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A. Theoretical Justifications & Discussions

On the unifying aspects of our framework. In our frame-
work, the link between RPCA & Dual-PCA, established
also in the discussed earlier works, emerges as a by-product
of our unifying formulation. To elucidate, our flag-based
framework allows for: (i) extending DPCP to manifold-
valued data (fT DPCP), (ii) interpolating between L1/L2–
DPCP via the use of non-trivial flag types, and (iii) an ef-
ficient algorithms for computing flag–(tangent) DPCP for
any flag type. To the best of our knowledge, Alg. 1 (main
paper) is the only method for finding non-trivial flags of ro-
bust directions and when used for both fRPCA & fWPCA.

A.1. Proof of Prop. 3

Let us recall the proposition before delving into the proof.

Proposition 1 (Stiefel optimization of (weighted) fPCA).
Suppose we have weights {wij}i=k,j=p

i=1,j=1 for a dataset
{xj}pj=1 ⊂ Rn along with a flag type (n1, n2, . . . , nk;n).
We store the weights in the diagonal weight matrices
{Wi}ki=1 with diagonals (Wi)jj = wij . If

U∗ = argmax
U∈St(nk,n)

k∑
i=1

tr
(
UTXWiX

TUIi
)

(1)

where Ii is determined as a function of the flag signature.
For example, for FL(n+ 1):

(Ii)l,s =

{
1, l = s ∈ {ni−1 + 1, ni−1 + 2, . . . , ni}
0, otherwise

Then [[U∗]] = [[U]]∗ is the weighted fPCA of the data with
the given weights (e.g., solves ??) as long as we restrict
ourselves to a region on FL(n + 1) and St(nk, n) where
weighted fPCA is convex.

Proof. First we will show that the flag and Stiefel objective
functions are equivalent. Take

[[U]] ∈ FL(n+ 1) = FL(n1, n2, . . . , nk;n). (2)

We decompose U = [U1,U2, . . . ,Uk] where Ui ∈
Rn×mi and

∑i
l=1 ml = ni. Using Ii (defined above) we

have UIiU
T = Ui.

Recall the objective function for both fRPCA and fD-
PCP is

Ej

[
k∑

i=1

wij∥πUi
(xj)∥22

]
=

p∑
j=1

k∑
i=1

wij∥πUi
(xj)∥22, (3)

=

p∑
j=1

k∑
i=1

wij∥UiU
T
i xj∥22 (4)

Using the definition of norms and UT
i Ui = I, Eq. (3) is

equivalent to

p∑
j=1

k∑
i=1

wijtr
(
xT
j UiU

T
i xj

)
(5)

Now, using properties of trace, matrix multiplication, and
our handy {Ii}ki=1 we reach our desired result

p∑
j=1

k∑
i=1

wijtr
(
UT

i xjx
T
j Ui

)
, (6)

=

k∑
i=1

tr

UT
i

 p∑
j=1

wijxjx
T
j

Ui

 , (7)

=
k∑

i=1

tr
(
UT

i

(
XWiX

T
)
Ui

)
, (8)

=

k∑
i=1

tr
(
UiU

T
i XWiX

T
)
, (9)

=

k∑
i=1

tr
(
UIiU

TXWiX
T
)
, (10)

=

k∑
i=1

tr
(
UTXWiX

TUIi
)
. (11)

So we have shown that the flag and Stiefel objective
functions are equivalent.

Finally, we show [[U∗]] = [[U]]∗. Notice that the ob-
jective function for weighted flag PCA is invariant to dif-
ferent flag manifold representatives. First, let f denote
the objective function in Eq. (11). Suppose U∗ solves
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argmaxY∈St(nk,n)
f(Y). Then take some other represen-

tative for [[U∗]], namely U∗M where

M =


M1 0 0 0
0 M2 0 0
...

...
. . .

...
0 0 . . . Mk

 and M1 ∈ O(mi). (12)

Then f(U∗M) = f(U∗) because

f(U∗M) =

k∑
i=1

tr((U∗
iM)TXWiX

T (U∗
iM)), (13)

=

k∑
i=1

tr(U∗
iMMTU∗

i
TXWiX

T ), (14)

=

k∑
i=1

tr(U∗
iU

∗
i
TXWiX

T ), (15)

=

k∑
i=1

tr(U∗
i
TXWiX

TU∗
i ), (16)

= f(U∗). (17)

So f(·) has the same value for any representative for [[U∗]].
Since f(U∗) ≥ f(Y) for all Y ∈ St(nk, n), then

f(U∗M) = f(U∗) ≥ f(Y) = f(U∗O) (18)

for all [[Y]] ∈ FL(n + 1) where O is of the same block
structure as M.

Recall [[U]]∗ ∈ FL(n + 1) maximizes f , so f(U) ≥
f(Y) for all [[Y]] ∈ FL(n+1) and since f(·) has the same
value for any representative of [[Y]], we have f(U) ≥ f(Y)
for all Y ∈ St(nk, n).

Recall, that f(U∗) ≥ f(Y) for all Y ∈ St(nk, n).
So f(U∗) = f(U). Since f has a unique maxi-
mizer over FL(n + 1), we have [[U∗]] = [[U]]∗ =
argmax[[Y]]∈FL(n+1) f(Y).

A.2. Proof of Prop. 4

Let us recall the proposition before delving into the proof.

Proposition 2 (Stiefel optimization for flagified Robust
(Dual-)PCAs). We can formulate fRPCA, fWPCA, fDPCP,
and fWDPCP as optimization problems over the Stiefel

manifold using [[U]]∗ = [[U∗]] and the following:

U⋆ = (19)
argmax

U∈St(n,nk)

∑k
i=1 tr

(
UTP+

i UIi
)
, (fRPCA)

argmin
U∈St(n,nk)

∑k
i=1 tr

(
P−

i −UTP−
i UIi

)
, (fWPCA)

U⋆ = (20)
argmin

U∈St(n,nk)

∑k
i=1 tr

(
UTP+

i UIi
)
, (fDPCP)

argmax
U∈St(n,nk)

∑k
i=1 tr

(
P−

i −UTP−
i UIi

)
(fWDPCP)

where P− = XW−
i ([[U]])XT , P+ = XW+

i ([[U]])XT and
W−

i ([[U]]), W+
i ([[U]]) are defined in ?? as long as we re-

strict ourselves to a region on FL(n + 1) and St(nk, n)
where flag robust and dual PCAs are convex.

Proof. First, we write the objective functions for fR-
PCA and fDPCP over St(nk, n) using ?? to define each
W+

i as

f+(U) = E

[
k∑

i=1

∥πUi(xj)∥2

]
, (21)

=

p∑
j=1

k∑
i=1

∥πUi
(xj)∥2, (22)

=

p∑
j=1

k∑
i=1

√
tr
(
xT
j UiUT

i xj

)
, (23)

=

p∑
j=1

k∑
i=1

√
tr
(
UT

i xjxT
j Ui

)
(24)

=

p∑
j=1

k∑
i=1

√
tr
(
UTxjxT

j UIi
)
, (25)

=

p∑
j=1

k∑
i=1

tr
(
UTxjx

T
j UIi

)√
tr
(
UTxjxT

j UIi
) , (26)

=

k∑
i=1

tr

UT

p∑
j=1

xjx
T
j

∥UIiUTxj∥2
UIi

 , (27)

=

k∑
i=1

tr
(
UTXW+

i X
TUIi

)
, (28)

=

k∑
i=1

tr
(
UTP+

i UIi
)
. (29)

Now we write the objective functions for fWPCA and



fWDPCP over St(nk, n) using ?? to define each W−
i as

f−(U) = E

[
k∑

i=1

∥xj − πUi(xj)∥2

]
, (30)

=

p∑
j=1

k∑
i=1

∥xj − πUi
(xj)∥2, (31)

=

p∑
j=1

k∑
i=1

√
tr
(
xT
j xj − xT

j UiUT
i xj

)
, (32)

=

p∑
j=1

k∑
i=1

√
xT
j xj − tr

(
UT

i xjxT
j Ui

)
, (33)

=

p∑
j=1

k∑
i=1

√
xT
j xj − tr

(
UTxjxT

j UIi
)
, (34)

=

p∑
j=1

k∑
i=1

xT
j xj − tr

(
UTxjx

T
j UIi

)√
xT
j xj − tr

(
UTxjxT

j UIi
) , (35)

=

p∑
j=1

xjx
T
j

∥xj −UIiUTxj∥2
(36)

−
k∑

i=1

tr

UT

p∑
j=1

xjx
T
j

∥xj −UIiUTxj∥2
UIi

 (37)

=

k∑
i=1

tr
(
XW−

i X
T −UTXWiX

TUIi
)
, (38)

=

k∑
i=1

tr
(
P− −UTP−UIi

)
. (39)

Now, we can write the Lagrangians for these problems
with the symmetric matrix of Lagrange multipliers Λ as

L+(U) = f+(U) + tr(Λ+(I−UTU)),

L−(U) = f−(U) + tr(Λ−(I−UTU)).

Then, we collect our gradients in the following equations

∇UL+ =

p∑
j=1

k∑
i=1

xjx
T
j UIi

∥UIiUTxj∥2
− 2UΛ+ (40)

∇UL− = −
p∑

j=1

k∑
i=1

xjx
T
j UIi

∥xjxT
j −UIiUTxj∥2

− 2UΛ−

(41)

∇Λ+L+ = ∇Λ−L− = I−UTU. (42)
(43)

Then setting ∇UL1 = 0, ∇Λ1
L1 = 0, left multiplying

by UT , and playing with properties of trace results in
k∑

i=1

tr
(
UTXWiX

TUIi
)
= 2tr(Λ+), (44)

k∑
i=1

tr
(
UTXWiX

TUIi
)
= −2tr(Λ−). (45)

Then we have the following cases: we choose
• (fRPCA) U∗ to maximize tr(Λ+) so that we maximize
f+,

• (fDPCP) U∗ to minimize tr(Λ+) so that we minimize
f+,

• (fWPCA) U∗ to minimize −tr(Λ−) so that we minimize
f−,

• (fWDPCP) U∗ to maximize −tr(Λ−) so that we maxi-
mize f−.

p∑
j=1

k∑
i=1

xjx
T
j UIi

∥UT
i xj∥2

= Λ1U, (46)

p∑
j=1

k∑
i=1

UTxjx
T
j UIi

∥UT
i xj∥2

= Λ1, (47)

p∑
j=1

k∑
i=1

(Wi)jjU
Txjx

T
j UIi = Λ1, (48)

tr

 k∑
i=1

UT

 p∑
j=1

(Wi)jjxjx
T
j

UIi

 = tr(Λ1), (49)

k∑
i=1

tr

UT

 p∑
j=1

(Wi)jjxjx
T
j

UIi

 = tr(Λ1), (50)

h[[U ]](U) = tr(Λ1). (51)

Similarly, setting ∇UL2 = 0, ∇Λ2
L2 = 0 and leverag-

ing ?? to define {Wi}i results in
p∑

j=1

k∑
i=1

xjx
T
j UIi

∥xj −UiUT
i xj∥2

= Λ2U, (52)

−
p∑

j=1

k∑
i=1

UTxjx
T
j UIi

∥xj −UiUT
i xj∥2

= Λ2, (53)

−
p∑

j=1

k∑
i=1

(Wi)jjU
Txjx

T
j UIi = Λ2, (54)

−
k∑

i=1

tr(UT
(
XWiX

T
)
UIi) = tr(Λ2), (55)

−h[[U ]](U) = tr(Λ2). (56)

Finally, using a similar argument to that for the proof of
the Stiefel optimization of fPCA leveraging assumed con-
vexity, we have that [[U∗]] = [[U]]∗.



A.3. Proof of Prop. 5

We now prove the convergence of our algorithm. Let us
recall the proposition from the main paper before delving
into the proof.

Proposition 3 (Convergence of ?? for fDPCP). ?? for fD-
PCP converges as long as ∥UIiU

Txj∥2 ≥ ϵ ∀i, j and we
restrict ourselves to a region on FL(n + 1) and St(nk, n)
where fDPCPis convex.

Proof. This proof follows closely to what was done in [1].
First let f+ : FL(n + 1) × FL(n + 1) → R denote
the fDPCP objective function and T : FL(n + 1) →
FL(n + 1) denote an iteration of ??. Then, assuming that
∥UIiU

Txj∥2 ≥ ϵ for i = 1, 2, . . . , k and j = 1, 2, . . . , p,
we define the function h : FL(d+1)×FL(d+1)→ R as

h([[Z]], [[U]]) =

p∑
i=1

tr(ZTXW+
i ([[U]])XTZIi), (57)

using the definition in ?? for W+
i ([[U]]).

Some algebra reduces h([[Z]], [[U]]) to

h([[Z]], [[U]]) =

p∑
i=1

k∑
j=1

∥ZIiZTxj∥22
∥UIiUTxj∥2

. (58)

From Eq. (57), we see that h([[Z]], [[U]]) is the weighted
flag PCA objective function of {xj}pj=1 with weights on
the diagonals of Wi([[U]]). The weighted flagified orthog-
onal PCA (f⊥PCA) optimization problem with weights in
the diagonals W+

i ([[U]]) can be solved using a similar al-
gorithm to Alg. 1 by just minimizing instead of maximizing
(see Alg. 2). Thus minimizing h([[Z]], [[U]]) over [[Z]] is an
iteration of Alg. 2 for fDPCP which means

T ([[U]]) = argmin
[[Z]]∈FL(d+1)

h([[Z]], [[U]]). (59)

Using this, we have

h(T ([[U]]), [[U]]) ≤ h([[U]], [[U]]). (60)

By the definition of h

h([[U]], [[U]]) =

p∑
i=1

k∑
j=1

∥UIiU
Txj∥22

∥UIiUTxj∥2
, (61)

=

p∑
i=1

k∑
j=1

∥UIiU
Txj∥2, (62)

= f([[U]]). (63)

This means, we have

h(T ([[U]]), [[U]]) ≤ f([[U]]). (64)

Now we use the identity from algebra: a2

b ≥ 2a − b for
any a, b ∈ R and b > 0. Let

a = ∥ZIiZTxj∥2 and b = ∥UIiU
Txj∥2. (65)

Then

h([[Z]], [[U]]) ≥ 2

p∑
j=1

k∑
i=1

∥ZIiZTxj∥2 (66)

−
p∑

j=1

k∑
i=1

∥UIiU
Txj∥2, (67)

= 2f([[Z]])− f([[U]]). (68)

Now, take [[Z]] = T ([[U]]). This gives us

h(T ([[U]]), [[U]]) ≥ 2f(T ([[U]]))− f([[U]]). (69)

Then, combining Eq. 69 with Eq. 64, we have

2f(T ([[U]]))− f([[U]]) ≤ f([[U]]), (70)
f(T ([[U]])) ≤ f([[U]]). (71)

Finally, notice that the real sequence with terms
f+(T ([[U(m−1)]])) = f+([[U(m)]]) ∈ R is bounded below
by 0 and is decreasing. So it converges as m→∞.

B. Further Notes on Flagified PCA
We now generalize PCA and its variants using flags by
grouping eigenvectors using the flag type. The PCA opti-
mization problem is naturally an optimization problem on
the Stiefel manifold, St(k, n) := {U ∈ Rk×n : UTU =
I}. Suppose U = [u1,u2, . . . ,uk] ∈ St(k, n) are the
k < n principal components of a data matrix X. These
are naturally ordered according to their decreasing associ-
ated objective function values1. This results in the nested
subspace structure

[[U]] = [u1] ⊂ [u1,u2] ⊂ · · · ⊂ [u1,u2, . . . ,uk] ⊂ Rn.
(72)

So one can think of [[U]] ∈ FL(1, 2, . . . , k;n), and conse-
quently, reformulate PCA as an optimization problem over
FL(1, 2, . . . , k;n). Thinking of U as [[U]] emphasizes the
nested subspace structure of the principal components ac-
cording to their associated objective function values.

What if we have multiple principal components with
the same objective function value? In other words, sup-
pose we have at least one eigenvalue of XXT with a ge-
ometric multiplicity greater than 1? For example, assume

1The objective function values are also referred to as explained vari-
ances, eigenvalues and squared singular values



our dataset has a large variance on some 2-plane, and all
other directions orthogonal to that plane have smaller, un-
equal variance. Then, the first two principal components,
u1 and u2, will have the same objective function value
in ??. Additionally, any rotation of the two vectors within
the plane span(u1,u2) will still produce the same objec-
tive function values. So, ?? is no longer a convex opti-
mization problem over St(k, n) because the first two prin-
cipal components are not unique. However, if we remove
[u1] ⊂ [u1,u2] from the nested subspace structure and con-
sider [[U]] ∈ FL(2, 3, . . . , k;n) as

[[U]] = [u1,u2] ⊂ [u1,u2,u3] ⊂ · · · ⊂ [u1, . . . ,uk] ⊂ Rn.
(73)

Then we have a unique solution to ?? over
FL(2, 3, . . . , k;n) in place of St(k, n). In practice,
it is unlikely that we will have two eigenvectors with
the same eigenvalue. However, we can consider two
eigenvalues the same as long as |λi − λj | < ϵ for some
ϵ > 0.

Motivated by this example, we state a generalization of
PCA, which optimizes over flags of a given type.

Definition 1 (Flagified PCA (fPCA) [4]). A flag of princi-
pal components is the solution to:

argmax
[[U]]∈FL(n+1)

E

[
k∑

i=1

∥πUi
(xj)∥22

]
(74)

Ye et al. find a solution Eq. (74) using Newton’s method
on the flag manifold [6] and Nguyen offers a method for
solving such a problem using RTR on flag manifolds [3].
These algorithms produce the same basis vectors for flags
regardless of flag type. These basis vectors are different
than those found using standard PCA. But, for [[U]] ∈
FL(n1, n2, . . . , nk, n) that solves Eq. (74) using either
Newton’s method or RTR, the column space of U:,:nk

is the
same as the span of the first nk principal components. This
is because the objective function in Eq. (74) is invariant to
ordering the columns of U.

Variants on flagified PCA that maximize
tr(UTXXTU)q over FL(n + 1) are coined “nonlin-
ear eigenflags” and are difficult to solve for q = 2 [6]. Yet,
methods from Mankovich et al. can be adapted to solve
such problems, especially for q = 1/2. Another variant
of fPCA is weighted fPCA where we assume a weight for
each subspace dimension in the flag i and each data point j
as wij ∈ R. We propose this formulation in the manuscript.

C. DPCP-IRLS and the Grassmannian
This concept was first unerarthed in [2]. Expanding the ma-
trix norm we have

∥XTB∥1,2 =

p∑
j=1

∥BTxj∥2, (75)

=

p∑
j=1

√√√√ k∑
i=1

|bT
i xj |2, (76)

=

p∑
j=1

√
xT
j BBTxj , (77)

=

p∑
j=1

√
tr
(
BTxjxT

j B
)
. (78)

This can be phrased using principal angles as

argmin
BTB=I

p∑
j=1

cos θ([xj ], [B]). (79)

Suppose {[Xj ]}pj=1 ⊂ Gr(k, n). Namely, Xj ∈ Rn×k

where XT
j Xj = I for each j. A natural generalization of

DPCP-IRLS is the optimization problem on the Grassman-
nian,

argmin
[B]∈Gr(k,n)

p∑
j=1

∥ cos θ([Xj ], [B])∥2. (80)

This can also be solved by an IRLS scheme.
The “flagified” version of Eq. (80) is

argmin
[[B]]∈FL(n+1)

p∑
j=1

∥ cos θ([Xj ], [B])∥2. (81)

D. Novel Flagified Robust and Dual PCA and
TPCA Variants

We present the intuition behind the geometry of Robust and
Dual PCA versus T PCA in Fig. 1. Then we provide a vi-
sual comparison between Euclidean and manifold variants
of RPCA and DPCP in Fig. 2.

Tab. 1 summarizes our novel flagified robust and dual
PCA variants and emphasizes that flag types other than
(1, 2 . . . , k;n) and (k;n) produce novel principal directions
that are “in between’ L1 and L2 formulations.

Finally Tab. 2 summarizes the naming schemes of all of
the algorithms intriduced in this paper

E. Rest of the Proposed Algorithms
In the paper, we proposed three new algorithms. We now
present these algorithms as well as the objective functions
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Figure 1. Inliers (blue) and outliers (orange) on the 2-sphere. The
first row are Euclidean algorithms and the second row are man-
ifold (tangent space) algorithms. The dashed lines are the first
principal subspace (first row) and geodesic (second row) spanned
by the first principal direction. Note: first principal subspaces pass
through the center of the sphere and first principal geodesics are
great circles on the sphere.

Figure 2. Given manifold valued data with inliers (blue) and out-
liers (red). The dashed black lines are the 1st principal component
for RPCA and DPCP, for RT PCA and T DPCP this is the 1st prin-
cipal geodesic. For RPCA and RT PCA this line / geodesic should
contain the inliers. Due to the reversal in the objective, for DPCP
and T DPCP this geodesic should contain the outliers.

they minimize. First, Alg. 1 finds a solution to weighted
flagified PCA

[[U]]⋆ = argmax
[[U]]∈FL(n+1)

Ej

[
k∑

i=1

wij∥πUi
(xj)∥22

]
. (82)

Second, Alg. 2 finds a solution to weighted flagified orthog-
onal PCA (f⊥PCA)

[[U]]⋆ = argmin
[[U]]∈FL(n+1)

Ej

[
k∑

i=1

wij∥πUi(xj)∥22

]
. (83)

Flagified (Dual-)PCA Robust PCA Variant

fRPCA(1, ..., k) L1-RPCA
fRPCA(·) –
fRPCA(k) L2-RPCA

fWPCA(1, ..., k) L1-WPCA
fWPCA(·) –
fWPCA(k) L2-WPCA

fDPCP(1, ..., k) L1-DPCP
fDPCP(·) –
fDPCP(k) L2-DPCP

fRT PCA(1, ..., k) L1–RT PCA
fRT PCA(·) –
fRT PCA(k) L2–RT PCA

fWT PCA(1, ..., k) L1–WT PCA
fWT PCA(·) –
fWT PCA(k) L2–WT PCA

fT DPCP(1, ..., k) L1–T DPCP
fT DPCP(·) –
fT DPCP(k) L2–T DPCP

Table 1. Flag types for Euclidean optimization (first half) and man-
ifold optimization (second half). Flag optimization in these algo-
rithms provides a new objective functions which live in between
L1 and L2 robust PCA formulations. Note: we remove the number
of the ambient dimension in the flag signature for less redundant
notation and we assume we are computing the first k principal
components.

Lastly, Alg. 3 approximates solutions to

[[U]]⋆ ≈ (84)

argmax
[[U]]∈FL(n+1)

Ej

[∑k
i=1 wijd(µ, πUi

(xj))
2
]
, (fT PCA)

argmin
[[U]]∈FL(n+1)

Ej

[∑k
i=1 wijd(µ, πUi

(xj))
2
]
, (f⊥T PCA)

argmax
[[U]]∈FL(n+1)

Ej

[∑k
i=1 d(µ, πUi(xj))

]
, (fRT PCA)

argmin
[[U]]∈FL(n+1)

Ej

[∑k
i=1 d(xj , πUi(xj))

]
, (fWT PCA)

argmin
[[U]]∈FL(n+1)

Ej

[∑k
i=1 d(µ, πUi

(xj))
]
, (fT DPCP)

F. Extra Experiments

Impact of flag-type on cluster detection. To assess the
impact of flag-type, we generate a dataset {xj}300j=1 ⊂ R10

with 3 clusters (C1, C2, C3) in which we curate the flag type
corresponding to the data structure: FL(2, 5, 7; 10). To do
this we sample {xj}300j=1 ⊂ R10 with 3 clusters. The lth



Abbreviation Name

PCA Principal Component Analysis
RPCA Robust PCA
WPCA Weiszfeld PCA
DPCP Dual Principal Component Pursuit

WDPCP Weiszfeld DPCP

fPCA Flagified PCA
fRPCA Flagified RPCA
fWPCA Flagified WPCA
fDPCP Flagified DPCP

fWDPCP Flagified WDPCP

T PCA Tangent PCA
RT PCA Robust T PCA
WT PCA Weiszfeld T PCA
T DPCP Tangent DPCP

WT DPCP Tangent WDPCP

fT PCA Flagified T PCA
fRT PCA Flagified RT PCA
fWT PCA Flagified WT PCA
fT DPCP Flagified T DPCP

fWT DPCP Flagified WT DPCP

Table 2. The names of the major algorithms covered in this work.

Algorithm 1: Weighted fPCA
Inputs: Dataset {xj ∈ Rn}pj=1,
weights {wij}i=k,j=p

i,j=1 ⊂ R,
flag type (n+ 1)

Output: Weighted flagified principal directions
[[U]]∗ ∈ FL(n+ 1)

for i = 1, 2, . . . , k do

(Wi)jl ←

{
wij , j = l

0, elsewhere

U∗ ← Solve ?? with {Wi}ki=1 via Stiefel-CGD.
[[U]]∗ ← [[U∗]]

entry of x, (x)l ∈ R, is sampled from

C(1) : (x)l ∼

{
U [0, 1), l ≤ 2

U [0, 0.1), l ≥ 3
, (85)

C(2) : (x)l ∼

{
U [0, 1), 3 ≤ i ≤ 5

U [0, 0.1), i ≤ 2 or i ≥ 6
, (86)

C(3) : (x)l ∼

{
U [0, 1), i = 6, 7

U [0, 0.1), i ≤ 5 or i ≥ 8
. (87)

We then compute 2 sets of k = 7 principal direc-
tions by running fWPCA with flag type (2, 5, 7; 10)

Algorithm 2: Weighted flag ⊥PCA (f⊥PCA)
Inputs: Dataset {xj ∈ Rn}pj=1,
weights {wij}i=k,j=p

i,j=1 ⊂ R,
flag type (n+ 1)

Output: Weighted flagified principal directions
[[U]]∗ ∈ FL(n+ 1)

for i = 1, 2, . . . , k do

(Wi)jl ←

{
wij , j = l

0, elsewhere

U∗ ←Minimize the objective in ?? with {Wi}ki=1

via Stiefel-CGD.
[[U]]∗ ← [[U∗]]

Algorithm 3: fT PCA/fRT PCA/fWT PCA/fT DPCP
Input: Dataset: {xj}pj=1 ⊂M, flag type (n+ 1),
fPCA Variant: Φ :W → FL(n+ 1)

Output: Flagified principal tangent directions [[U]]∗

if robust then
µ← KarcherMedian

(
{xj}pj=1

)
else

µ← KarcherMean
(
{xj}pj=1

)
{vj}j ← {Expµ(xj)}j
W ← {vec(vj)}j
[[U]]∗ ← Φ (W, n+ 1)

Cluster 1 Cluster 2 Cluster 3

fWPCA(·) (7) (2, 5, 7) (7) (2, 5, 7) (7) (2, 5, 7)
AUC ↑ 0.72 0.73 0.48 1.00 0.43 0.49

Table 3. AUC for cluster classification using fWPCA. We see
higher AUCs when we match the flag type for fWPCA with the
cluster dimensions (e.g., (2, 5, 7)).

(fWPCA(2, 5, 7)) and fWPCA(k) using ?? with 200 max.
iters. Both of these methods result in a flag representa-
tive U = [U1,U2,U3] ∈ R10×7 where U1 ∈ R10×2,
U2 ∈ R10×3, and U3 ∈ R10×2. We compute the recon-
struction error for point j against each Ui as

∑p
j=1 ∥xj −

UiU
T
i xj∥2. These errors are used for 3 classification tasks,

predicting Ci using Ui for i = 1, 2, 3. The corresponding
AUC values are in Tab. 3. fWPCA(2, 5, 7) produces higher
AUCs because it is optimized over a more optimal flag type,
respecting the subspace structure of the data.

Data generation for “Convergence on 4-sphere”. We
first sample a random center x ∈ S4, and then sample
100 inlier tangent vectors from U [0, .01). Another 20 out-
lier tangent vectors v, have entries v1, v2 ∼ U [0, .01) and
v3, v4, v5 ∼ U [0, .1). We wrap these vectors to have our



[2, 3, 4][1, 2, 4][1, 3, 4] [3, 4] [1, 4] [2, 4] [4]
FlagType

0.0

0.5

1.0

T

fWPCA
TfWPCA
fRPCA
TfRPCA
fDPCP
TfDPCP

Figure 3. Smaller T corresponds to principal directions which are
more similar to those computed with flag type (1, 2, 3, 4; 5). The
mean T values for each class of flag type are the horizontal dashed
lines. Notice that, these mean values increase as we increase the
distance between flag types. We truncate flag types by removing
the ambient dimension (5).

dataset, {Expx(v)}.
Impact of flag type on principal directions. We run flag-
ified robust PCA and T PCA variants using ?? (with 200
max. iters.) with different flag types on data on Gr(2, 4)
with 100 inliers and 20 outliers sampled as described in the
“Outlier detection on Gr(2, 4)” section of the manuscript.
We call (1, 2, 3, 4; 5) the “base” flag type. We use T to
measure the different between principal directions from the
base flag type {u1 . . . ,u4} and other principal directions
{v1 . . . ,v4} as

T =
1

4

4∑
i=1

θ(ui,vi)
2. (88)

We plot T values for different flagified robust PCA and
T PCA variants in Fig. 3. We separate flag types into
classes based on the number of nested subspaces. Flag types
with the same number of nested subspaces are considered
“closer” flags. We find that closer flag types have smaller
T values. This experiment verifies that running flagified
robust PCA variants with different flag types recover dif-
ferent principal directions and these differences are directly
proportional to the “distance” between flag types. This
also emphasizes that flag types other than (1, . . . , k;n) and
(k;n) indeed recover novel principal directions. The direct
utility of these gap-filling methods to real-world datasets is
future work.

Outlier detection on Gr(2, 4). We present the result of us-
ing PCA, fWPCA(1, ..., k), fWPCA(k), fRPCA(1, ..., k),
fRPCA(k), fDPCP(1, ..., k), and fDPCP(k) on Gr(2, 4)
data for outlier detection in Fig. 4. This is the same data
as the data used for ??; but, in this case, we run our algo-
rithms on the vectorized matrix representatives for points on
Gr(2, 4) and do outlier detection using Euclidean distance
and variances.

Hand reconstructions. We use the 2D Hands dataset and
add “hairball” outliers by sampling from a normal distribu-
tion with mean 0 and standard deviation 10 (N (0, 10)), then
we divide by the Frobenius norm and mean center to obtain

0.1 0.2 0.3 0.4 0.5
Prop. Outliers

0.0

0.5

1.0

AU
C

PCA
fWPCA(k)
fWPCA(1,...,k)
fRPCA(k)
fRPCA(1,...,k)
fDPCP(k)
fDPCP(1,...,k)

Figure 4. AUC of different algorithms for outlier detection using
the first k = 2 principal directions of outlier-contaminated data on
Gr(2, 4). All algorithms other than PCA are optimized with ??
with 100 max. iters.

Hairball Open Ellipse

Figure 5. Examples of outliers used for contamination of the hands
dataset. Hairballs are used in hand reconstruction and open el-
lipses are used in outlier detection.

TPCA fRTPCA(k)

L2-WTPCA fWTPCA(k)

Figure 6. Reconstruction of hand 6 using the first principal di-
rection computed on a dataset with 40 hands and 5 outliers. The
cumulative reconstruction errors for the 40 inlier hands from L to
R, Top to Bottom, are: 8.19, 6.20, 5.35, and 5.35.

a point on Σ56
2 . A figure with an example of an outlier el-

lipse and a hairball outlier is in Fig. 5.
We run fWT PCA(1, ..., k), L1–WT PCA using Alg. 1

from [5] run on the tangent space, fRT PCA(1, ..., k), and
T PCA to find different versions of the first k = 1 princi-
pal direction on a dataset with all 40 hands and 5 outliers.
We compute reconstruction error for each method using the
framework described in the Gr(2, 4) experiments. Our cu-
mulative reconstruction errors for the 40 inlier hands and
a visualization of a hand reconstruction is in Fig. 6. L1–
WT PCA and fWT PCA(1, ..., k) produce the lowest recon-
struction errors on the hands and have the most sensible re-
constructions. Additionally, Alg. 3 preforms just as well as
Alg. 1 from [5] run on the tangent space.

We move on to computing cumulative inlier reconstruc-
tion errors as we gradually add outliers and report results



in Fig. 7. fWT PCA have the most stable reconstruction er-
rors followed by fRT PCA, then T PCA.
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Figure 7. The cumulative reconstruction error of the 40 inlier
hands using the first k = 1 principal direction where we gradu-
ally add hairball outliers.
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Figure 8. The cumulative reconstruction error of the 40 inlier
hands using the first k = 2 principal directions where we grad-
ually add hairball outliers.
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