
OpenEQA: Embodied Question Answering in the Era of Foundation Models

Supplementary Material

A. Acknowledgements
The Georgia Tech effort was supported in part by ONR YIP
and ARO PECASE. The views and conclusions contained
herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorse-
ments, either expressed or implied, of the U.S. Government,
or any sponsor.

B. OpenEQA Benchmark Details
This section provides further details on the construction of
the OpenEQA benchmark (Sec. 2.3). Specifically, we de-
scribe the process for generating human-like episode histo-
ries H for EM-EQA (Appendix B.1), the interface for col-
lecting question-answer pairs (Q, A

⇤) (Appendix B.2), and
the interface used to validate the dataset (Appendix B.3).

B.1. Generating Episode Histories H

Episode histories H provide agents with observations of
the environment, and are used for the EM-EQA split
of OpenEQA in both ScanNet and HM3D environments
(see Sec. 1.1). The ScanNet dataset was originally collected
by people who were asked to scan indoor environments with
an RGB-D camera. We use the initial 30 seconds (or 600
frames) of these human trajectories from ScanNet as EM-
EQA episode histories H .

HM3D consists of scanned 3D environments, but does
not come with pre-collected environment tours. Thus,
we generate episode histories H using a two-step, semi-
automated process. First, we generate a shortest-path tra-
jectory from a starting location xsrc to a destination xdst in
the environment. We select locations such that the geodesic
distance between xsrc and xdst is > 10m and the path curves
(enforced by the criteria that the geodesic path distance �
1.1⇥Euclidean path distance). Under these constraints, the
paths typically traverse multiple rooms in the environment.
To collect an episode history H , an agent travels along the
path, while scanning the scene every 1m by rotating up to
180�. These scans are intended to mimic human-like explo-
ration behavior. After collecting the trajectories, we manu-
ally inspect each trajectory to ensure they properly explore
the scene; we exclude trajectories with extended periods
closely facing walls. This process results in one episode
history H for 63 different HM3D validation environments.

B.2. Collecting Question-Answer Pairs (Q, A
⇤)

We use a Google Form to collect question-answer pairs
(Q, A

⇤) annotations from 8 different AI researchers.
Specifically, the annotators watch a video of a given episode

history H , and generate questions for the 7 categories listed
in Sec. 2.3. In the form, each category is described and one
to two good and bad example questions are provided.

B.3. Interface for Dataset Validation

After the initial collection of question-answer pairs Q, A
⇤,

we ask two independent people to validate each question.
Specifically, the validators are shown an episode history H

and a corresponding question Q on a simple HTML page.
They are asked to provide an answer or mark the question
as invalid (i.e. ambiguous or unanswerable). For the sub-
set of object localization questions, we ask the validators to
provide two answers for each questions because referring
expressions often have multiple valid options (e.g. an ob-
ject may be both ‘left of the sink’ and ‘right of the stove’).
We remove any question marked invalid by either validator.

C. LLM-based Evaluation Details
OpenEQA questions often require open-ended answers, we
use an LLM to evaluate correctness of answer produced by
EQA agents. We prompt an LLM to compare human anno-
tated answer A

⇤
i and model output Ai given a question Qi

and output a score �i on a scale of 1 to 5. On this scale, 1
indicates an incorrect response, 5 is a correct response and
intermediate values represent different levels of similarity.
Since questions can often have multiple correct answers,
we also provide extra answers to the LLM prompt during
scoring. We show the LLM prompt in Figure 6. Given the
scores �i, we calculate an aggregate LLM-based correct-
ness metric (LLM-Match) using Equation (1).

D. EQA Agent Function Signatures
In this section, we describe the function signature that is

expected from an agent by OpenEQA benchmark.
Box 1 describes the function signature for the EM-EQA

task. An agent is expected to produce a text answer to a
question based on an episode history. The episode history
generally consists of RGB, depth, camera pose, and camera
intrinsic information. The benchmark does not prescribe
any specific way to use the history. A variety of different ap-
proaches and representations of the history can be pursued
by researchers, such as point clouds, NeRFs, or instance
maps. Since all methods have the same set of episode his-
tory information at their disposal, it allows for a fair com-
parison of methods. The final natural language answer is
evaluated using LLM-Match metric described in Sec. 2.4
and Appendix C.



Figure 6. Prompt used for LLM-Match scoring. The placeholders {question}, {answer}, {extra answers}, and
{prediction} are replaced by the question Q, ground truth answer A⇤, additional answer, and the agent’s predicted answer A, re-
spectively. Note that the extra answers are only available for object localization questions. When not available, corresponding sections of
the prompt are omitted.

You are an AI assistant who will help me to evaluate the response given the question,
the correct answer, and extra answers that are also correct. To mark a response, you
should output a single integer between 1 and 5 (including 1, 5). 5 means that the
response perfectly matches the answer or any of the extra answers. 1 means that the
response is completely different from the answer and all of the extra answers.

Example 1:
Question: Is it overcast?
Answer: no
Extra Answers: [’doesn’t look like it’, ’no’,’ it’s sunny’]
Response: yes
Your mark: 1

Example 2:
Question: Who is standing at the table?
Answer: woman
Extra Answers: [’a woman’, ’a lady’, ’woman’]
Response: Jessica
Your mark: 3

Example 3:
Question: Are there drapes to the right of the bed?
Answer: yes
Extra Answers: [’yes, there are drapes’, ’yeah’, ’the drapes are to the right of the
king bed’]
Response: yes
Your mark: 5

Your Turn:
Question: {question}
Answer: {answer}
Extra Answers: {extra answers}
Response: {prediction}

Similarly, Box 1 also describes the expected function
signature for A-EQA task. Here, an agent does not re-
ceive an episode history and must generate its own expe-
rience through exploration. To allow standardization, we
provide access to the simulation environment and start state
as part of the benchmark. The state allows for instantiat-
ing an environment and fixing the starting location of the
agent and various objects. We do not prescribe a specific
navigation API for the benchmark, researchers are free to
pursue different abstractions such as atomic navigation ac-
tions or navigation skills, as long as it doesn’t use any privi-
leged simulation information. The final answer is evaluated
for correctness using LLM-Match, and the efficiency (see
Sec. 2.5) is computed using the number of atomic actions
taken by the agent (to allow for standardization).

E. Baseline Agent Details
This section provides additional details and LLM prompts
for the blind LLM baseline (Appendix E.1), Socratic LLM
w/ Frame Captions example (Appendix E.2), and GPT-4V
(Appendix E.3).

E.1. Blind LLM Prompt and Details
The prompt used for both our LLaMA-2 and GPT-4 blind
LLM baselines is illustrated in Fig. 7. We use the 70B pa-
rameter version of LLaMA-2 that is fine-tuned for chat, and
the gpt-4-0613 version of GPT-4.

E.2. Socratic LLM w/ Frame Captions Example
Figure 8 shows how Socratic LLM w/ Frame Captions base-
line produces an answer to a question given K frames sam-



Algorithm 1 EQA Agent Signatures

def EMEQA_Agent(Q: str, H: dict) -> str:

""" Function signature for EM-EQA Agents

Args:

- Q: EQA question

- H: episodic memory (history)

- keys -> rgb: image,

depth: image,

c_pose: camera pose,

c_in: camera intrinsics

- H["rgb"] = np.array(T, H, W, 3)

- H["depth"] = np.array(T, H, W, 1)

- H["c_pose"] = np.array(T, 6)

- H["c_in"] = np.array(T, 6)

Returns:

- answer: natural language

"""

...

return answer

def AEQA_Agent(Q: str,

S: dict) -> Tuple[str, int]:

""" Function signature for A-EQA Agents

Args:

- Q: EQA question

- S: initial state of simulator

- keys -> metadata

- S["metadata"] = Dict[str, Any]

Returns:

- answer: natural language

- T: episode lifetime. Timesteps

taken to answer the question

"""

env = make_env(S["metadata"])

env.set_state(S)

...

return answer, T

pled from episodic memory H . We use LLaVa-1.5 to gen-
erate image captions. We use the 70B parameter version of
LLaMA-2 that is fine-tuned for chat, and the gpt-4-0613
version of GPT-4 for large language model.

E.3. GPT-4V Details
Given an episodic memory H , we draw K frames and pass
it to GPT-4V (through the API) in addition to question Q

and prompt !. We use chain-of-thought prompting in !.
We choose K = 50 for EM-EQA and K = 75 for A-EQA.
Figure 9 shows the prompt ! and the input format passed to
GPT-4V.

F. Sparse Voxel Maps
For building SVM, we use K uniformly-sampled frames
from the episode history H . K varies across difference
scenes but the principle is to find the minimum number of K

Figure 7. Prompt used for Blind LLM baselines. The place-
holder {question} is replaced by the question Q. The same
prompt is used for LLaMA-2 and GPT-4.

You are an intelligent question answering
agent. I will ask you questions about
an indoor space and you must provide an
answer.

If the question does not provide enough
information to properly answer, provide
an appropriate guess.

Q: What machine is on top of the stove?
A: The microwave
Explanation: stoves are typically found
in kitchens and near microwaves.

Q: What piece of furniture is in the
middle of the bedroom?
A: a bed
Explanation: bedrooms almost always
contain a bed.

Q: Is the door open or closed?
A: open
Explanation: the door can be in either
state, so we just randomly pick one.

Q: {question}

(for reducing the run-time memory consumption) to cover
the whole environment. We process each sampled frame
with the following two steps:
Step 1. Detecting object views in the frame using Detic.
Each object view v is a tuple of hc, bi, where c is the 2D
image crop of the object and b is the 3D bounding box in
the world coordinate system. We first extract object masks
from the frame by setting the vocabulary for Detic to more
than 500 household object categories. Then we get the im-
age crop c around each detected mask with an additional
margin. We then use depth information to get a 3D point
cloud where we run DBSCAN [10] to further filter out back-
ground points, and compute the bounding box b. Note that
we only consider depths that are in the range of [0.1m, 4m].
Step 2. Associating each object view v with a global ob-
ject instance o. Most objects will be detected in more than
one frame, and a main goal of SVM is to de-duplicate object
views to create global object instances. Each global object
instance o is a tuple of hC, b

⇤i, where C is a list a image
crops (i.e., c) from multiple viewpoints (i.e., v), and b

⇤ is
a re-computed 3D bounding box from a concatenated point
cloud of different views. For matching v to o, SVM consid-
ers 3D bounding box overlapping and CLIP [35] embedding
similarity.
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A: A chalkboard with 
various writings 
and drawings, a 

bulletin board, and 
a cork board are 

hanging on the wall 
perpendicular to the 

windows

A computer desk 
with a monitor, 

keyboard, mouse, 
and a printer.

A blue chair is in 
front of a desk with 

a computer and 
printer.

A cluttered desk 
with a bulletin 

board and a cork 
board on the wall.

You are an intelligent embodied agent that can answer questions and plan a series of actions. You will 
be shown a set of images that have been collected from a single home or office space. Given a user 
query, you must output `text` to answer to the question asked by the user. Be as concise and as precise 
as possible.

Your response should start with Answer: and should be formatted as [response(text)]

Example: 
1. Images: <img_1>A book on a coffee table</img_1>, <img_2>A gray hat hanging on the wall</
img_2>, <img_3>A mug on a desk</img_3>, <img_4>A kitchen table</img_4>, <img_5>A roll of 
tape on a desk</img_5> 
Query: What object is on coffee table? 
Answer: [response("book")] 

2. Images: <img_1>A book on a coffee table</img_1>, <img_2>A gray hat hanging on the wall</
img_2>, <img_3>A mug on a desk</img_3>, <img_4>A kitchen table</img_4>, <img_5>A roll of 
tape on a desk</img_5>
Query: What is the color of hat hanging on the wall? 
Answer: [response("gray")] 

Your turn:
Images: <img_1>A computer desk with a monitor, keyboard, mouse, and a printer.</img_1>, 
<img_2>A blue chair is in front of a desk with a computer and printer.</img_2>,…..,<img_k>A 
cluttered desk with a bulletin board and a cork board on the wall.</img_k>
Query: What is hanging on the wall perpendicular to the windows?

Prompting

Figure 8. Input example for Socratic LLMs w/ Frame Captions baseline. We first caption each of the K frames with an image captioner
and then prompt the LLM with those captions along with the question. The large langauge model produces an answer.

Figure 9. GPT4V input prompt.

You are an intelligent embodied agent
that can answer questions. You will
be shown a set of images that have been
collected from a single location. Given
a user query, you must output ‘text‘ to
answer to the question asked by the user.

User Query: {question}
Think step by step.

After SVM is constructed, we then select the best crop
from C per global instance o, where the object mask takes
up the largest number of pixels. Each selected crop is passed
to LLAVA-1.5 [26] to get the textual description, and all the
descriptions with the instances’ 3D coordinates (center of
the bounding box b

⇤) are wrapped in a prompt for an LLM
to answer the question Q. Limited by the LLM’s capacity,
we only consider topN (N = 75) instances ranked by the
CLIP similarity between their visual feature and Q from all
the instances we detect in SVM.

G. Force-A-Guess Details
As discussed in Sec. 3, we force baseline agents to guess an
answer if they initial abstain – i.e. respond with an expla-
nation for why the question is unanswerable. Specifically,
we first ask an LLM if the initial answer is an abstaining
response, and if so we replace the answer with a guess from
a blind LLM. For step 1, use the prompt shown in Fig. 10.
We provide a comparison baseline performance with and
without this procedure in Appendix H.

H. Force-A-Guess Results
In Tab. 3, we present results illustrating the performance
drop for baseline methods when they are allowed to abstain,
rather than being forced to guess an answer. As expected,

Figure 10. Prompt used for Force-A-Guess. The placeholders
{question} and {old answer} are replaced by the question
Q and initial answer A, respectively. The same prompt is used for
LLaMA-2 and GPT-4.

You are an intelligent question answering
agent. I need you to fix the answers to
these question.

If the proposed answer says the question
is unanswerable you should output the
action ‘‘guess’’. Otherwise, output the
action ‘‘keep’’.

Question: What machine is on top of the
stove?
Proposed Answer: the microwave
Action: keep

Question: What piece of furniture is in
the middle of the bedroom?
Proposed Answer: The question is
unanswerable from the provided images.
Action: guess

Question: {question}
Proposed Answer: {old answer}

performance drops for most methods. We find that GPT-
4-based methods (rows 3, 5, and 7) show the largest drop
in performance, which corresponds with GPT-4’s propen-
sity to abstain. Specifically, for EM-EQA, GPT-4 abstains
36% to 55% of the time (as measured by GPT-4). LLaMA-
2-based methods abstain 3% to 12% of the time (as mea-
sured by LLaMA-2). Thus, we observe minimal changes in
LLaMA-2-based method scores. Finally, GPT-4V abstains
12% of the time (as measured by GPT-4), corresponding
with a small drop in LLM-Match scores. Similar trends are



Table 3. LLM-Match scores without forcing agents to guess.
*GPT-4V results are calculated on a subset of 500 examples.

# method EM-EQA EM-EQA
(w/o guess)

A-EQA A-EQA
(w/o guess)

Blind LLMs
1 GPT-4 33.5 - 35.5 -
2 LLaMA-2 27.7 - 28.8 -

Socratic LLMs w/ Frame Captions
3 GPT-4 w/ LLaVA-1.5 43.6 29.3 (-14.3) 38.1 23.7 (-14.3)
4 LLaMA-2 w/ LLaVA-1.5 36.7 36.2 (-0.6) 30.9 31.2 (+0.4)

Socratic LLMs w/ Scene-Graph Captions
5 GPT-4 w/ ConceptGraphs 36.5 18.5 (-18.0) 34.4 12.4 (-21.9)
6 LLaMA-2 w/ ConceptGraphs 28.7 26.6 (-2.0) 23.8 18.9 (-4.8)
7 GPT-4 w/ Sparse Voxel Maps 38.9 27.3 (-11.5) 34.2 21.2 (-13.0)
8 LLaMA-2 w/ Sparse Voxel Maps 34.3 34.6 (+0.3) 29.9 29.3 (-0.6)

Multi-Frame VLMs
9 GPT-4V⇤ 49.5 46.7 (-2.8) 41.8 40.6 (-1.2)

Human 86.8 - 85.1 -

observe in the A-EQA setting for all methods.

I. Full Results
Table 4 and Table 5 breaks down performance of different
EQA agents, as described in Section 3, on EM-EQA and
A-EQA respectively by the seven question categories de-
scribed in Section 2.3. Due to API limitations, we only
evaluate GPT4V on a subset of 500 OpenEQA questions
in EM-EQA and 184 OpenEQA questions in A-EQA. We
find that EQA agents with visual information excel at lo-
calizing and recognizing objects and attributes, and make
better use of this information to answer questions that re-
quire world knowledge. However, on other categories, their
performance is closer to the blind LLM baseline (GPT-4),
indicating substantial room for improvement on OpenEQA.

J. Discussion on Blind LLMs.
We found blind LLMs to be a surprisingly strong baseline,
considering they have no access to visual information about
the scene. Upon closer inspection, we found that blind
LLMs are good at “guessing” answers to EQA questions.
For instance, consider the question: ‘Q: What is the color of

the staircase railing?’ GPT-4 answers ‘brown’, and because
many houses have a brown staircase railing, this guess is of-
ten correct. This indicates a certain degree of regularity in
the world such that answers to many questions are similar
across different environments. Nevertheless, we establish a
strong lower bound of performance achievable without per-
ception, and can infer that additional gains are due percep-
tion and semantic grounding.

K. Does explicit coordinate information help?
The primary motivation for object-centric scene-graph rep-
resentations is to have fine-grained perceptual understand-

ing of objects and their locations. Thus, we intuitively ex-
pect that agents equipped with explicit object locations will
fare better in questions that require spatial understanding.
Surprisingly, we find in Tab. 2 that such agents fare no better
than Socratic LLMs that simply use frame-level captions.
We run an ablation experiment (Appendix N) where we re-
move explicit bounding box and size information from the
scene graph, and find that this does not significantly affect
performance, indicating that these LLMs are not able to ef-
fectively use 3D coordinate information in text.

L. LLM-Match Human Alignment and Details
Evaluating open-vocabulary responses to questions is an
open challenge in AI, and in particular for question-
answering. While human evaluation remains the gold-
standard, it is also expensive and time consuming. An au-
tomatic evaluation metric is preferable for benchmarking,
fast iteration, and model selection. We thus use an au-
tomatic LLM-Based evaluation metric in this work as de-
scribed in Section 2.4. We performed analysis experiments
to test the quality of this metric along two axis: (1) How
closely aligned is the LLM-Match metric with human eval-
uators? (2) How sensitive is the LLM-Match metric towards
specific choice of prompts and the LLM?
Human Alignment. To answer the first question, we de-
signed an experiment to measure the agreement between
LLM-Match metric and human evaluators. For this anal-
ysis, we uniformly sampled a subset of 300 questions from
OpenEQA. To ensure coverage of the answer distributions
(i.e. poor, fair, and good answers), we sampled 100 re-
sponses from a blind LLM (LLaMA-2), multi-frame VLM
(GPT-4V), and human baseline answers. In a double blind
study, we then asked 4 human evaluators to score the 300 re-
sponses using an evaluation prompt similar to the one used
by LLM-Match. The evaluators were provided no infor-
mation about the source of the response (except an MD5
hash of the question ID, response source, and annotator ID).
We found a Spearman’s ⇢ = 0.909 between human and
LLM evaluation (bootstrap CI=(0.883,0.928), N=9999),
indicating excellent agreement with human judgement. Ta-
ble 7 shows the Spearman’s ⇢ (a measure of correlation)
between (1) each annotator and other humans and (2) each
annotator and GPT-4 scoring. Human evaluators correlated
with other humans in ⇢ 2 [0.91, 0.93], and with LLMs in
⇢ 2 [0.90, 0.94].
Choice of LLM. Table 6 shows rho between human eval-
uators and different LLMs, on the subset of 100 questions
from GPT4V. GPT-4 scoring shows good agreement with
human scoring (⇢ = 0.88), while GPT3.5 (⇢=0.66) and
LLaMA 2 (⇢=0.68) show lower correlation. We believe
that future LLMs will show higher agreement with human
annotators, and in the meantime we recommend only using
GPT-4 for scoring.



Table 4. Category-level Performance on EM-EQA Rows represent the different agents as described in Section 3 and columns represent
the different category of questions in the dataset, as described in Section 2.3. ⇤GPT-4V scores are calculated on a subset of 500 OpenEQA
question due to API limitations. Bold numbers indicate max in section.

EQA Category

# method object
recognition

object
localization

attribute
recognition

spatial
understanding

object state
recognition

functional
reasoning

world
knowledge

LLM-Match
(C)

Blind LLMs
1 GPT-4 15.4 20.3 31.5 31.4 51.0 52.2 34.2 33.5±1.0

2 LLaMA-2 10.7 15.3 22.3 25.0 51.7 44.1 29.7 28.3±1.0

Average 13.0 17.8 26.9 28.2 51.3 48.2 31.9

Socratic LLMs w/ Frame Captions
3 GPT-4 w/ LLaVA-1.5 36.5 31.9 45.8 36.1 56.0 54.8 44.8 43.6±1.1

4 LLaMA-2 w/ LLaVA-1.5 30.5 18.8 39.4 31.4 50.1 47.4 41.7 36.8±1.1

Average 33.5 25.4 42.6 33.8 53.0 51.1 43.3

Socratic LLMs w/ Scene-Graph Captions
5 GPT-4 w/ ConceptGraphs 26.4 17.0 40.6 29.1 55.5 48.4 39.9 36.5±1.0

6 LLaMA-2 w/ ConceptGraphs 17.1 13.9 24.4 27.2 43.5 38.1 39.0 28.7±1.0

7 GPT-4 w/ Sparse Voxel Maps 30.0 20.0 49.6 31.7 55.5 45.4 40.8 38.9±1.0

8 LLaMA-2 w/ Sparse Voxel Maps 23.4 11.7 38.9 30.8 52.8 45.4 39.1 34.3±1.1

Average 24.2 15.6 38.4 29.7 51.8 44.3 39.7

Multi-Frame VLMs
9 GPT-4V⇤ 43.4 42.0 57.2 33.6 63.2 57.4 50.7 49.6±2.0

Average All Agents 29.6 22.2 42.3 31.4 53.8 48.1 42.3

Human 87.9 77.3 87.9 86.7 98.7 81.8 87.2 86.8±0.6

Table 5. Category-level Performance on A-EQA. Rows represent the different agents as described in Section 3 and columns represent
the different category of questions in the dataset, as described in Section 2.3. ⇤GPT-4V scores are calculated on a subset of 184 OpenEQA
question due to API limitations. Bold numbers indicate max in section.

EQA Category

# method object
recognition

object
localization

attribute
recognition

spatial
understanding

object state
recognition

functional
reasoning

world
knowledge

LLM-Score
(C)

Blind LLMs
1 GPT-4 25.3 28.4 27.3 37.7 47.2 54.2 29.5 35.5±1.7

2 LLaMA-2 13.7 22.1 16.2 29.7 43.3 50.4 28.8 29.0±1.6

Average 19.5 25.2 21.8 33.7 45.3 52.3 29.2

Socratic LLMs w/ Frame Captions
3 GPT-4 w/ LLaVA-1.5 25.0 24.0 34.1 34.4 56.9 53.5 40.6 38.1±1.7

4 LLaMA-2 w/ LLaVA-1.5 19.7 11.7 31.2 28.3 48.1 46.1 35.8 30.9±1.7

Average 22.3 17.8 32.6 31.3 52.5 49.8 38.2

Socratic LLMs w/ Scene-Graph Captions
5 GPT-4 w/ ConceptGraphs 25.3 16.5 29.2 37.0 52.2 46.8 37.8 34.4±1.8

6 LLaMA-2 w/ ConceptGraphs 13.3 11.9 18.8 27.9 31.7 31.7 36.5 23.9±1.6

7 GPT-4 w/ Sparse Voxel Maps 29.0 17.2 31.5 31.5 54.2 39.8 38.9 34.2±1.8

8 LLaMA-2 w/ Sparse Voxel Maps 16.7 9.7 33.4 29.0 47.2 40.5 37.5 29.9±1.7

Average 21.1 13.8 28.2 31.3 46.3 39.7 37.7

Multi-Frame VLMs
9 GPT-4V⇤ 34.0 34.3 51.5 39.5 51.9 45.6 36.6 41.8±3.2

Average All Agents 23.3 17.9 32.8 32.5 48.9 43.4 37.7

Human 89.7 72.8 85.4 84.8 97.8 78.9 88.5 85.1±1.1



Table 6. Varying LLM used for scoring. On a subset of 100 ques-
tions with answers from GPT-4, GPT-4 scoring shows excellent agreement
with human judgement, while using other LLMs shows lower correlation
(Spearman correlation coefficient).

Scorer LLM ChatGPT-4 ChatGPT3.5 LLaMA 2 Human
ChatGPT-4 1.00 0.66 0.68 0.88
ChatGPT3.5 - 1.00 0.66 0.61
LLaMA 2 - - 1.00 0.63
Human - - - 1.00

Table 7. Per-annotator Spearman-⇢. Human scoring has excellent
agreement with both other humans and with LLM scoring.

Annotator vs. Other Humans vs. LLM
0 0.91 0.91
1 0.91 0.91
2 0.92 0.90
3 0.93 0.94

M. LLM-Match Robustness Details

Table 8. LLM Role. Correlation between scores when changing the ‘role’
of the LLM in the scoring prompt (Spearman correlation coefficient).

Role AI “Score Master” Professional
AI 1.00 0.97 0.96
“Score Master” - 1.00 0.97
Professional - - 1.00

Table 9. Match criterion for a ‘5’. Correlation between scores when
changing the criterion in the scoring prompt (Spearman correlation coeffi-
cient).

Match Crit. Perfect Contains Pro Person
Perfect 1.00 0.96 0.95 0.96
Contains - 1.00 0.97 0.97
Pro - - 1.00 0.98
Person - - - 1.00

Table 10. Temperature of scoring LLM. Changing the temperature of
GPT-4 used in scoring (Spearman correlation coefficient).

Temp 0.01 0.1 0.2 0.3
0.01 1.00 0.98 0.98 0.98
0.1 - 1.00 0.97 0.98
0.2 - - 1.00 0.97
0.3 - - - 1.00

Our LLM-Match uses the specific evaluation prompt de-
scribed in Fig. 6. The metric is stable under small permuta-
tions of the prompt and LLM-Match settings as illustrated
in Table 8, Table 9 and Table 10, which show the correlation
in LLM-Match scores using different prompting strategies,
assessed on 500 GPT-4V answers.
Role: Table 8 demonstrates that changing the LLM’s role
from ‘AI’ to ‘Score Master’ or ‘professional evaluator’ does
not significantly change the results, and scores between any
two treatments have a tight correlation with a Spearman’s ⇢

all above 0.95.

Match criterion: Similarly, Table 9 shows analogous re-
sults (⇢ > 0.95) when changing the description of a ‘5’
from ‘perfect match’ to ‘contains correct answer’, ‘similar
to a reasonable person’, or ‘reasonable professional’.
Temperature: The stochasticity in the evaluation function
has negligible impact as well, as shown by varying the tem-
perature and seed. Table 10 shows results when varying the
temperature used in the GPT-4 scorer from 0.01-0.3, with
results all >0.97.

N. 3D Coordinate Ablation
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Figure 11. Ablating 3D location for scene-graph agents. Re-
moving bounding box locations and extent had no significant ef-
fect for agents using either LLM.

Figure 11 compares the EM-EQA performance of the
Socratic baseline that uses Sparse Voxel Map captions with
and without including 3D bounding box information in the
text descriptions. Results show that explicit bounding box
location and size information from the scene graph does not
significantly change the performance of scene-graph based
agents. This suggests that neither LLM, trained with only
text information, is able to effectively use the 3D location
information.

O. OpenEQA Dataset Examples
Additional examples from the ScanNet and HM3D splits of
OpenEQA are provided in the Figures 12, 13, and 14.



Question-Answer Pairs !, #∗

Episode History $

[Object Recognition] 
Q: What is the red object on the chari?

A*: a backpack

[Attribute Recognition]
Q: Among all the chairs, what is the unique color of the chair?

A*: green

[Spatial Understanding]
Q: Can 10 people sit in this room?

A*: yes

[Object State Recognition]
Q: Is the plastic water bottle open?

A*: no

[Functional Reasoning]
Q: What can I use to write something on using my pencil?

A*: the piece of paper

[World Knowledge]
Q: Were students here lately?

A*: yes

[Object Localization]
Q: Where is my unfinished Starbucks drink? 

A*: on the table near the front whiteboard
Extra Answers: ['On the second table from the front’,

'In the center of the second table.’,
'On the second table from the front’,

'On the table near the windows’]

Figure 12. OpenEQA dataset examples from a ScanNet scene. Note that only a subset of frames from the episode history H are
displayed. Thus, some questions may require additional visual information to answers.

Question-Answer Pairs !, #∗

Episode History $

[Object Recognition] 
Q: What object is on top of the work desk?

A*: shelf

[Attribute Recognition]
Q: what color is the task chair?

A*: black

[Spatial Understanding]
Q: which object is closer to the window, the bed or the trash can?

A*: bed

[Object State Recognition]
Q: Is the closet door fully closed?

A*: no

[Functional Reasoning]
Q: The closet is full. Where can I store a suitcase in this room? 

A*: Under the bed

[World Knowledge]
Q: What are the two main functions or purposes of this room? 
Why did you arrive at those conclusions?

A*: Sleeping, since there is a bed. Working, since there is a task 
chair and desk.

[Object Localization]
Q: Where is the two-tier shelf? 

A*: on top of the desk
Extra Answers: ['On top of the desk.’,

'On the left when you first walk in to the room.’,
'above the desk infront of the chair’,

'on top of the desk']

Figure 13. OpenEQA dataset examples from a ScanNet scene. Note that only a subset of frames from the episode history H are
displayed. Thus, some questions may require additional visual information to answers.



Question-Answer Pairs !, #∗

Episode History $

[Object Recognition]
Q: what is on the chair?

A*: a soft pillow

[Attribute Recognition]
Q: is the outside door open or closed?

A*: open

[Spatial Understanding]
Q: is the table in the living room clean?

A*: yes

[World Knowledge]
Q: what is special about the wall in the living room?

A*: it seems to be made of stone

[Object Localization]
Q: where is the standing lamp?

A*: next to the bed in the bedroom
Extra Answers: ['in the bedroom',

'to the left of the bed',
'the bedroom',

'The room with the bed and the bathroom']

Figure 14. OpenEQA dataset examples from an HM3D scene. Note that only a subset of frames from the episode history H are
displayed. Thus, some questions may require additional visual information to answers.
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