
Learning Spatial Features from Audio-Visual Correspondence
in Egocentric Videos Supplementary Material

Sagnik Majumder1,2 Ziad Al-Halah3 Kristen Grauman1,2

1UT Austin 2FAIR, Meta 3University of Utah

In this supplementary material, we provide additional
details about:
• Video (with audio) for qualitative illustration of our pre-

text task and qualitative evaluation of our model on the
downstream tasks (Sec. 1), as noted in Sec. 4.3 in main.

• Spatial audio denoising results with varying noise levels
(Sec. 2), as mentioned in Sec. 4.2 in main

• Evaluation of the impact of the channel masking probabil-
ity r (from Sec. 3.3 and 3.4 in main) in our audio masking
protocol (Sec. 3)

• Analysis of the effect of alternate audio masking choices
(Sec. 4), as referenced in Sec. 4.2 in main

• Study of the effect of multi-level positional embeddings
(Sec. 5), as noted in Sec. 4.2 in main

• Analysis of the effect of task-specific backbones (Sec. 6),
as mentioned in Sec. 4.2 in main

• Comparison of model capacity and computational cost
among different pretraining methods (Sec. 7), as noted in
Sec. 4.2 in main

• Qualitative analysis of the visual attention maps for left
and right audio channels separately (Sec. 8), as referenced
in Sec. 4.3 in main

• Analysis of the impact of our finetuning strategy (Sec. 9),
as noted after Sec. 4.2 in main

• Evaluation of the impact of our model parameter initial-
ization on the downstream performance (Sec. 10)

• Additional dataset details (Sec. 11), as mentioned in Sec. 4
in main

• Additional model architecture and hyperparameter details
for both self-supervised pretraining and downstream train-
ing (Sec. 12), as referenced in Sec. 3.4 in main

1. Supplementary video
The supplementary video provides a qualitative illustration
of our pretraining task for learning spatial features from
audio-visual correspondence in egocentric videos, and our
proposed approach. Moreover, we provide video samples
from the both EgoCom [14] and EasyCom [2] datasets to il-
lustrate the unique challenges posed by the egocentric videos.
Additionally, we demonstrate our model’s prediction quality
for both active speaker detection and spatial audio denois-

ing, and analyze common failure models for our model on
both tasks. Please use headphones to hear the binaural audio
correctly. The video is available on http://vision.cs.
utexas.edu/projects/ego_av_corr.

2. Denoising with varying noise levels
In table 2 in main, we evaluated denoising with 0 dB noise.
Here, we analyze the effect of varying the noise level. Table 1
reports the results with 2.5 dB and 5 dB noise. We observe
general similarity in performance trends across all noise
levels. Whereas our model outperforms the baselines in the
high-noise settings (0 and 2.5 dB), using 2.5D-VS [4]++
improves the separation quality for 5 dB, underlining that
our features are especially important for tackling the more
challenging high-noise settings.

3. Channel masking probability r

Here, we analyze the effect of the channel masking prob-
ability r in our audio masking protocol (Sec. 3.3 in main)
on the downstream task performance. Table 2 reports the
active speaker detection (ASD) results on the more chal-
lenging EgoCom [14] dataset, and table 3 reports the de-
noising results for different noise levels. We notice that the
performance on both ASD and denoising, especially at the
higher noise levels, declines upon increasing or decreasing
the value of r from our choice of 20 % based on the down-
stream validation performance (Sec. 3.4 in main), which
helps our model achieve a fine balance between the two
complementary strategies of masking a complete channel
and randomly masking audio tokens. Whereas randomly
masking a channel of the binaural audio entails solving the
more under-constrained and consequently complex binaural-
ization task, thereby helping our model learn stronger spatial
associations between vision and audio, randomly masking
audio tokens helps with improving training stability.

4. Alternate audio masking choices
Here, we evaluate alternate masking choices, namely time,
frequency, and time-frequency masking, in place of ran-
domly masking audio patches as part of our proposed mask-

1



2.5 dB 5 dB
Model SI-SDRi ↑ STFT ↓ SI-SDRi ↑ STFT ↓

No pretraining
U-Net w/o vision 1.91 5.32 2.02 3.04
U-Net 2.04 4.72 2.05 2.85
U-Net w/ ImageNet features 2.04 4.66 2.24 2.74

Alternate pretraining methods
U-Net w/ TLR [19] features 1.70 5.40 2.00 2.77
U-Net w/ 2.5D-VS [4] features 1.81 4.81 2.22 2.62
U-Net w/ 2.5D-VS [4]++ features 2.65 4.31 2.79 2.48
U-Net w/ SSR [16]++ features 2.25 4.63 2.21 2.80
U-Net w/ AV-MAE [5] features 2.46 4.60 2.14 2.93

Ours 2.72 4.22 2.46 2.70

Ours w/o pretraining 2.30 4.54 2.15 2.83
Ours w/ pretraining using monaural audio 2.58 4.38 2.31 2.81

Table 1. Audio denoising with U-Net [19] backbone for varying noise levels. All STFT distance measures use base 10−3.

TalkNet [17] SPELL [12]
r(%) Val Test Val Test

0 67.9 62.9 67.6 65.3
20 (Ours) 68.7 63.9 68.4 65.6
50 64.5 63.1 67.5 65.2
80 64.4 61.8 64.7 60.1
100 67.9 63.4 66.1 65.1

Table 2. Effect of r on the mean average precision (%) of our
model for active speaker detection with two different backbones
(TalkNet and SPELL).

ing strategy, in table 4 and 5. Our model outperforms the
versions with these alternatives, showing that random patch
masking when combined with channel dropping enables
learning more useful features in our setup. This happens
possibly because in random patch masking, dropping a full
frequency band or time segment is highly improbable thereby
allowing our model to extract useful information from the
unmasked regions of all frequency bands and time segments
of the audio spectrograms.

5. Multi-level positional embeddings
Here, we evaluate the impact of our multi-level positional
embeddings by comparing our model with the ablation where
positional embeddings are used only at the input level. See
table 6 for results on ASD and table 7 for results on denois-
ing with 0 dB noise. Our model improves over the ablation
on both tasks, showing that using multi-level positional em-
beddings is crucial for remembering the spatial layout of the
tokens at different stages in the model.

6. Task-specific backbones

Here, we study the impact of using task-specific backbones
on our model performance by evaluating two baselines, with
the same architecture but without task-specific backbones
(Ours w/o B)—one is learned from scratch and another is pre-
trained. See table 8 for results on ASD and table 9 for results
on denoising with 0 dB noise.Our pretraining scheme leads
to better performance than a from-scratch model even w/o
B (table 8 and table 9 top), and we get the best results when
we combine our features with task-specific backbones. This
shows that while our audio-visual features provide important
spatial cues to downstream models, they are not intended to
replace the face-specific features used in ASD or the mixed
audio features used in denoising.

7. Pretraining model capacity and computa-
tional cost

Here, we report the model capacity (parameter count) and
GFLOPs of all pretraining methods in table 10. Note
that both the parameter count and GFLOPs of all trans-
former [18]-based methods (2.5DVS [4]++, AV-MAE [5]
and SSR [16]++) are comparable to those of our model1,
re-emphasizing that our improvements in performance on
the downstream tasks are solely attributable to our better
model design.

8. Visual attention maps per audio channel
In Fig. 1, we show the attention maps of our model (similar
to Fig. 4 in main) separately for the left and right channels,
on the more challenging EgoCom [14] dataset. We notice
that our model uses the left channel to focus more on areas
to the left of scene image and vice-versa, indicating that our

1The parameter count and GFLOPs of AV-MAE are a bit lower owing
to its modality-inpainting architecture design, where the modality being
inpainted is dropped from the input, leading to a slightly smaller model.



0 dB 2.5 dB 5 dB
r(%) SI-SDRi ↑ STFT ↓ SI-SDRi ↑ STFT ↓ SI-SDRi ↑ STFT ↓

0 2.17 6.60 2.57 4.38 2.85 2.35
20 (Ours) 2.20 6.51 2.72 4.22 2.46 2.70
50 1.92 7.19 2.30 4.60 2.09 2.80
80 1.82 7.55 1.98 5.05 1.68 3.30
100 2.11 6.60 2.65 4.31 2.79 2.48

Table 3. Effect of r on our model performance for audio denoising.

TalkNet [17] SPELL [12]
EgoCom EasyCom EgoCom EasyCom

Model Val Test Val Test Val Test Val Test

Ours w/ time masking 63.3 59.3 60.9 66.4 64.1 60.7 68.5 43.5
Ours w/ frequency masking 64.1 62.1 59.2 70.9 67.6 63.2 68.7 69.4
Ours w/ time-frequency masking 65.4 63.1 56.3 63.3 67.5 65.1 68.6 69.1
Ours 68.7 63.9 60.5 71.8 68.4 65.6 68.9 70.2

Table 4. ASD with our model when pretrained with other audio masking choices [9].

0 dB 2.5 dB 5 dB
Model SI-SDRi ↑ STFT ↓ SI-SDRi ↑ STFT ↓ SI-SDRi ↑ STFT ↓

Ours w/ time masking 1.82 7.41 1.98 4.88 2.07 2.80
Ours w/ frequency masking 2.05 7.04 2.33 4.85 2.25 2.79
Ours w/ time-frequency masking 1.91 7.12 2.14 5.15 1.81 3.13
Ours 2.20 6.51 2.72 4.22 2.46 2.70

Table 5. Denoising with our model when pretrained with other audio masking choices [9]. All STFT distance measures use base 10−3.

TalkNet SPELL
Model EgoCom EasyCom EgoCom EasyCom

Ours w/o multi-level PEs 59.2 70.2 60.4 65.6
Ours 63.9 71.8 65.6 70.2

Table 6. Effect of our multi-level positional embeddings on ASD.

Model SI-SDRi ↑ STFT (×10−3) ↓

Ours w/o multi-level PEs 1.30 7.88
Ours 2.20 6.51

Table 7. Effect of our multi-level positional embeddings on denois-
ing with 0dB noise.

model can reason about the spatial properties of the scene
using both audio and vision.

Further, to better portray the larger trend, we measure
the percentage of cases in our test set where the left audio
channel attends more towards patches on the left side of
the scene image, and the right channel attends more towards
patches on the right. This measure comes out to be 62.4% for
the left channel, and 57.2% for the right channel, showing

EgoCom EasyCom
Model TalkNet SPELL TalkNet SPELL

Ours w/o B (from-scratch) 61.1 62.0
Ours w/o B (pretrained) 63.1 65.7
Ours 63.9 65.6 71.8 70.2

Table 8. Effect of task-specific backbones (denoted using ‘B’) on
ASD.

Model SI-SDRi ↑ STFT (×10−3) ↓

Ours w/o B (from-scratch) 1.02 8.99
Ours w/o B (pretrained) 2.05 7.12
Ours 2.20 6.51

Table 9. Effect of task-specific backbones (denoted using ‘B’) on
denoising with 0dB noise.

that our model uses the left channel to focus more on areas to
the left of the scene image and vice-versa, across the whole
test set.



Model parameter # GFLOPs
Model ASD Denoising ASD Denoising

2.5D-VS [4] 61.2 18.2 79.5 33.2
TLR [19] 57.5 18.1 75.9 33.7
2.5D-VS [4]++ 180.9 75.3 174.0 90.2
AV-MAE [5] 178.6 74.1 171.6 87.5
SSR [16]++ 180.9 75.3 174.0 90.2
Ours 180.9 75.3 174.0 90.2

Table 10. Model parameter count (in millions) and GFLOPs of
different pretraining methods.

Scene image Attention map produced by 
left audio channel

Attention map produced by 
right audio channel

Figure 1. Heat maps for left and right audio channels, similar to
Fig. 4 in main. Interestingly, our model uses the left channel to
focus more on areas to the left of scene image and vice-versa.

9. Finetuning strategy
We mask audio tokens during finetuning primarily to re-
duce the computation overhead. Since our pretraining also
involves token masking, our model can learn strong audio-
visual features even when all audio tokens are not available
during finetuning. However, to quantatively evaluate the
effect of our finetuning strategy, we also finetune our model
with all audio tokens and report the results in table 11 for
ASD and table 12 for denoising. We don’t see a significant
change in performance when using all the tokens compared
to masking when finetuning, but using all tokens is 1.7 times
slower on average.

10. Model parameter initialization
To evaluate the effect of random parameter initialization on
our model, we train our model on both tasks and datasets
with 3 different random seeds. Across all runs, our standard
errors are less than 0.01 on all metrics, showing that our
model is robust to different random parameter initializations,
and the improvements in performance are significantly larger
than these small variations from randomness.

11. Dataset details
As discussed in main (Sec. 4), we use two public datasets
containing egocentric videos with binaural audio, Ego-

Com [14] and EasyCom [2], for our experiments. For
EgoCom, we follow the authors and split the data into
train/val/test comprising 30.3/2.4/5.8 hours of data. For
EasyCom, we randomly generate train/val/test splits with
4.5/0.38/0.39 hours of data, such that there is no overlap
in conversation participants between any two splits. Next,
we extract 1 second long clips from both datasets, where
the video and binaural audio are sampled at 5 frames per
second (fps) and 16 kHz, respectively. The frame resolution
is 240×352 for EgoCom, and 198×352 for EasyCom. Fur-
thermore, we choose audio channel 5 and 6 (corresponding
to the in-ear microphones) as our binaural audio channels
for EasyCom.

12. Model architecture and training details

In addition to the provided details in Sec. 3.4, 4.1 and 4.2 in
main, we provide here extra model architecture and training
details for both pretraining and finetuning on downstream
tasks, for reproducibility. We perform all training using 8
NVIDIA Tesla V100 SXM2 GPUs. We will release all code
and data.

12.1. Pretraining

We described our model architecture and pretraining details
in Sec. 3.4 in main. Here, we provide additional details
about our model’s input preparation, architecture, parameter
initialization, and training .

Input preparation. We sample the video clips at their orig-
inal resolution, normalize them using the per-color means
and standard deviations computed using ImageNet [7], and
generate a total of 330 and 286 visual tokens for EgoCom
and EasyCom, respectively, by splitting the clips into non-
overalapping tubelets containing a sequence of 5 patches,
where each patch is 16×16 in size (Sec. 3 in main). We repre-
sent the binaural audio as two-channel Kaldi-compliant [15]
spectrograms with 98 temporal windows and 128 Mel-
frequency bins, which we compute by using the binaural
audio normalized to [−1, 1], a window length of 25 ms and
a hop length of 10 ms. We normalize the spectrograms
by computing the mean and standard deviation of the Mel-
spectrograms generated from all audio clips in each dataset.
We next generate 392 audio tokens per spectrogram channel
by splitting it into non-overlapping patches of size 2× 16.

Architecture. All hidden layers in each transformer
block [3] emit features that are four times as long as the
embedding size for the block. We always use LayerNorm [1]
after every output of a transformer block unless it’s a direct
input to another transformer block.



TalkNet [17] SPELL [12]
EgoCom EasyCom EgoCom EasyCom

Model Val Test Val Test Val Test Val Test

Ours w/ finetuning all audio tokens 65.3 64.1 58.9 71.8 68.4 65.5 68.7 70.1
Ours 68.7 63.9 60.5 71.8 68.4 65.6 68.9 70.2

Table 11. ASD with our model when all tokens are used in downstream training.

0 dB 2.5 dB 5 dB
Model SI-SDRi ↑ STFT ↓ SI-SDRi ↑ STFT ↓ SI-SDRi ↑ STFT ↓

Ours w/ finetuning all audio tokens 2.18 6.47 2.50 4.49 2.58 2.52
Ours 2.20 6.51 2.72 4.22 2.46 2.70

Table 12. Denoising with our model when all audio tokens are used in downstream training. All STFT distance measures use base 10−3.

Parameter initialization. We use Xavier [6] uniform ini-
tialization for all network parameters. For the LayerNorm [1]
layers, we initialize their weights to 1 and biases to 0. We
use a truncated normal distribution with a standard deviation
of 0.02 and a sampling range of [−2, 2] to initialize the learn-
able modality and channel embedding tokens, and initialize
the mask tokens from a normal distribution with a standard
deviation of 0.02.

Training. We set the batch size to 104 and weight decay
to 10−5 during pretraining.

12.2. Active speaker detection

In Sec. 4.1 in main, we outlined our feature fusion method for
active speaker detection (ASD). Here, we provide additional
architectural details for feature fusion, and also describe our
finetuning process.

Pretrained feature fusion. Fig. 2 and 3 show our feature
fusion methods for TalkNet [17] and SPELL [12] ASD back-
bones, respectively. The single-layer transformer decoder
(Sec. 4.1 in main), which we use for fusing our pretrained
features with the backbones (Sec. 4.1 in main), generates 128
and 512 dimensional embeddings for TalkNet and SPELL,
respectively. Since SPELL doesn’t train any audio-visual
features when training its graph neural network (GNN), we
first pretrain the the transformer decoder for SPELL by using
it with the TalkNet backbone. Towards that goal, we feed
the decoder features to a single linear layer that maps the
512 dimensional features to 128 dimensional features, and
is followed by GELU [8] activations and LayerNorm [1],
before fusing the 128 dimensional features with the TalkNet
backbone. After pretraining, we append the 512 dimensional
outputs of the decoder with the outputs of the two-stream
audio-visual encoder (Sec. 4.1 in main) for training the GNN
in SPELL.

Training. For TalkNet, we train using Adam [11] for 25
epochs optimizer with an initial learning rate (LR) of 10−4

for the backbone and 10−5 for the pretrained components,
both of which we decay using a step LR scheduler by a factor
of 0.95 after every epoch. We set the batch size to 400.

For SPELL, we first train the two-stream audio-visual
encoder for feature extraction for 100 epochs using the cross
entropy loss and Adam [11] with an initial learning rate of
5× 10−4, which we decay by 0.1 after every 40 epochs. We
set the batch size to 320. For training the GNN of SPELL,
we train for 70 epochs by using a batch size of 320 again and
learning rate of 10−3, while setting all other hyperparameters
per the original paper.

12.3. Spatial audio denoising

Backbone architecture. Following [19], our U-Net back-
bone for spatial audio denoising (Sec. 4.2 in main) is an
audio-visual model comprising an audio encoder, a visual
encoder, and a decoder for predicting an estimate of the
target audio. The audio encoder takes the log magnitude
spectrogram of the mixed binaural audio as input, and uses
a stack of 5 convolutional (conv.) layers to produce a multi-
channel 2D audio feature map. Each conv. layer has a kernel
size of 4, padding of 1, and stride of 2, and is followed by
leaky ReLU [13] activations with a slope of 0.2 for negative
inputs, and batch normalization [10]. The conv. layers have
64, 128, 256, 512 and 512 output channels, respectively. The
visual encoder has a ResNet-18 [7] architecture that outputs
a multi-channel 2D visual feature map without feeding it
to the average pooling or any subsequent layers. We push
the ResNet outputs through another conv. layer to match its
height and width with the audio features. The conv layer has
a kernel size of (1, 4), a padding of (0, 0) for EgoCom [14]
and (1, 0) for EasyCom [2], and 128 output channels. Fur-
ther, we remove the last feature column from the output
of the conv. layer for all channels for EasyCom. We con-
catenate the per-frame features along the channel dimension



AV Spatial 
Correspondence 

Encoder

Egocentric video 𝑉

𝐴Masked egocentric audio

Face crops

Monaural audio

Encoders and 
Cross-attention

Lightweight AV
Decoder for 

Feature Fusion

Embedding sequence
denoting frame index

Self-attention

Feature concatenation

ASD 
predictions

TalkNet backbone 

Figure 2. Method to fuse our pretrained features with TalkNet [17] for ASD.

AV Spatial 
Correspondence 

Encoder

Egocentric video 𝑉

𝐴Masked egocentric audio

Face crops

Monaural audio

Two-stream
ResNet

Lightweight AV
Decoder for 

Feature Fusion

Embedding sequence
denoting frame index

GNN

Feature concatenation

ASD 
predictions

SPELL backbone 

Figure 3. Method to fuse our pretrained features with SPELL [12] for ASD.

and generate the visual features. We then concatenate the
visual features with the audio features channel-wise, and
feed the concatenated features to the audio decoder, which
predicts an estimate of the ratio mask [4, 19] for the target
audio magnitude spectrogram. The audio decoder first uses
a stack of 5 transpose convolutional (conv.) layers, which
are connected to the corresponding encoder layers through
skip connections. The transpose conv. layers have a kernel
size of 4, stride of 2, and a padding of (1, 1), except for the
last layer, which has a padding of (2, 1). The transpose conv.
layers have 1152, 1024, 512, 256 and 128 output channels,
respectively. Next, the audio decoder feeds the output of the
transpose conv. layers to a conv. layer with 2 input and out-
put channels, and a kernel size of (2, 1) to emit the predicted
ratio mask.

Input preparation. To transform the audio waveforms
into magnitude spectrograms, we first normalize them to [-1,
1] and then compute the short-time Fourier transform with a
window length of 128, hop length of 64, and 512 frequency
bins.

Pretrained feature fusion. Fig. 4 shows our feature fusion
method for spatial audio denoising. We reshape the visual
features from the outputs of our audio-visual encoder EAV

to form multi-channel 2D visual feature maps (Sec. 4.2 in
main), such that the 2D raster order of the features matches
that of the tubelets in the video clip, and feed the reshaped
features to a convolutional (conv.) layer with a kernel size
of (3, 4), stride of (2, 3), padding of (1, 2) and (2, 2) for
EgoCom [14] and EasyCom [2], respectively, and 128 input
and 784 output channels. We similary reshape the audio
features, and feed them to another conv. layer with a kernel
size of (1, 7), padding of 0, stride of (1, 6), and 128 input
and 256 output channels. Both conv. layers are followed by
leaky ReLU activations with a slope of 0.2 for the negative
values, and batch normalization. Next, we concatenate the
visual and audio features along the channel dimension, and
further concatenate them with the audio encoder outputs
channel-wise (Sec. 4.2 in main).

Training. We train using Adam [11] for 200 epochs opti-
mizer with an learning rate (LR) of 5 × 10−4. We set the
batch size to 80.



AV Spatial 
Correspondence 

Encoder

Egocentric video 𝑉

𝐴
Masked noisy 

egocentric audio

Noisy egocentric audio

Reshape
visual feature

Feature concatenation

Denoised audio 

U-Net backbone 

Skip connections

U-Net 
encoder

U-Net 
encoder

Figure 4. Method to fuse our pretrained features with U-Net [19] for spatial audio denoising.

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.

Layer normalization. arXiv preprint arXiv:1607.06450, 2016.
4, 5

[2] Jacob Donley, Vladimir Tourbabin, Jung-Suk Lee, Mark
Broyles, Hao Jiang, Jie Shen, Maja Pantic, Vamsi Krishna
Ithapu, and Ravish Mehra. Easycom: An augmented reality
dataset to support algorithms for easy communication in noisy
environments. 2021. 1, 4, 5, 6

[3] Christoph Feichtenhofer, Yanghao Li, Kaiming He, et al.
Masked autoencoders as spatiotemporal learners. Advances
in neural information processing systems, 35:35946–35958,
2022. 4

[4] Ruohan Gao and Kristen Grauman. 2.5D visual sound. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 324–333, 2019. 1, 2, 4,
6

[5] Mariana-Iuliana Georgescu, Eduardo Fonseca, Radu Tu-
dor Ionescu, Mario Lucic, Cordelia Schmid, and Anurag
Arnab. Audiovisual masked autoencoders. arXiv preprint
arXiv:2212.05922, 2022. 2, 4

[6] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Inter-
national Conference on Artificial Intelligence and Statistics,
2010. 5

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 4, 5

[8] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv: Learning, 2016. 5

[9] Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski, Michael
Auli, Wojciech Galuba, Florian Metze, and Christoph Feicht-
enhofer. Masked autoencoders that listen. Advances in Neural
Information Processing Systems, 35:28708–28720, 2022. 3

[10] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In Proceedings of the 32nd International Con-
ference on Machine Learning, pages 448–456, Lille, France,
2015. PMLR. 5

[11] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015. 5, 6

[12] Kyle Min, Sourya Roy, Subarna Tripathi, Tanaya Guha, and
Somdeb Majumdar. Learning long-term spatial-temporal
graphs for active speaker detection. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part XXXV, pages 371–
387. Springer, 2022. 2, 3, 5, 6

[13] Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted boltzmann machines. In ICML 2010, pages
807–814, 2010. 5

[14] Curtis Northcutt, Shengxin Zha, Steven Lovegrove, and
Richard Newcombe. Egocom: A multi-person multi-modal
egocentric communications dataset. IEEE Transactions on
Pattern Analysis and Machine Intelligence, pages 1–1, 2020.
1, 2, 4, 5, 6

[15] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Bur-
get, Ondrej Glembek, Nagendra Goel, Mirko Hannemann,
Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovsky,
Georg Stemmer, and Karel Vesely. The kaldi speech recog-
nition toolkit. In IEEE 2011 Workshop on Automatic Speech
Recognition and Understanding. IEEE Signal Processing So-
ciety, 2011. IEEE Catalog No.: CFP11SRW-USB. 4

[16] Tomoya Sato, Yusuke Sugano, and Yoichi Sato. Self-
supervised learning for audio-visual relationships of videos
with stereo sounds. IEEE Access, 10:94273–94284, 2022. 2,
4

[17] Ruijie Tao, Zexu Pan, Rohan Kumar Das, Xinyuan Qian,
Mike Zheng Shou, and Haizhou Li. Is someone speaking?
exploring long-term temporal features for audio-visual active
speaker detection. In Proceedings of the 29th ACM Interna-
tional Conference on Multimedia, pages 3927–3935, 2021. 2,
3, 5, 6

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2

[19] Karren Yang, Bryan Russell, and Justin Salamon. Telling
left from right: Learning spatial correspondence of sight



and sound. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9932–9941,
2020. 2, 4, 5, 6, 7


