, color clustering, linkage bridging) need
to be adapted to fit our dataset.3

Following the original work, we denoise our 3d images
with bm4d [12]. We use σ = 0.05 as noise standard devi-
ation, and normalize and denoise each channel separately.
For supervoxel generation, we threshold the denoised im-
age with foreground threshold tfg = 0.08, apply distance
transform, and run watershed transform with local maxima
as seeds and the thresholded foreground as mask. All con-
nected components smaller than threshold trm = 800 are
removed. In the next step, all supervoxels are clustered with
Gaussian Mixture Models (GMM). We create an adjacency
matrix where supervoxel pairs have a value > 0, if their
spatial and color distance is smaller than certain thresholds

3code: https://github.com/Kainmueller-Lab/brainbow
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Table 3. Quantitative results of our baseline models on the combined, completely and partly labeled FISBe datasets. We train models both
only on the completely labeled data (ppp, FFN), and on the completely and the partly labeled data (FFN+partly). Note that the scores
are not directly comparable to each other across datasets (combined, completely, partly), but they are comparable across splits (val, test)
and methods within each dataset. We report mean and standard deviation (±) over three independent runs (except for Duan et al.’s as it is
non-learnt). For all scores except FS and FM higher values are better. Continued in Table 4.

Split Method S avF1 C clDiceTP FS FM Cdim Covlp tp tpdim tpovlp

Combined

Val

ppp 0.38±0.02 0.41±0.02 0.35±0.01 0.75±0.02 6.0±0.8 24 ±1.6 0.12±0.01 0.38±0.04 0.46±0.01 0.16±0.04 0.39±0.03

FFN 0.25±0.01 0.27±0.01 0.23±0.01 0.79±0.01 7.0±2.9 12 ±2.0 0.03±0.01 0.30±0.01 0.32±0.01 0.04±0.01 0.37±0.02

FFN+partly 0.27±0.01 0.29±0.01 0.24±0.01 0.79±0.01 7.7±2.6 14 ±0.8 0.02±0.01 0.33±0.02 0.34±0.03 0.03±0.00 0.38±0.04

Duan et al. 0.24 0.26 0.22 0.70 14 13 0.02 0.28 0.37 0.03 0.42

Test

ppp 0.35±0.00 0.34±0.01 0.35±0.01 0.80±0.00 19 ±2.9 52 ±3.4 0.16±0.03 0.27±0.04 0.36±0.01 0.19±0.04 0.19±0.03

FFN 0.25±0.03 0.22±0.04 0.29±0.02 0.80±0.01 17 ±1.7 39 ±5.3 0.03±0.01 0.26±0.03 0.32±0.03 0.00±0.00 0.24±0.05

FFN+partly 0.27±0.01 0.24±0.02 0.31±0.00 0.80±0.01 18 ±3.7 36 ±3.6 0.04±0.01 0.28±0.01 0.36±0.01 0.03±0.00 0.28±0.01

Duan et al. 0.30 0.27 0.33 0.77 45 29 0.03 0.36 0.37 0.03 0.34

Completely

Val

ppp 0.30±0.03 0.34±0.04 0.27±0.03 0.72±0.02 1.7±1.7 3.7±1.3 0.07±0.01 0.41±0.07 0.37±0.06 0.06±0.04 0.47±0.12

FFN 0.18±0.01 0.21±0.01 0.15±0.02 0.78±0.02 0.3±0.5 0.0±0.0 0.10±0.00 0.28±0.02 0.21±0.02 0.00±0.00 0.40±0.00

FFN+partly 0.20±0.01 0.24±0.02 0.17±0.00 0.81±0.02 0.7±0.5 0.3±0.5 0.00±0.00 0.32±0.01 0.22±0.02 0.00±0.00 0.40±0.00

Duan et al. 0.16 0.17 0.15 0.65 2 1 0.00 0.25 0.24 0.00 0.40

Test

ppp 0.34±0.02 0.29±0.04 0.40±0.02 0.81±0.02 3.0±0.8 4.3±1.3 0.14±0.05 0.42±0.03 0.45±0.01 0.19±0.09 0.38±0.10

FFN 0.18±0.04 0.11±0.08 0.26±0.01 0.77±0.05 2.0±0.8 2.0±1.4 0.02±0.02 0.24±0.03 0.31±0.06 0.00±0.00 0.25±0.10

FFN+partly 0.19±0.02 0.10±0.03 0.29±0.02 0.80±0.01 2.3±0.5 1.7±0.5 0.03±0.01 0.32±0.04 0.34±0.06 0.02±0.03 0.42±0.12

Duan et al. 0.28 0.23 0.33 0.81 6 1 0.02 0.43 0.38 0.00 0.50

Partly

Val

ppp 0.48±0.00 0.52±0.00 0.45±0.01 0.79±0.00 3.7±0.9 20 ±0.0 0.19±0.01 0.35±0.01 0.51±0.0 0.25±0.02 0.37±0.00

FFN 0.34±0.01 0.36±0.01 0.32±0.01 0.79±0.01 7.3±2.9 12 ±1.6 0.06±0.02 0.33±0.00 0.37±0.02 0.06±0.02 0.39±0.03

FFN+partly 0.34±0.02 0.36±0.03 0.32±0.01 0.77±0.01 8.0±1.6 13 ±0.9 0.04±0.02 0.34±0.02 0.38±0.03 0.03±0.02 0.39±0.04

Duan et al. 0.32 0.35 0.30 0.74 12 12 0.04 0.31 0.41 0.04 0.43

Test

ppp 0.35±0.01 0.40±0.00 0.31±0.02 0.79±0.01 15 ±1.9 46 ±1.7 0.15±0.02 0.15±0.02 0.33±0.01 0.13±0.02 0.17±0.02

FFN 0.33±0.02 0.35±0.02 0.32±0.02 0.80±0.01 16 ±2.5 37 ±4.0 0.03±0.01 0.23±0.03 0.34±0.02 0.00±0.00 0.23±0.04

FFN+partly 0.34±0.02 0.36±0.03 0.33±0.02 0.82±0.01 17 ±2.5 35 ±3.7 0.04±0.01 0.25±0.03 0.34±0.02 0.05±0.00 0.25±0.01

Duan et al. 0.33 0.32 0.34 0.73 39 28 0.04 0.28 0.37 0.05 0.32

(δs = 5, δc = 14). Moreover, we use the Bayes Information
Criterion (BIC) to determine the number of clusters for the
GMM clustering. Finally, as same colored, but not touching
neurons are clustered together, we apply connected compo-
nent analysis for each GMM cluster with a distance thresh-
old (∆s = 20). Please note, that differing from the original
works, we omit supervoxel subdivision and merging, PCA
as well as linking bridging, because these steps did not im-

prove performance for our dataset. We determined σ, tfg ,
trm, δs, δc and ∆s during validation.

A.4. Biological Background and Motivation

This section gives a brief overview of the advances our
dataset will facilitate in the field of basic neuroscience.
Based on neuron instance segmentations in MCFO images,
neurons can be studied threefold: (1) Clustering and subse-
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Table 4. Quantitative results of our baseline models on combined, completely and partly labeled FISBe datasets (continuation of Table 3).

Split Method F10.1 F10.2 F10.3 F10.4 F10.5 F10.6 F10.7 F10.8 F10.9

Combined

Val

ppp 0.62±0.03 0.57±0.03 0.53±0.01 0.50±0.02 0.49±0.02 0.43±0.01 0.28±0.03 0.22±0.05 0.10±0.02

FFN 0.38±0.01 0.36±0.01 0.34±0.01 0.32±0.00 0.30±0.01 0.27±0.01 0.22±0.02 0.17±0.01 0.07±0.01

FFN+partly 0.40±0.02 0.38±0.02 0.37±0.02 0.35±0.01 0.34±0.01 0.31±0.01 0.24±0.01 0.18±0.01 0.07±0.01

Duan et al. 0.38 0.37 0.34 0.33 0.33 0.27 0.18 0.09 0.03

Test

ppp 0.50±0.01 0.48±0.01 0.44±0.01 0.41±0.02 0.35±0.02 0.29±0.02 0.26±0.01 0.19±0.02 0.12±0.01

FFN 0.34±0.05 0.31±0.04 0.28±0.04 0.25±0.05 0.22±0.04 0.20±0.04 0.17±0.03 0.12±0.01 0.07±0.01

FFN+partly 0.36±0.02 0.32±0.02 0.30±0.02 0.27±0.03 0.25±0.03 0.21±0.03 0.18±0.02 0.15±0.02 0.09±0.01

Duan et al. 0.43 0.38 0.35 0.33 0.31 0.29 0.20 0.12 0.06

Completely

Val

ppp 0.57±0.07 0.50±0.05 0.46±0.02 0.43±0.05 0.41±0.07 0.34±0.03 0.19±0.02 0.14±0.07 0.04±0.02

FFN 0.31±0.04 0.28±0.04 0.26±0.03 0.24±0.01 0.24±0.01 0.22±0.03 0.16±0.03 0.13±0.01 0.04±0.03

FFN+partly 0.32±0.03 0.30±0.01 0.28±0.02 0.26±0.04 0.26±0.04 0.24±0.03 0.23±0.02 0.15±0.02 0.08±0.03

Duan et al. 0.24 0.24 0.24 0.24 0.24 0.20 0.10 0.00 0.00

Test

ppp 0.40±0.04 0.38±0.03 0.37±0.03 0.34±0.05 0.30±0.04 0.27±0.06 0.23±0.05 0.18±0.04 0.11±0.01

FFN 0.16±0.11 0.16±0.11 0.15±0.10 0.14±0.10 0.12±0.08 0.09±0.06 0.08±0.05 0.05±0.04 0.02±0.02

FFN+partly 0.15±0.04 0.15±0.04 0.14±0.04 0.12±0.04 0.11±0.04 0.10±0.03 0.08±0.02 0.07±0.03 0.03±0.01

Duan et al. 0.31 0.29 0.27 0.27 0.27 0.27 0.20 0.14 0.06

Partly

Val

ppp 0.73±0.01 0.68±0.01 0.65±0.01 0.61±0.01 0.59±0.00 0.54±0.02 0.41±0.03 0.28±0.00 0.19±0.01

FFN 0.49±0.01 0.47±0.01 0.45±0.02 0.41±0.01 0.40±0.01 0.37±0.01 0.29±0.03 0.22±0.02 0.10±0.02

FFN+partly 0.50±0.04 0.47±0.04 0.46±0.05 0.42±0.05 0.41±0.06 0.36±0.05 0.26±0.02 0.22±0.00 0.09±0.02

Duan et al. 0.51 0.49 0.44 0.42 0.42 0.34 0.25 0.18 0.06

Test

ppp 0.62±0.02 0.58±0.01 0.51±0.01 0.47±0.00 0.40±0.01 0.33±0.01 0.28±0.01 0.21±0.02 0.17±0.01

FFN 0.55±0.04 0.49±0.01 0.44±0.02 0.40±0.02 0.36±0.02 0.32±0.03 0.27±0.02 0.21±0.01 0.11±0.01

FFN+partly 0.57±0.06 0.51±0.04 0.47±0.03 0.40±0.04 0.36±0.03 0.31±0.03 0.28±0.03 0.23±0.02 0.14±0.02

Duan et al. 0.55 0.48 0.43 0.39 0.35 0.31 0.19 0.09 0.06

quent statistical analysis of neuron morphologies may yield
insights into neuronal cell types and their variability [3, 4].
(2) Locating a neuron morphology of interest in multiple
MCFO images facilitates the creation of novel transgenic
lines that sparsely express the neuron of interest, which in
turn facilitates functional analyses of individual neurons of
interest in vivo [20]. (3) Information on neuron connectiv-
ity and neuron function can be fused by locating neurons
segmented from electron microscopy (EM) data in MCFO
images and subsequent in vivo studies as in (2) [15, 16, 25].
For these tasks, instance segmentations do not necessar-
ily need to cover all true neurons: Given that MCFO im-

ages express only a random subset of neurons in the first
place, missing some dim neurons in an instance segmenta-
tion, while further reducing recall, does not introduce a cat-
egorically new source of error. More specifically, segment-
ing a subset of neurons with high individual clDice score
is preferable to segmenting all neurons but only partly. We
acknowledge these application-derived preferences in our
selection of metrics (see Sec. 3 of the main paper).

A.5. Sample Information and Visualization

Table 5 provides a list of the included MCFO acquisitions
in the completely labeled FISBe dataset including informa-
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1) VT058571-20170926 64 G6

2) R73H08-20181030 62 G5

3) VT027175-20171031 62 H6

4) VT028606-20170721 65 A3

(a) MCFO (b) gt (c) ppp (d) FFN (e) Duan et al.

Figure 7. Qualitative results for our three baseline methods: PatchPerPix (ppp), Flood Filling Networks (FFN) and Duan et al.’s color
clustering. The columns depict the following: (a): Maximum intensity projection of MCFO sample, (b): ground truth segmentation, (c):
ppp prediction, (d): FFN prediction, and (e): Duan et al.’s result. In (1) all three methods yield some correctly segmented neurons, but ppp
merges the blue one and one of the red ones, FFN does not segment most of the red ones and Duan et al.’s merges the blue neuron with
parts of the red ones; FFN and Duan et al.’s have lower coverage. In (2) the noisy blue channel leads to false positives. In (3) ppp merges
the two neurons whereas FFN and Duan et al.’s split them correctly; FFN additionally segments some noise. In (4) all three methods merge
multiple neurons of different color; Duan et al.’s has lower coverage.

tion on the split (train/val/test) in which each sample was
used. Table 6 provides a list of the included MCFO ac-
quisitions in the partly labeled FISBe dataset including in-
formation on the split (train/val/test) in which each sample
was used. Fig. 9 shows orthographic view for an exem-
plary sample. It highlights the thin structures and overall
sparseness of foreground. Fig. 10 shows maximum inten-

sity projections together with the gt instance segmentation
of all samples in the completely labeled set, separated by
train/val/test. Fig. 12 shows maximum intensity projections
together with the gt instance segmentation of all samples in
the partly labeled set, separated by train/val/test.
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1) VT027175-20171031 62 H3

2) R14A02-20180905 65 A6

3) VT058571-20170926 64 G6

4) VT011145-20171222 63 I2

(a) MCFO (b) gt (c) prediction (d) FP/FS (e) FN/FM

Figure 8. Visualization of the results of our PatchPerPix baseline model for four samples of our completely labeled test set, ground truth-
prediction matches are shown for a clDice threshold of 0.5. ((a): Maximum intensity projection of MCFO sample; (b): ground truth
segmentation; (c): predicted segmentation; (d): TP predicted instances in same color code as in (c), FP and FS in red, ground truth in grey;
(e): TP ground truth instances in same color code as in (b), FN in light red, FM in dark red, prediction mask in grey.) In (1) the bright green
neuron is nicely segmented (see (c), in orange). However, there are two more, very dim neurons in the image, these were missed (see (e) in
red). In addition, there is a large number of FP (see (d) in red). In (2) the bright green ones are again nicely segmented (see (c), in yellow
and light blue). The purple prediction (see (c)) covers most of the blue and the red neurons, unfortunately resulting in a false merge (FM),
despite having very different colors. The blue one still counts as a TP, the red one though as a FN, more precisely a FM (shown in dark red
in (e)). There is a very dim red neuron next to the left green one that is missed completely (shown in bright red in (e)). There is a dim blue
neuron between the two green ones that is mostly missed resulting in a few FS (shown in red in (d)). In (3) there are a number of unlabeled
neurons. There are two bright red neurons, only one is labeled (shown by the absence of a label in (b)). There are a couple of somewhat
dim neurons of different colors (there are still visible relatively well when zooming in). We can see that our prediction, as desired, includes
the unlabeled neurons (see (c)). We can also see that, as they are not shown in (d) and again as desired, they are counted neither as TP nor
as FP. There are again some FM, the bright blue neuron is segmented well but unfortunately the prediction is merged with other neurons
(note that it is not shown in dark red (FM) in (e) as it is merged with unlabeled neurons, thus it is not possible to automatically tag it as a
FM). (4) shows an extreme FM case. There is a cluster of multiple overlapping bright neurons in different colors (see (a) and (b)). In the
prediction they are all merged (shown in dark red in (e)), thus there is no TP (shown by the absence of colored segmentation masks in (d)).
In addition there are a number of dim neurons that have been overlooked by the model (shown in bright red in (e)).
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Maximum intensity projection XY-View YZ-View

XZ-View

Figure 9. Maximum intensity projection and orthographic views for sample VT007080-20170517 61 A2. The orthographic views highlight
the overall sparseness of the foreground and thinness of the neuronal structures.

Table 5. List of MCFO acquisitions in completely labeled FlyLight Instance Segmentation dataset with sample name (<GAL4 line>-
<slide code>), number of annotated neurons, density category and split.

Sample name Neurons Cat. Split Sample name Neurons Cat. Split

R38F04-20181005 63 G3 2 2 train VT047848-20171020 66 J2 5 2 train
R38F04-20181005 63 G5 3 2 train VT047848-20171020 66 I5 12 2 train
R38F04-20181005 63 H1 3 2 train VT061467-20180911 62 E5 4 2 train
R53A10-20181019 64 A4 1 2 train R22C03-20180918 66 J2 2 2 val
R75E01-20181030 64 D1 3 2 train VT012403-20171128 61 B2 5 2 val
VT008647-20171222 63 D2 6 3 train VT033614-20171124 64 H5 3 3 val
VT008647-20171222 63 D1 7 3 train VT033614-20171124 64 H1 4 3 val
VT008647-20171222 63 E1 8 3 train VT041298-20171114 63 C3 7 2 val
VT019303-20171013 65 B6 3 2 train JRC SS04989-20160318 24 A2 3 2 test
VT019307-20171013 65 F1 6 3 train R14A02-20180905 65 A6 7 3 test
VT033051-20171128 61 E4 2 2 train R54A09-20181019 64 H1 1 2 test
VT033051-20171128 61 E2 4 2 train VT011145-20171222 63 I1 9 3 test
VT040433-20170919 63 D6 8 2 train VT027175-20171031 62 H3 3 2 test
VT047848-20171020 66 I3 3 2 train VT027175-20171031 62 H4 6 2 test
VT047848-20171020 66 I2 4 2 train VT050157-20171110 61 C1 5 2 test
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Table 6. List of MCFO acquisitions in partly labeled FlyLight Instance Segmentation dataset with sample name (<GAL4 line>-<slide
code>), number of annotated neurons, density category and split.

Sample name Neurons Cat. Split Sample name Neurons Cat. Split

R14B11-20180905 65 D2 5 2 train VT050217-20171110 61 D6 5 2 train
R14B11-20180905 65 D6 9 2 train VT050217-20171110 61 E1 6 2 train
R24D12-20180921 65 J6 5 3 train VT058568-20170926 64 E1 13 3 train
R38F04-20181005 63 G2 1 2 train VT060731-20170517 63 F1 6 2 train
R38F04-20181005 63 G4 2 2 train VT060731-20170517 63 F2 7 2 train
VT003236-20170602 62 G4 6 3 train VT061467-20180911 62 E4 1 2 train
VT003236-20170602 62 G5 6 3 train VT062059-20170727 61 D4 6 2 train
VT007080-20170517 61 A2 4 2 train JRC SS05008-20160318 24 B1 4 val
VT007080-20170517 61 A4 10 2 train JRC SS05008-20160318 24 B2 6 val
VT007080-20170517 61 A5 15 2 train R22C03-20180918 66 J1 3 2 val
VT008135-20171122 61 C2 4 2 train R9F03-20181030 62 B5 3 2 val
VT008647-20171222 63 D5 6 3 train VT008194-20171222 63 A3 13 2 val
VT008647-20171222 63 D6 7 3 train VT008194-20171222 63 A5 17 2 val
VT010264-20171222 63 H2 12 3 train VT012403-20171128 61 B1 6 2 val
VT010264-20171222 63 H5 19 3 train VT033614-20171124 64 H4 2 3 val
VT011049-20180918 66 I1 2 1 train VT039350-20171020 64 A1 11 3 val
VT024641-20170615 62 D2 7 2 train VT039350-20171020 64 A3 8 3 val
VT024641-20170615 62 D3 4 2 train VT039350-20171020 64 A6 5 3 val
VT024641-20170615 62 D5 5 2 train VT059775-20170630 63 D5 7 2 val
VT024641-20170615 62 D6 10 2 train R54A09-20181019 64 H4 4 2 test
VT024641-20170615 62 E1 4 2 train R54A09-20181019 64 H6 1 2 test
VT025523-20170915 64 I1 11 2 train R73H08-20181030 62 G5 2 2 test
VT026776-20171017 62 J1 13 3 train VT006202-20170511 63 C4 8 2 test
VT033051-20171128 61 E3 1 2 train VT011145-20171222 63 I2 8 3 test
VT033296-20171010 62 B4 4 2 train VT021537-20171003 61 C3 5 3 test
VT034391-20171128 61 G2 2 2 train VT023747-20171017 61 F1 10 2 test
VT038149-20171103 62 F1 6 3 train VT027175-20171031 62 H6 2 2 test
VT039484-20171020 64 C1 7 3 train VT028606-20170721 65 A2 14 3 test
VT039484-20171020 64 C2 12 3 train VT028606-20170721 65 A3 12 3 test
VT040430-20170919 63 C4 3 2 train VT033453-20170721 65 D2 7 2 test
VT040433-20170919 63 E1 6 2 train VT033453-20170721 65 D4 7 2 test
VT045568-20171020 66 C5 4 2 train VT033453-20170721 65 D5 5 2 test
VT045568-20171020 66 D2 3 2 train VT046838-20170922 62 A2 8 2 test
VT047848-20171020 66 I1 6 2 train VT050157-20171110 61 C5 3 2 test
VT047848-20171020 66 I4 8 2 train VT058571-20170926 64 G6 5 2 test
VT047848-20171020 66 J1 8 2 train
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Training set

Figure 10. Maximum intensity projections (MIP) of 3d light microscopy samples and ground truth (gt) instance segmentations of all
samples in the completely labeled set. MIP and gt are depicted next to each other in alternating order. Images are scaled to same width,
some images are center cropped. Figure continued on next page.
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Validation set

Test set

Figure 11. Maximum intensity projections (MIP) of 3d light microscopy samples and ground truth (gt) instance segmentations of all
samples in the completely labeled set. MIP and gt are depicted next to each other in alternating order. Images are scaled to same width,
some images are center cropped. Figure continued from previous page.
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Training set

Figure 12. Maximum intensity projections (MIP) of 3d light microscopy samples and ground truth (gt) instance segmentations of all
samples in the partly labeled set. MIP and gt are depicted next to each other in alternating order. Images are scaled to same width, some
images are center cropped. Figure continued on next page.
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Training set (continued from previous page)

Figure 13. Maximum intensity projections (MIP) of 3d light microscopy samples and ground truth (gt) instance segmentations of all
samples in the partly labeled set. MIP and gt are depicted next to each other in alternating order. Images are scaled to same width, some
images are center cropped. Figure continued on next page.
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Training set (continued from previous page)

Validation set

Figure 14. Maximum intensity projections (MIP) of 3d light microscopy samples and ground truth (gt) instance segmentations of all
samples in the partly labeled set. MIP and gt are depicted next to each other in alternating order. Images are scaled to same width, some
images are center cropped. Figure continued on next page.
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Test set

Figure 15. Maximum intensity projections (MIP) of 3d light microscopy samples and ground truth (gt) instance segmentations of all
samples in the partly labeled set. MIP and gt are depicted next to each other in alternating order. Images are scaled to same width, some
images are center cropped. Figure continued from previous page.
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