AdaRevD: Adaptive Patch Exiting Reversible Decoder

Pushes the Limit of Image Deblurring

Supplementary Material

Table 1. Summary of four public datasets.

Dataset | Types |Train Test
GoPro [6] ‘ synthetic {2,103 1,111
HIDE [8] | synthetic | - 2,025

3,758 980
3,758 980

RealBlur-R [7] ‘real-world
RealBlur-J [7] |real-world

Table 2. Confusion Matrix of the Classifier on GoPro testset.

MgZOdE <25dB <30dB < 35dB <40dB > 40 dB| total

<20dB| 394 61 0 0 0 0 |455
<25dB| 38 2998 164 0 0 0 (3200
<30dB| 0 141 3148 206 0 0 [3495
<35dB| 0 0 101 1248 154 0 [1503
<40dB| 0 0 0 22 192 3 |217
>40dB| 0 0 0 0 13 5 18
total | 432 3200 3413 1476 359 3 8888

1. Details of Experiment

Dataset As shown in Sec. 4.1 in the main paper, we eval-
uate our method on the four datasets shown in Table 1 and
report two groups of results:

¢ A. train on GoPro, test on GoPro [6] / HIDE [8] /
RealBlur-R / RealBlur-J [7];
 J5. train and test on RealBlur-J / RealBlur-R respectively;

Dataset Distribution Figs. | - 3 shows the distribution
of the blur patches from different dataset. As indicated in
Fig. 1 and Fig. 2, the degraded patches from GoPro, HIDE
and RealBlur-J dataset are almost all fall within the range of
[15 dB, 45 dB]. Thus, we group the patches to 6 degradation
degrees: (<20dB,¢=1),(<25dB,¢ =2),(<30dB,c =
3),(£35dB,¢ =4),(<40dB, ¢ = 5)and (>40dB, ¢ = 6)
for the classifier training. Different from other dataset, the
degraded patches from RealBlur-R are almost all fall in the
range of [15 dB, 55 dB] (shown in Fig. 3). Thus, we group
the patches from RealBlur-R to 8 degradation degrees: (<
20dB, ¢ =1),(£25dB, ¢ = 2),(£30dB, ¢ = 3), (£
35dB,¢ = 4), (£40dB, ¢ = 5), (£45dB, ¢ = 6),
(<50dB, ¢ = 7) and (> 50 dB, ¢ = 8) for the classifier
training.

Clustering Criteria We split the image patches into
different classes according to PSNR, which is a direct
and efficient measure of degradation degree. We conduct

experiments: D In paper, we apply a step (y) of 5 dB to
cluster the blur patches into 6 degradation degrees from
15 dB to 45 dB. Here we change v within the range of
[3,4,5,6,10], and obtain almost the same PSNRs (34.50
dB). Classification accuracies and utilization rates of
the sub-decoders (D-rates) are (83.7%, 87.2%), (87.0%,
86.0%), (89.8%, 84.3%), (91.4%, 87.7%), and (94.6%,
84.8%) respectively. First, although the larger step acquires
better classification accuracy, AdaRevD-B (4 sub-decoders)
has a big tolerance for accuracy corresponding to a small
v (e.g., 9 classes when v = 3). Second, it is observed that
almost all the misclassified patches are classified to the
adjacent degradation degree, shown in Table 2 (y = 5).
Only a few patches would exit at earlier sub-decoder
(slightly reduce PSNR of the whole image), while a few
exit at later sub-decoder (slightly increase PSNR), which
have certain complementary effects on the final PSNR. @
Following ClassSR [4], we separate PSNRs into 6 classes
with the same numbers of blur patches, the PSNR is
also the same (34.50 dB), even with lower classification
accuracy (85.1%). Thus, AdaRevD does not demand a very
high classification accuracy, and it is acceptable that a small
number of patches are classified to adjacent degradation
degree.

Evaluation Metric The computational complexity of
MACs (G) and the number of parameters (M) are reported
in Table 3. Table 3 illustrates that our method can further
explore the well-trained NAFNet’s [1] insufficient decoding
capability (33.69 dB) to a higher level (34.10 dB), which is
similar to UFPNet [3] (34.06 dB 243 G), but with fewer
MAC:s (168 G).

Early-exit Signal In AdaRevD, early-exit signal F is de-
termined by OJ and 7. The OJ of RevD-B on GoPro,
RealBlur-J and RealBlur-R datasets are summarized in Ta-
bles 4, 5 and 6. Furthermore, the OZ of RevD-L on these
three datasets are shown in Tables 7, 8 and 9. The first
OJ~! where its next OJ is smaller than 7 = 0.05 (the
patch exit in the ((j — 1)th sub-decoder) is highlighted in
the tables.

As illustrated in these tables, blur patches with varying
degradation degrees exhibit distinct improvements in PSNR
within the same sub-decoder. The higher the PSNR, the
less restoration the patch undergoes in the identical sub-
decoder. As more sub-decoders are progressively stacked,



Table 3. The comparison involves the computational complexity of MACs (G) and the number of parameters (M), when the input size is

256 x 256. PSNR (dB) is calculated on GoPro test set.

Method ‘ MIMO-UNet++ [2] DeepRFT+ [5] Restormer [10] NAFNet64 [1] UFPNet [3] ‘ RevD-B(NAFNet) RevD-B(UFPNet) RevD-L(UFPNet)
MAC:s (G) 617 187 141 64 243 168 347 460
Params (M) 16.1 19.5 26.1 65.0 80.3 131.0 142.5 210.8
PSNR (dB) ‘ 32.68 33.52 32.92 33.69 34.06 ‘ 34.10 34.51 34.64
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Figure 1. Distribution of GoPro [6] and HIDE [8] Dataset. (a) The ranked PSNR curve of the image patches from GoPro train set; (b) The
ranked PSNR curve of the image patches from GoPro test set; (c) The ranked PSNR curve of the image patches from HIDE test set.

Table 4. Improvement of diffent sub-decoders in RevD-B on Go-
Pro dataset. The value in the cth row and the jth column is O%.

The first O~ that OJ smaller than 7 = 0.05 is highlighted in
the table.

‘ TrainSet TestSet
Degree| decl |dec2 | dec3 |decd | decl |dec2 | dec3 | decd
<20 |11.134]0.642|0.351|0.178]10.275]0.653] 0.383 |0.170
20-25 [10.9590.406(0.211]0.100| 9.622 |0.355| 0.208 [0.093
25-30 | 9.184 |0.214]0.105]0.047| 8.097 |0.191]0.100|0.045
30-35 | 6.215 [0.121]0.050]0.021] 5.397 |0.103| 0.050|0.021
35-40 | 3.468 |0.079/0.024]0.011] 2.859 |0.073| 0.014|0.010
>40 | 2.380 [0.047]0.016]0.009| 1.510 |0.022| 0.006 |[0.004

the model’s capacity to recover images reaches saturation.
Tables 4 and 7 demonstrate that the £, remains consistent
between the training set and test set when 7 = 0.05. More-
over, the performance of the various sud-decoders on the
train and test set in the tables indicate that selecting the
early-exit signal E, based on the train set ensures effective
recovery of patches from the test set. In essence, opting
for E. from the train set is rational, as the sub-decoder sat-
uration observed in the train set aligns with the saturation
observed in the test set.

Table 5. Improvement of diffent sub-decoders in RevD-B on
RealBlur-J dataset.

‘ TrainSet TestSet
Degree| decl | dec2 | dec3 | decd | decl | dec2 |dec3 | decd
<20 [11.855]0.758]0.441]0.201| 5.223 | 0.093 |0.089[0.041
20-25 | 11.236]0.563]0.336|0.139| 4.842 0.138 |0.0920.041
25-30 10.041]0.390[0.214|0.080] 4.138 | 0.107 [0.0660.024
30-35 | 8.406 |0.249]0.115)0.042| 3.461 | 0.067 |0.036/0.010
35-40 | 7.101 |0.168]0.064]0.030] 2.537 | 0.073 |0.034/0.007
>40 | 5.525 [0.126]0.044/0.028| 1.380-0.030(0.000|0.000

2. Viasulizations

The visual results for GoPro [6], HIDE [8], RealBlur-R [7]
and RealBlur-J [7] are presented in Figs. 4, 5, 6 and 7,
respectively. The visualizations depicted in Fig. 4 and
Fig. 5 illustrate AdaRevD’s capability to restore sharper im-
ages. We also show the visualization results on the Real-
Blur [7] dataset in Fig. 6 and Fig. 7. It can be observed
that our model yields more visually pleasant outputs than
other methods on both synthetic and real-world motion de-
blurring. This is evident when compared to other SOTA
methods, such as DeepRFT [5] and UFPNet [3].
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Figure 2. Distribution of RealBlur-J [7] Dataset. (a) The ranked PSNR curve of the image patches from RealBlur-J train set; (b) The ranked
PSNR curve of the image patches from RealBlur-J test set.
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Figure 3. Distribution of RealBlur-R [7] Dataset. (a) The ranked PSNR curve of the image patches from RealBlur-R train set; (b) The
ranked PSNR curve of the image patches from RealBlur-R test set.

Table 6. Improvement of diffent sub-decoders in RevD-B on
RealBlur-R dataset.

‘ TrainSet TestSet

Degree| decl |dec2| dec3 | decd | decl |dec2 | dec3 | decd

<20 [12.401/0.863| 0.308 | 0.098 |5.541|0.152|0.063|0.029
20-25 [12.356/0.781| 0.272 | 0.081 | 5.305 |0.182/0.061|0.022
25-30 |12.2680.702| 0.215 | 0.060 | 5.657|0.155]0.056]0.017
30-35 [11.593]0.588| 0.178 |0.0513]4.233]0.139/0.039|0.012
35-40 | 9.681 |0.390| 0.115 | 0.042 | 3.431]0.133/0.037[0.016
40-45 | 7.423 |0.245/0.0778| 0.032 | 3.043 [0.111[0.028|0.012
45-50 | 5.210 |0.136] 0.042 | 0.021 2.005]0.042]0.012]0.008

>50 | 3.227 [0.074] 0.018 | 0.009 1.102]0.014|0.006|0.006




Table 7. Improvement of diffent sub-decoders in RevD-L on GoPro dataset.

| TrainSet TestSet
Degree‘ decl ‘ dec2 ‘ dec3 ‘ decd ‘ dec5 ‘ dec6 ‘ dec7 ‘ dec8 ‘ decl ‘ dec2 ‘ dec3 ‘ decd ‘ dec5 ‘ dec6 ‘ dec7 ‘ dec8
<20 ‘ 11.068‘0.601 ‘0.257 ‘0.222‘0.198 ‘0.109‘0.047 ‘0.014‘ 10.201 ‘0.610‘0.252‘0.269‘0.198 ‘0.107‘0.048‘0.015
20-25 ‘10.903‘0.400‘0.154‘0.135‘0.118‘0.064‘0.026‘0.007‘ 9.569 ‘0.345‘0.129‘0.153‘0.122‘0.055‘0.021 ‘0.007
25-30 ‘ 9.141 ‘0.227‘0.076‘0.()70‘0.060‘0.031 ‘0.012‘0.003‘ 8.053 ‘0.206‘0.065‘0.073‘0.064‘0.030‘0.009‘0.003
30-35 ‘ 6.176 ‘0.145‘0.037‘0.035‘0.029‘0.015‘0.007‘0.002‘ 5.362 ‘0.125‘0.030‘0.041 ‘0.031 ‘0.015‘0.005‘0.002
35-40 ‘ 3.437 ‘0.101 ‘0.019‘0.018‘0.014‘0.007‘0.004‘0.001‘ 2.798 ‘0.116‘0.012‘0.023‘0.016‘0.010‘0.003‘0.001
>40 ‘ 2.365 ‘0.057‘0.016‘0.010‘0.007‘0.007‘0.008‘0.002‘ 1.470 ‘0.067‘0.013‘0.018‘0.014‘0.006‘0.003‘0.001

Table 8. Improvement of diffent sub-decoders in RevD-L on RealBlur-J dataset.

| TrainSet TestSet
Degree| decl |dec2 | dec3 | decd | dec5 | dec6 |dec7 | dec8 |decl | dec2 | dec3 |decd | dec5 | dec6 | dec7 | dec8
<20 [11.718]0.788]0.429|0.227/0.221| 0.131 |0.101]0.006|5.131| 0.074 | 0.065 [0.052 0.056 |0.032[0.022 0.002
20-25 [11.113]0.606(0.330(0.190[0.161 | 0.082 [0.066/0.004|4.813| 0.125 | 0.092 |0.050| 0.056 |0.033]0.024 0.002
25-30 | 9.956 [0.419(0.218]0.133]0.096| 0.045 [0.039|0.003 |4.119] 0.089 | 0.067 |0.045| 0.037 |0.019(0.014| 0.001
30-35 | 8.348 [0.263]0.129]0.082|0.050| 0.022 [0.025]0.002|3.486| 0.066 | 0.038 |0.028| 0.021 [0.009]0.010] 0.001
35-40 | 7.040 [0.186]0.091|0.048|0.029]0.0159|0.019]0.002|2.444| 0.052 | 0.050 [0.032| 0.013 |0.004|0.006| 0.000
40 | 5.444 0.158]0.081]0.039/0.022| 0.014 |0.018]0.001|1.462|-0.021]-0.018|0.026|-0.021|0.007 0.003 |-0.003

Table 9. Improvement of diffent sub-decoders in RevD-L on RealBlur-R dataset.

| TrainSet TestSet

Degree| decl |dec2 | dec3 | decd | dec5 | dec6 | dec7 | dec8 | decl | dec2 | dec3 | dec4 | dec5 | dec6 | dec7 | dec8

<20 |12.037|1.174/0.357]0.105|0.188]0.117|0.029]0.000|5.524| 0.178 |0.062|0.033|0.062|0.032]0.010|0.000
20-25 |11.988]1.102|0.314/0.098]0.174]0.098|0.024|0.000|5.252| 0.227 |0.062|0.037|0.064|0.023 |0.007 |0.000
25-30 |11.895[1.030/0.259]0.079]0.132|0.070(0.019]0.000|5.611| 0.214 |0.062|0.036|0.046 |0.021{0.006 |0.000
30-35 |11.260]0.891]0.215]0.060|0.094]0.055|0.017[0.000|4.190| 0.190 |0.041{0.023]0.032]0.0160.005 | 0.000
35-40 | 9.419 |0.640|0.136/0.035|0.055(0.038]0.013|0.000|3.372| 0.189 |0.037|0.019|0.0260.017]0.006 |0.000
40-45 | 7.243 |0.424/0.085|0.022(0.030|0.027|0.009|0.000|3.016| 0.141 [0.031|0.016]0.018|0.016|0.004|0.000
45-50 | 5.093 [0.259]0.044]0.013|0.014]0.015|0.005]0.000| 1.991| 0.058 |0.020|0.007 |0.006|0.0080.003 |0.000

>50 | 3.139 |0.183|0.020|0.008|0.006]0.007 |0.003|0.000| 1.128|-0.014|0.010|0.0070.003|0.008 |0.002 | 0.000
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Figure 4. Examples on the GoPro test dataset. The odd rows show blur image, predicted images of different methods, and ground-truth
sharp image. The even rows show the residual of the blur image / predicted sharp images and the ground-truth sharp image.
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Figure 5. Examples on the HIDE test dataset.
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Figure 6. Examples on the RealBlur-J test dataset.



Blur DeepRFT+ [5] Stripformer [9] UFPNet [3] AdaRevD-B AdaRevD-L Sharp

Figure 7. Examples on the RealBlur-R test dataset.
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