AdaRevD: Adaptive Patch Exiting Reversible Decoder Pushes the Limit of Image Deblurring

Supplementary Material

Table 1. Summary of four public datasets.

Dataset	Types	Train	Test
GoPro [6]	synthetic	2,103	1,111
HIDE [8]	synthetic	-	2,025
RealBlur-R [7]	real-world	3,758	980
RealBlur-J [7]	real-world	3,758	980

Table 2. Confusion Matrix of the Classifier on GoPro testset.

gt pred	$\leq 20 \text{ dB}$	$\leq 25 \text{ dB}$	\leq 30 dB	\leq 35 dB	$\leq 40 \text{ dB}$	$> 40 \ dB$	total
$\leq 20 \text{ dB}$	394	61	0	0	0	0	455
$\leq 25 \; dB$	38	2998	164	0	0	0	3200
\leq 30 dB	0	141	3148	206	0	0	3495
\leq 35 dB	0	0	101	1248	154	0	1503
$\leq 40~\mathrm{dB}$	0	0	0	22	192	3	217
$>40~\mathrm{dB}$	0	0	0	0	13	5	18
total	432	3200	3413	1476	359	8	8888

1. Details of Experiment

Dataset As shown in Sec. 4.1 in the main paper, we evaluate our method on the four datasets shown in Table 1 and report two groups of results:

- A. train on GoPro, test on GoPro [6] / HIDE [8] / RealBlur-R / RealBlur-J [7];
- B. train and test on RealBlur-J / RealBlur-R respectively;

Dataset Distribution Figs. 1 - 3 shows the distribution of the blur patches from different dataset. As indicated in Fig. 1 and Fig. 2, the degraded patches from GoPro, HIDE and RealBlur-J dataset are almost all fall within the range of [15 dB, 45 dB]. Thus, we group the patches to 6 degradation degrees: $(\leq 20 \text{ dB}, \tilde{c} = 1), (\leq 25 \text{ dB}, \tilde{c} = 2), (\leq 30 \text{ dB}, \tilde{c} = 3), (\leq 35 \text{ dB}, \tilde{c} = 4), (\leq 40 \text{ dB}, \tilde{c} = 5) \text{ and } (> 40 \text{ dB}, \tilde{c} = 6)$ for the classifier training. Different from other dataset, the degraded patches from RealBlur-R are almost all fall in the range of [15 dB, 55 dB] (shown in Fig. 3). Thus, we group the patches from RealBlur-R to 8 degradation degrees: ($\leq 20 \text{ dB}, \tilde{c} = 1$), ($\leq 25 \text{ dB}, \tilde{c} = 2$), ($\leq 30 \text{ dB}, \tilde{c} = 3$), ($\leq 35 \text{ dB}, \tilde{c} = 4$), ($\leq 40 \text{ dB}, \tilde{c} = 5$), ($\leq 45 \text{ dB}, \tilde{c} = 6$), ($\leq 50 \text{ dB}, \tilde{c} = 7$) and (> 50 dB, $\tilde{c} = 8$) for the classifier training.

Clustering Criteria We split the image patches into different classes according to PSNR, which is a direct and efficient measure of degradation degree. We conduct

experiments: 1 In paper, we apply a step (γ) of 5 dB to cluster the blur patches into 6 degradation degrees from 15 dB to 45 dB. Here we change γ within the range of [3, 4, 5, 6, 10], and obtain almost the same PSNRs (34.50) dB). Classification accuracies and utilization rates of the sub-decoders (D-rates) are (83.7%, 87.2%), (87.0%, 86.0%), (89.8%, 84.3%), (91.4%, 87.7%), and (94.6%, 84.8%) respectively. First, although the larger step acquires better classification accuracy, AdaRevD-B (4 sub-decoders) has a big tolerance for accuracy corresponding to a small γ (e.g., 9 classes when $\gamma = 3$). Second, it is observed that almost all the misclassified patches are classified to the adjacent degradation degree, shown in Table 2 ($\gamma = 5$). Only a few patches would exit at earlier sub-decoder (slightly reduce PSNR of the whole image), while a few exit at later sub-decoder (slightly increase PSNR), which have certain complementary effects on the final PSNR. 2Following ClassSR [4], we separate PSNRs into 6 classes with the same numbers of blur patches, the PSNR is also the same (34.50 dB), even with lower classification accuracy (85.1%). Thus, AdaRevD does not demand a very high classification accuracy, and it is acceptable that a small number of patches are classified to adjacent degradation degree.

Evaluation Metric The computational complexity of MACs (G) and the number of parameters (M) are reported in Table 3. Table 3 illustrates that our method can further explore the well-trained NAFNet's [1] insufficient decoding capability (33.69 dB) to a higher level (34.10 dB), which is similar to UFPNet [3] (34.06 dB 243 G), but with fewer MACs (168 G).

Early-exit Signal In AdaRevD, early-exit signal E_c is determined by \mathbf{O}_c^j and τ . The \mathbf{O}_c^j of RevD-B on GoPro, RealBlur-J and RealBlur-R datasets are summarized in Tables 4, 5 and 6. Furthermore, the \mathbf{O}_c^j of RevD-L on these three datasets are shown in Tables 7, 8 and 9. The first \mathbf{O}_c^{j-1} where its next \mathbf{O}_c^j is smaller than $\tau = 0.05$ (the patch exit in the ((j-1)th sub-decoder) is highlighted in the tables.

As illustrated in these tables, blur patches with varying degradation degrees exhibit distinct improvements in PSNR within the same sub-decoder. The higher the PSNR, the less restoration the patch undergoes in the identical subdecoder. As more sub-decoders are progressively stacked,

Table 3. The comparison involves the computational complexity of MACs (G) and the number of parameters (M), when the input size is 256×256 . PSNR (dB) is calculated on GoPro test set.

Method	MIMO-UNet++ [2]	DeepRFT+ [5]	Restormer [10]	NAFNet64 [1]	UFPNet [3]	RevD-B(NAFNet)	RevD-B(UFPNet)	RevD-L(UFPNet)
MACs (G)	617	187	141	64	243	168	347	460
Params (M)	16.1	19.5	26.1	65.0	80.3	131.0	142.5	210.8
PSNR (dB)	32.68	33.52	32.92	33.69	34.06	34.10	34.51	34.64

Figure 1. Distribution of GoPro [6] and HIDE [8] Dataset. (a) The ranked PSNR curve of the image patches from GoPro train set; (b) The ranked PSNR curve of the image patches from HIDE test set.

Table 4. Improvement of diffent sub-decoders in RevD-B on Go-Pro dataset. The value in the *c*th row and the *j*th column is \mathbf{O}_c^j . The first \mathbf{O}_c^{j-1} that \mathbf{O}_c^j smaller than $\tau = 0.05$ is highlighted in the table.

		Traiı	nSet		TestSet							
Degree	dec1	dec2	dec3	dec4	dec1	dec2	dec3	dec4				
≤ 20	11.134	0.642	0.351	0.178	10.275	0.653	0.383	0.170				
20-25	10.959	0.406	0.211	0.100	9.622	0.355	0.208	0.093				
25-30	9.184	0.214	0.105	0.047	8.097	0.191	0.100	0.045				
30-35	6.215	0.121	0.050	0.021	5.397	0.103	0.050	0.021				
35-40	3.468	0.079	0.024	0.011	2.859	0.073	0.014	0.010				
>40	2.380	0.047	0.016	0.009	1.510	0.022	0.006	0.004				

the model's capacity to recover images reaches saturation. Tables 4 and 7 demonstrate that the E_c remains consistent between the training set and test set when $\tau = 0.05$. Moreover, the performance of the various sud-decoders on the train and test set in the tables indicate that selecting the early-exit signal E_c based on the train set ensures effective recovery of patches from the test set. In essence, opting for E_c from the train set is rational, as the sub-decoder saturation observed in the train set aligns with the saturation observed in the test set.

Table 5. Improvement of diffent sub-decoders in RevD-B on RealBlur-J dataset.

		Traiı	nSet	TestSet								
Degree	dec1	dec2	dec3	dec4	dec1	dec2	dec3	dec4				
≤ 20	11.855	0.758	0.441	0.201	5.223	0.093	0.089	0.041				
20-25	11.236	0.563	0.336	0.139	4.842	0.138	0.092	0.041				
25-30	10.041	0.390	0.214	0.080	4.138	0.107	0.066	0.024				
30-35	8.406	0.249	0.115	0.042	3.461	0.067	0.036	0.010				
35-40	7.101	0.168	0.064	0.030	2.537	0.073	0.034	0.007				
>40	5.525	0.126	0.044	0.028	1.380	-0.030	0.000	0.000				

2. Viasulizations

The visual results for GoPro [6], HIDE [8], RealBlur-R [7] and RealBlur-J [7] are presented in Figs. 4, 5, 6 and 7, respectively. The visualizations depicted in Fig. 4 and Fig. 5 illustrate AdaRevD's capability to restore sharper images. We also show the visualization results on the Real-Blur [7] dataset in Fig. 6 and Fig. 7. It can be observed that our model yields more visually pleasant outputs than other methods on both synthetic and real-world motion deblurring. This is evident when compared to other SOTA methods, such as DeepRFT [5] and UFPNet [3].

Figure 2. Distribution of RealBlur-J [7] Dataset. (a) The ranked PSNR curve of the image patches from RealBlur-J train set; (b) The ranked PSNR curve of the image patches from RealBlur-J test set.

Figure 3. Distribution of RealBlur-R [7] Dataset. (a) The ranked PSNR curve of the image patches from RealBlur-R train set; (b) The ranked PSNR curve of the image patches from RealBlur-R test set.

		Tra	inSet	TestSet								
Degree	dec1	dec2	dec3	dec4	dec1	dec2	dec3	dec4				
≤ 20	12.401	0.863	0.308	0.098	5.541	0.152	0.063	0.029				
20-25	12.356	0.781	0.272	0.081	5.305	0.182	0.061	0.022				
25-30	12.268	0.702	0.215	0.060	5.657	0.155	0.056	0.017				
30-35	11.593	0.588	0.178	0.0513	4.233	0.139	0.039	0.012				
35-40	9.681	0.390	0.115	0.042	3.431	0.133	0.037	0.016				
40-45	7.423	0.245	0.0778	0.032	3.043	0.111	0.028	0.012				
45-50	5.210	0.136	0.042	0.021	2.005	0.042	0.012	0.008				
>50	3.227	0.074	0.018	0.009	1.102	0.014	0.006	0.006				

Table 6. Improvement of diffent sub-decoders in RevD-B on RealBlur-R dataset.

				Traiı	nSet			TestSet								
Degree	dec1	dec2	dec3	dec4	dec5	dec6	dec7	dec8	dec1	dec2	dec3	dec4	dec5	dec6	dec7	dec8
≤20	11.068	0.601	0.257	0.222	0.198	0.109	0.047	0.014	10.201	0.610	0.252	0.269	0.198	0.107	0.048	0.015
20-25	10.903	0.400	0.154	0.135	0.118	0.064	0.026	0.007	9.569	0.345	0.129	0.153	0.122	0.055	0.021	0.007
25-30	9.141	0.227	0.076	0.070	0.060	0.031	0.012	0.003	8.053	0.206	0.065	0.073	0.064	0.030	0.009	0.003
30-35	6.176	0.145	0.037	0.035	0.029	0.015	0.007	0.002	5.362	0.125	0.030	0.041	0.031	0.015	0.005	0.002
35-40	3.437	0.101	0.019	0.018	0.014	0.007	0.004	0.001	2.798	0.116	0.012	0.023	0.016	0.010	0.003	0.001
>40	2.365	0.057	0.016	0.010	0.007	0.007	0.008	0.002	1.470	0.067	0.013	0.018	0.014	0.006	0.003	0.001

Table 7. Improvement of diffent sub-decoders in RevD-L on GoPro dataset.

Table 8. Improvement of diffent sub-decoders in RevD-L on RealBlur-J dataset.

	TrainSet									TestSet							
Degree	dec1	dec2	dec3	dec4	dec5	dec6	dec7	dec8	dec1	dec2	dec3	dec4	dec5	dec6	dec7	dec8	
≤ 20	11.718	0.788	0.429	0.227	0.221	0.131	0.101	0.006	5.131	0.074	0.065	0.052	0.056	0.032	0.022	0.002	
20-25	11.113	0.606	0.330	0.190	0.161	0.082	0.066	0.004	4.813	0.125	0.092	0.050	0.056	0.033	0.024	0.002	
25-30	9.956	0.419	0.218	0.133	0.096	0.045	0.039	0.003	4.119	0.089	0.067	0.045	0.037	0.019	0.014	0.001	
30-35	8.348	0.263	0.129	0.082	0.050	0.022	0.025	0.002	3.486	0.066	0.038	0.028	0.021	0.009	0.010	0.001	
35-40	7.040	0.186	0.091	0.048	0.029	0.0159	0.019	0.002	2.444	0.052	0.050	0.032	0.013	0.004	0.006	0.000	
>40	5.444	0.158	0.081	0.039	0.022	0.014	0.018	0.001	1.462	-0.021	-0.018	0.026	-0.021	0.007	0.003	-0.003	

Table 9. Improvement of diffent sub-decoders in RevD-L on RealBlur-R dataset.

				Traiı	nSet			TestSet								
Degree	dec1	dec2	dec3	dec4	dec5	dec6	dec7	dec8	dec1	dec2	dec3	dec4	dec5	dec6	dec7	dec8
≤ 20	12.037	1.174	0.357	0.105	0.188	0.117	0.029	0.000	5.524	0.178	0.062	0.033	0.062	0.032	0.010	0.000
20-25	11.988	1.102	0.314	0.098	0.174	0.098	0.024	0.000	5.252	0.227	0.062	0.037	0.064	0.023	0.007	0.000
25-30	11.895	1.030	0.259	0.079	0.132	0.070	0.019	0.000	5.611	0.214	0.062	0.036	0.046	0.021	0.006	0.000
30-35	11.260	0.891	0.215	0.060	0.094	0.055	0.017	0.000	4.190	0.190	0.041	0.023	0.032	0.016	0.005	0.000
35-40	9.419	0.640	0.136	0.035	0.055	0.038	0.013	0.000	3.372	0.189	0.037	0.019	0.026	0.017	0.006	0.000
40-45	7.243	0.424	0.085	0.022	0.030	0.027	0.009	0.000	3.016	0.141	0.031	0.016	0.018	0.016	0.004	0.000
45-50	5.093	0.259	0.044	0.013	0.014	0.015	0.005	0.000	1.991	0.058	0.020	0.007	0.006	0.008	0.003	0.000
>50	3.139	0.183	0.020	0.008	0.006	0.007	0.003	0.000	1.128	-0.014	0.010	0.007	0.003	0.008	0.002	0.000

Figure 4. Examples on the GoPro test dataset. The odd rows show blur image, predicted images of different methods, and ground-truth sharp image. The even rows show the residual of the blur image / predicted sharp images and the ground-truth sharp image.

Figure 5. Examples on the HIDE test dataset.

Figure 6. Examples on the RealBlur-J test dataset.

Figure 7. Examples on the RealBlur-R test dataset.

References

- Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image restoration. In *Proc. ECCV*, 2022. 1, 2, 5, 6
- [2] Sung-Jin Cho, Seo-Won Ji, Jun-Pyo Hong, Seung-Won Jung, and Sung-Jea Ko. Rethinking coarse-to-fine approach in single image deblurring. In *Proc. ICCV*, 2021. 2
- [3] Zhenxuan Fang, Fangfang Wu, Weisheng Dong, Xin Li, Jinjian Wu, and Guangming Shi. Self-supervised non-uniform kernel estimation with flow-based motion prior for blind image deblurring. In *Proc. CVPR*, 2023. 1, 2, 5, 6, 7, 8
- [4] Xiangtao Kong, Hengyuan Zhao, Yu Qiao, and Chao Dong. Classsr: A general framework to accelerate super-resolution networks by data characteristic. In *Proc. CVPR*, 2021. 1
- [5] Xintian Mao, Yiming Liu, Fengze Liu, Qingli Li, Wei Shen, and Yan Wang. Intriguing findings of frequency selection for image deblurring. In *Proc. AAAI*, 2023. 2, 5, 6, 7, 8
- [6] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network for dynamic scene deblurring. In *Proc. CVPR*, 2017. 1, 2
- [7] Jaesung Rim, Haeyun Lee, Jucheol Won, and Sunghyun Cho. Real-world blur dataset for learning and benchmarking deblurring algorithms. In *Proc. ECCV*, 2020. 1, 2, 3
- [8] Ziyi Shen, Wenguan Wang, Xiankai Lu, Jianbing Shen, Haibin Ling, Tingfa Xu, and Ling Shao. Human-aware motion deblurring. In *Proc. ICCV*, 2019. 1, 2
- [9] Fu-Jen Tsai, Yan-Tsung Peng, Yen-Yu Lin, Chung-Chi Tsai, and Chia-Wen Lin. Stripformer: Strip transformer for fast image deblurring. In ECCV, 2022. 7, 8
- [10] Syed Waqas Zamir, Aditya Arora, Salman H. Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. In *Proc. CVPR*, 2022. 2