
Denoising Point Clouds in Latent Space via Graph Convolution and Invertible
Neural Network

Supplementary Material

1. Outline

The supplementary material includes:
• Evaluation metrics (Sec. 2);
• Network configuration details (Sec. 3);
• Additional comparisons of the generalization ability

(Sec. 4);
• Comparison with traditional methods(Sec. 5);
• Additional ablation studies (Sec. 6);
• Runtime and network size for learning based methods

(Sec. 7).

2. Evaluation Metrics

CD and P2M. Following Score [9] and IterativePFN [2],
we use Chamfer distance (CD) and Point-to-mesh(P2M)
distance as our primary evaluation metrics to quantify the
performance of point cloud denoising, which have the fol-
lowing standard definitions:

CD(X̂,X) =
1

|X̂|

∑
x̂∈X̂

min
x∈X

∥x−x̂∥+ 1

|X|
∑
x∈X

min
x̂∈X̂

∥x̂−x∥

(1)

P2M(X̂,M) =
1

|X̂|

∑
x̂∈X̂

min
f∈M

d(f, x̂)

+
1

|M |
∑
f∈M

min
x̂∈X̂

d(x̂, f)

(2)

where X̂ and X are denoised point cloud and ground-truth,
M is the initial mesh corresponding to ground-truth X , f
is the triangular face in M , |X| and |M | are the number of
points and triangular faces, ∥ · ∥ is the L2 norm.

Uniformity. The uniformity metric was proposed in PU-
GAN [7], which uses the FPS and ball query algorithm with
radius rd to sample M seed points and collect a point set at
each seed. For each point set Sj(j = 1 . . .M), it defines
the expected number of points nj based on the percentage
of the area, and calculates the loss between nj and the actual
number of points |Sj |:

Un(Sj) = (|Sj | − nj)
2/nj (3)

which evaluates the global uniformity. Further, it defines
the expected point-to-neighbor distance d̂, and calculates
the loss between d̂ and the actual point-to-neighbor distance

dj,k(k = 1 . . . |Sj |) of each point in Sj :

Ud(Sj) =

|Sj |∑
k=1

(dj,k − d̂)2/d̂ (4)

which evaluates the local uniformity. Combining Eq. (3)
and Eq. (4), the definition of uniformity for a point cloud X̂
can be denoted as:

U(X̂) =

M∑
j=1

Un(Sj) · Ud(Sj) (5)

In practice, we collected point set Sj with radius rd =
√
p for

each p ∈ {0.4%, 0.6%, 0.8%, 1.0%, 1.2%}. The detailed
definitions of nj and d̂ can be found in section 3.5.2 in PU-
GAN [7].

Discussion. In the qualitative results of the main paper,
we mentioned two issues of existing SOTA deep learning
methods including IterativePFN [2] and Score [9]: 1)the de-
noised points frequently gather together; 2)there are lots of
hollow areas. These two issues affects the quality of point
clouds, and lead to different biases towards the results of
CD, P2M and uniformity metric. To be specific, when cal-
culating the CD in Eq. (1), for ground-truth X located in
the hollow area of denoised point cloud X̂ , the distance to
the nearest point in X̂ will be large. Further, when calculat-
ing the local uniformity in Eq. (4), for the denoised points
gathered together, the point-to-neighbor distance dj,k will
be much less than the expected distance d̂. Moreover, the
P2M(Eq. (2)) metric with sufficiently large triangular faces
is rarely affected by these issues, nevertheless, we typically
aim for point clouds with uniform distributions.

3. Network Configuration Details
In this section, we first introduce the design of multiple
iteration-modules for our heavy-version denoising frame-
work, which utilizes the iterative denoising technique pro-
posed in IterativePFN [4]. Then, we present the configu-
ration details of our 2-stage multi-level graph convolution
module and invertible neural network.

Iterative denoising of our heavy-version framework.
Inspired by IterativePFN [4], we construct heavy-version
framework by stacking three identical denoising mod-
ules to perform iterative denoising internally, as shown in
Fig. 1(right), the output of each denoising module is the in-
put of its next module, and we use the reconstruction loss:

Earth Mover’s Distance(EMD) to model a training objec-
tive aimed at gradually reducing point cloud noise, which
can be denoted as:

L(i) = EMD(i)(X̂(i), X̃(i)) (6)

where X̂(i) is the output of i-th denoising module, X̃(i) =
X + αiε is the i-th adaptive ground truth, where ε ∼
N (0, I) and α1 > α2 > α3, we set α3 = 0, which means
that X̃(3) is exactly the ground-truth X . Finally, we sum
adaptive EMD loss across iterations to obtain the final loss:

LEMD =

3∑
i=1

EMD(i)(X̂(i), X̃(i)) (7)

MLGC configuration. The MLGC module of our
light-version framework is constructed by one EdgeConv
layer for initial feature generation and 12 densely con-
nected EdgeConv layers, as mentioned in the main paper,
for l-th EdgeConv layer, the feature of i-th vertex is up-
dated as: f (l)i =

∑
j:(i,j)∈E MLP(h

(l−1)
i ∥h(l−1)

i − h
(l−1)
j),

and the process of feature dimension adaption is: C(l) =

MLP(H(l)), where H(l) = {h(l)
i }Ni=1 is the set of densely

connected features. Thus, we describe the setting format of
MLP in each EdgeConv layers and feature dimension adap-
tion layers as: [(input channel, hidden channel, output chan-
nel)], and the configuration details of MLGC module in our
light-version framework are presented in Tab. 1, we divide
the 12 EdgeConv layers into two stages, and except for the
last EdgeConv layer of each stage, we concatenate the in-
put and output feature of EdgeConv to provide the densely
connected features for next EdgeConv layer and the corre-
sponding feature dimension adaption layer. Moreover, the
configuration details of each MLGC module in our heavy-
version framework are presented in Tab. 2, which contains
10 densely connected EdgeConv layers. For each vertex,
edges are formed with its 32 nearest neighbors

Invertible neural network configuration. Our light-
version framework has 12 invertible transformation layers:
Fθl , and each iteration module of our heavy-version frame-
work has 10 invertible transformation layers. Further, one
invertible layer consists of 2 blocks, and we use activation
normalization(Actnorm) [6] before every invertible block.
Thus, with geometric feature C(l) integrated, the transfor-
mation process of l-th invertible layer Fθl can be denoted
as:

X(l) + C(l) → X(l)
c

X(l)
c → [Actnorm → invblock]× 2 → X(l+1)

where actnorm is a form of data dependent initialization,
which helps improve the training stability and performance,
similar to batch normalization. We present the detailed for-
mulations in Tab. 3, each invertible block is parameterized
by a 1-Lipschitz block G, which is recursively constructed
by two 1-Lipschitz transformations.

4. Further Comparison of the Generalization
Ability

In this section, we provide further comparison of the gener-
alization ability with SOTA methods in two aspects. 1)De-
noising results on PUNet dataset with different noise pat-
terns. 2)Quantitative results on Kinect v1 datasets of [14]
consisting of 71 real-world scans and more visual results on
RueMadame dataset.

4.1. Results on the PUNet dataset with Different
Noise Patterns

For the comparison of generalization ability on unseen
noise patterns, we further evaluate our method on four noise
types with the noise scale set to 1%, 2% and 2.5% of
the bounding sphere’s radius: 1)Discrete noise, results are
shown in Tab. 9 and Fig. 2. Both versions of our framework
outperform SOTA deep learning methods on 10K points
and are comparable to the SOTA results on 50K points.
2)Laplace noise, results are shown in Tab. 10 and Fig. 3.
This noise pattern causes a relatively large disturbance,
which is more challenging(see CD and P2M metric results
for the noisy point clouds). Nonetheless, both versions of
our framework consistently outperform SOTA methods on
the Chamfer distance(CD) metric across all resolutions and
noise scales, and also exhibit superior results on the Point
to Mesh (P2M) distance metric, particularly under sparse
point cloud conditions. 3)Non-isotropic Gaussian noise, re-
sults are shown in Tab. 11 and Fig. 4. In most cases, our
method outperforms other SOTA methods. 4)Uniform dis-
tribution of noise, results are shown in Tab. 12 and Fig. 5.
Similarly, our denoising results stay ahead of the SOTA re-
sults, especially in terms of Chamfer distance(CD) metric.
Moreover, the specific implementation details of these noise
patterns can be found in supplementary A.3 in [2].

4.2. More Comparisons on real world scans

To further evaluate the denoising performance on real world
point clouds, we provide quantitative comparisons Kinect
v1 dataset in Tab. 7, our strong denoising performance
demonstrates the effectiveness of our method in real-world
scenarios. Additionally, we present visual results on two
additional scenes of the RueMadame datasets. As shown
in Fig. 6, our method can effectively recognize and restore
the intrinsic shape of the challenging chaotic noise point
regions, such as the door and windowsill. Besides, by ef-
fectively eliminating the linear trajectories of point clouds
caused by laser scanning, the denoised real world point
clouds of our method are relatively uniform and smooth,
which is rarely achieved by other methods.

5. Comparison with Traditional Methods
In addition to deep learning based methods, in Tab. 13, we
present the denoising results for three traditional methods,
including Bilateral filter [3] which depends on normal es-
timation technique, Jet fitting mechanism [1] which fits n-
order polynomial surfaces and projects noisy points onto the
surfaces, and WLOP regularization mechanism [5] which
performs a resampling process for noisy point clouds. De-
pending on the manual tuning parameters, these traditional
methods can generally perform well in circumstance of 50K
resolution, while for point clouds with resolution of 10K,
WLOP cannot achieve the positive denoising effect, and
other two methods have poor results as well, which indi-
cates that traditional methods have strong denoising bias.
Generally, compared with deep learning methods, tradi-
tional methods struggle to achieve excellent denoising ef-
fects.

stage input EdgeConv feature adaption

1

- 3 (6, 16) -
16 [(32, 64, 32)] [(48, 64, 3+Da)]
48 [(96, 64, 32)] [(80, 64, 3+Da)]
80 [(160, 64, 32)] [(112, 64, 3+Da)]

112 [(224, 64, 32)] [(144, 64, 3+Da)]
144 [(288, 64, 32)] [(176, 64, 3+Da)]
176 [(352, 64, 32)] [(208, 64, 3+Da)]
208 [(416, 64, 32)] [(240, 64, 3+Da)]
240 [(480, 96, 96)] [(96, 64, 3+Da)]

2

96 [(192, 64, 24)] [(120, 64, 3+Da)]
120 [(240, 64, 24)] [(144, 64, 3+Da)]
144 [(288, 64, 24)] [(168, 64, 3+Da)]
168 [(336, 96, 96)] [(96, 64, 3+Da)]

Table 1. Network configuration of 2-stage multi-level graph con-
volution module in light-version framework. ”input” indicates the
dimension of input features for EdgeConv layer, Da = 48 is the
augmented dimension for invertible neural network.

6. Further Ablation Studies
Ablation study on noise channels in the latent space.
As mentioned in the main paper, our invertible denoising
framework can bijectively map a high-dimensional prior la-
tent space with D(z̃) = 3 + Da, where noise components
and intrinsic clean points are separated into different chan-
nels: z̃ = [zc, zn]. To obtain a noise-free latent code, we
set zn = 0. Thus, to investigate the optimal noise channel
division for disentanglement, we set the noise channel zn to
1, 4, 12, 24, and 48, respectively, as shown in Tab. 4. The
division of various noise channels zn for our light-version
framework can achieve similar denoising results, while the

stage input EdgeConv feature adaption

1

- 3 (6, 16) -
16 [(32, 64, 32)] [(48, 64, 3+Da)]
48 [(96, 64, 32)] [(80, 64, 3+Da)]
80 [(160, 64, 32)] [(112, 64, 3+Da)]

112 [(224, 64, 32)] [(144, 64, 3+Da)]
144 [(288, 64, 32)] [(176, 64, 3+Da)]
176 [(352, 64, 32)] [(208, 64, 3+Da)]

2

96 [(192, 64, 24)] [(120, 64, 3+Da)]
120 [(240, 64, 24)] [(144, 64, 3+Da)]
144 [(288, 64, 24)] [(168, 64, 3+Da)]
168 [(336, 96, 96)] [(96, 64, 3+Da)]

Table 2. Network configuration of 2-stage multi-level graph con-
volution module in each iteration modules of heavy-version frame-
work. where Da = 32.

Forward Inverse

C(l) integration X
(l)
c = X(l) + C(l) X(l) = X

(l)
c − C(l)

Actnorm y = (x− u)/exp(α) x = y ∗ exp(α) + u

invertible block y =
(
Id+G

2

)−1
(x)− x x =

(
Id−G

2

)−1
(y)− y

1-Lip G y = f1(f0(x)), fi(x) = φ(W̄ix+ bi)

Table 3. Summarization of the components in invertible neural
network. Where u and α are trainable parameters, φ denotes the
LipSwish function, and W̄ix+ bi is a linear mapping which satis-
fies the spectral norm ∥W̄i∥2 < 1.

zn

10K points
1% noise 2% noise 2.5% noise

CD P2M CD P2M CD P2M
1 18.29 4.97 25.59 8.27 28.65 10.50
4 18.28 4.98 25.72 8.30 28.77 10.61

12 18.25 4.95 25.60 8.19 28.61 10.38
24 18.25 4.96 25.67 8.24 28.49 10.34
48 18.21 4.93 25.58 8.19 28.81 10.54

Table 4. Ablation study for different noise channels: zn in latent
space. CD and P2M distances are multiplied by 105.

division of zn = 24 has the best generalization ability for
unseen noise scale of 2.5%. Therefore, we set zn = 24 as
the default value, approximately half of the latent space di-
mension 51 (augmented dimension Da = 48). In general,
when there are sufficient augmented latent dimensions, di-
viding noise channels can effectively achieve noise disen-
tanglement.

Ablation study on the MLGC module. In the main pa-
per, we respectively remove the whole MLGC module and
stage-2 of it to demonstrate the importance of its local struc-

Figure 1. Left: architecture of our light-version framework with one denoising iteration. Right: architecture of our heavy-version
framework with three denoising iterations.

Ablation
10K points

1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M

w/o DC 18.61 5.06 26.45 8.48 29.62 10.86
DG 18.72 5.01 26.76 8.41 30.17 10.86

ours(light) 18.25 4.96 25.67 8.24 28.49 10.34

Table 5. Ablation study for dense connection(DC) and dynamic
graph(DG) construction. CD and P2M distances are multiplied by
105.

Ablation
10K points

1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M

PDflow 21.26 6.74 32.46 13.24 36.27 17.02
INN 25.93 10.36 38.85 16.45 50.11 24.56

PDflow+MLGC 22.30 6.91 33.05 12.84 38.86 17.32
INN+MLGC 18.25 4.96 25.67 8.24 28.49 10.34

Table 6. Ablation study for invertible mapping choice(10K
points).

Method Kinect v1
CD P2M

Noisy 14.49 9.32
PCN [12] 13.73 8.75

GPDNet [11] 14.83 8.69
DMRDenoise [8] 22.78 12.89

PDFlow [10] 13.34 8.69
ScoreDenoise [9] 13.22 8.18

Pointfilter 13.77 7.91
IterativePFN 13.2 8.43

Ours 13.07 8.57

Table 7. Results on the Kinect v1 dataset.

ture features. To further investigate the rationality of MLGC
module design, we additionally conduct an ablation study in
two cases in Tab. 5: 1)Removing the dense connections be-
tween each EdgeConv layers. We only maintain shortcut
connections to aggregate the outputs of all EdgeConv lay-

Methods # params Time
PCN [12] 27.9M 106.66s

DMRDenoise [8] 225K 2.99s
PDflow [10] 470K 12.48s

Score [9] 178K 3.03s
Pointfilter [16] 1361K 60.43s

IterativePFN [4] 3195K 19.05s
Ours(heavy) 1443K 11.56s
Ours(light) 679K 7.75s

Table 8. Comparison of parameter count and runtime across vari-
ous learning-based methods for denoising a noisy point cloud con-
taining 50K points with 2% Gaussian noise.

ers at the end of each stage to extract multi-level features,
which is similar to the configuration of DGCNN [15] and
IterativePFN [2], and the results in Tab. 5 demonstrates the
positive denoising effect of contextual semantic informa-
tion brought by repeated dense connections. 2)Dynamically
constructing graph in the feature space of each EdgeConv
layer. Compared with our default light-version framework
with static graph constructed on raw point cloud, the re-
sults also deteriorated, which indicates that for our MLGC
module with dense connections, it is not necessary to cap-
ture semantic k-nearest neighboring structure of the feature
space, which increases the burden of MLGC module cap-
turing local structure and affects the inference speed.

Ablation study on invertible mapping choice. To
clarify the motivation of the choice of our invertible neu-
ral network(INN) and demonstrate its contribution, we
provide an explicit comparison between the choice of
PDflow and our invertible neural network in Tab. 6, where
we trained PDflow+MLGC using our filtering alternative.
Our INN, without MLGC, underperformed compared to
PDflow, mainly because INN lacks the capability to aggre-
gate neighboring features, resulting in a poor understanding
of local areas. However, the integration of MLGC signif-
icantly boosts our INN’s performance, surpassing PDflow

Method
10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

Noisy 12.14 6.01 30.63 13.22 37.83 18.05 6.86 4.55 14.20 10.71 19.03 15.20
Pointfilter [16] 12.45 6.78 22.02 8.30 24.26 9.04 6.99 4.92 8.63 5.98 9.50 6.63
PD-flow [10] 9.06 4.71 18.99 6.39 22.01 7.41 4.37 3.05 5.97 3.93 7.00 4.66

Score [9] 12.78 5.40 21.88 7.10 24.51 8.23 4.51 2.92 6.22 3.92 7.11 4.54
IterativePFN [2] 6.77 3.70 16.57 4.72 18.87 5.32 3.50 2.54 4.30 2.82 4.68 3.03

Ours(light) 6.41 3.71 15.95 4.78 18.40 5.37 3.35 2.58 4.45 2.94 4.92 3.18
Ours(heavy) 6.45 3.67 15.70 4.48 18.03 4.98 3.37 2.56 4.31 2.84 4.72 3.07

Table 9. Denoising results on the PUNet dataset with discrete noise. CD and P2M distances are multiplied by 105.

Method
10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

Noisy 51.44 27.20 122.67 88.38 168.75 131.00 29.68 23.13 90.43 80.44 133.44 121.98
Pointfilter [16] 30.30 10.52 64.94 35.37 97.18 63.12 11.95 7.62 39.33 31.62 69.26 59.59
PD-flow [10] 25.70 8.96 45.32 23.87 68.51 43.06 8.39 5.65 30.63 25.53 62.49 55.25

Score [9] 29.54 10.00 47.72 22.78 63.79 36.15 8.35 4.97 17.82 12.57 29.79 22.87
IterativePFN [2] 24.29 6.18 34.81 11.60 45.71 19.63 6.63 3.42 10.34 6.05 19.12 13.02

Ours(light) 21.54 6.23 31.05 12.35 38.54 18.05 5.74 3.60 10.21 6.82 18.02 13.35
Ours(heavy) 20.88 5.78 28.93 11.33 36.39 17.31 5.33 3.43 9.69 6.78 18.80 14.58

Table 10. Denoising results on the PUNet dataset with Laplace noise. CD and P2M distances are multiplied by 105.

Method
10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

Noisy 37.05 16.50 81.35 49.92 107.59 72.80 19.18 13.35 52.47 43.35 75.67 65.18
Pointfilter [16] 25.86 8.82 42.44 17.14 57.16 28.06 10.26 6.35 19.38 13.42 31.84 23.96
PD-flow [10] 21.21 6.90 33.48 14.11 42.41 21.39 6.64 4.26 15.79 11.98 27.47 22.32

Score [9] 24.94 7.58 37.63 14.50 46.29 21.01 7.20 4.05 13.88 9.17 22.06 15.91
IterativePFN [2] 20.23 5.07 30.52 8.67 35.51 12.11 6.10 3.09 8.47 4.73 12.72 7.83

Ours(light) 18.08 5.04 26.11 8.67 30.06 11.59 4.96 3.07 7.65 4.95 11.85 8.01
Ours(heavy) 17.60 4.72 24.89 8.01 29.50 11.57 4.66 2.94 7.14 4.77 11.98 8.40

Table 11. Denoising results on the PUNet dataset with non-isotropic Gaussian noise. CD and P2M distances are multiplied by 105.

Method
10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

Noisy 12.49 6.39 34.94 14.81 45.70 20.47 8.15 4.81 17.45 11.43 23.22 16.21
Pointfilter [16] 12.83 6.82 26.05 8.44 29.64 9.24 7.71 4.87 9.83 5.95 10.73 6.56
PD-flow [10] 9.09 4.70 20.56 6.36 24.08 7.50 4.59 3.05 6.29 3.97 7.51 4.89

Score [9] 13.13 5.40 24.85 7.06 28.23 8.17 5.10 2.90 7.00 3.86 8.04 4.58
IterativePFN [2] 6.79 3.72 20.40 4.82 24.48 5.58 4.47 2.54 6.04 3.02 6.57 3.32

Ours(light) 6.39 3.70 17.76 4.75 20.88 5.42 3.73 2.56 4.87 2.99 5.32 3.30
Ours(heavy) 6.45 3.65 17.35 4.45 20.20 4.98 3.69 2.55 4.63 2.88 4.97 3.13

Table 12. Denoising results on the PUNet dataset with uniform noise. CD and P2M distances are multiplied by 105.

Method
10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

Noisy 36.9 16.03 79.39 47.72 105.02 70.03 18.69 12.82 50.48 41.36 72.49 62.03
Bilateral [3] 31.47 14.95 51.94 26.75 73.83 44.31 17.09 13.9 17.98 13.98 25.34 19.55

Jet [1] 31.91 13.42 55.25 31.14 61.51 36.56 7.95 4.39 13.67 8.77 16.68 11.18
WLOP [5] 60.41 30.85 88.59 52.95 109.68 74.29 9.61 6.27 19.94 14.53 28.44 21.66

Ours(light) 18.25 4.96 25.67 8.24 28.49 10.34 4.96 3.06 7.06 4.47 9.18 5.92
Ours(heavy) 17.81 4.65 24.41 7.58 26.99 9.67 4.70 2.95 6.46 4.25 8.63 5.81

Table 13. Denoising results of traditional methods on the PUNet dataset with Gaussian noise. CD and P2M distances are multiplied by
105.

with MLGC. This indicates that our INN, with its uncon-
strained and expressive architecture, can naturally combine
with MLGC and effectively enhance MLGC’s feature repre-
sentation capabilities. In contrast, PDflow’s affine coupling
layer, constrained by dimension partitioning, is incompati-
ble with MLGC

7. Runtime and Number of Parameters for
Learning-based Methods

In this section, we conduct a comparison of inference
speed and the number of parameters among various existing
learning-based methods. As described in Sec. 3, our denois-
ing framework employs a deep neural network architecture,
but thanks to the architecture of the invertible neural net-
work, each monotone block can share weights in both the
forward and inverse transformation processes, leading to a
reduction in the number of parameters in our model. As
shown in Tab. 8, ScoreDenoise [9] and DMRDenoise [8]
exhibit the smallest number of parameters and the fastest in-
ference speeds, respectively. However, in general, both the
light and the heavy versions of our networks also perform
competitively in these two metrics. Additionally, it is worth
noting that when compared to IterativePFN [2], which is
recognized for its exceptional denoising capabilities among
existing deep learning methods, both versions of our frame-
work not only consistently deliver better results for the vast
majority of testing models, but also have faster inference
speed and a smaller number of parameters.

References
[1] Frédéric Cazals and Marc Pouget. Estimating differential

quantities using polynomial fitting of osculating jets. Com-
puter Aided Geometric Design, 22(2):121–146, 2005. 3, 6

[2] Dasith de Silva Edirimuni, Xuequan Lu, Zhiwen Shao, Gang
Li, Antonio Robles-Kelly, and Ying He. Iterativepfn: True it-
erative point cloud filtering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 13530–13539, 2023. 1, 2, 4, 5, 6

[3] Julie Digne and Carlo De Franchis. The bilateral filter for
point clouds. Image Processing On Line, 7:278–287, 2017.
3, 6

[4] Xian-Feng Han, Jesse S Jin, Ming-Jie Wang, and Wei Jiang.
Iterative guidance normal filter for point cloud. Multimedia
Tools and Applications, 77:16887–16902, 2018. 1, 4

[5] Hui Huang, Dan Li, Hao Zhang, Uri Ascher, and Daniel
Cohen-Or. Consolidation of unorganized point clouds for
surface reconstruction. ACM transactions on graphics
(TOG), 28(5):1–7, 2009. 3, 6

[6] Durk P Kingma and Prafulla Dhariwal. Glow: Generative
flow with invertible 1x1 convolutions. Advances in neural
information processing systems, 31, 2018. 2

[7] Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Pu-gan: a point cloud upsampling ad-
versarial network. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 7203–7212,
2019. 1

[8] Shitong Luo and Wei Hu. Differentiable manifold recon-
struction for point cloud denoising. In Proceedings of the
28th ACM international conference on multimedia, pages
1330–1338, 2020. 4, 6

[9] Shitong Luo and Wei Hu. Score-based point cloud denoising.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 4583–4592, 2021. 1, 4, 5, 6

[10] Aihua Mao, Zihui Du, Yu-Hui Wen, Jun Xuan, and Yong-
Jin Liu. Pd-flow: A point cloud denoising framework with
normalizing flows. In European Conference on Computer
Vision, pages 398–415. Springer, 2022. 4, 5

[11] Francesca Pistilli, Giulia Fracastoro, Diego Valsesia, and En-
rico Magli. Learning graph-convolutional representations for
point cloud denoising. In European conference on computer
vision, pages 103–118. Springer, 2020. 4

[12] Marie-Julie Rakotosaona, Vittorio La Barbera, Paul Guer-
rero, Niloy J Mitra, and Maks Ovsjanikov. Pointcleannet:
Learning to denoise and remove outliers from dense point
clouds. In Computer graphics forum, pages 185–203. Wiley
Online Library, 2020. 4

[13] Andrés Serna, Beatriz Marcotegui, François Goulette, and
Jean-Emmanuel Deschaud. Paris-rue-madame database: a
3d mobile laser scanner dataset for benchmarking urban de-
tection, segmentation and classification methods. In 4th in-
ternational conference on pattern recognition, applications
and methods ICPRAM 2014, 2014. 10

[14] Peng-Shuai Wang, Yang Liu, and Xin Tong. Mesh denoising
via cascaded normal regression. ACM Trans. Graph., 35(6):
232–1, 2016. 2

[15] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics (tog), 38(5):1–12, 2019. 4

[16] Dongbo Zhang, Xuequan Lu, Hong Qin, and Ying He. Point-
filter: Point cloud filtering via encoder-decoder modeling.
IEEE Transactions on Visualization and Computer Graph-
ics, 27(3):2015–2027, 2020. 4, 5

Figure 2. Visual results of point-wise P2M distance for 10K resolution shapes with discrete noise and a scale parameter of 2% of the
bounding sphere radius.

Figure 3. Visual results of point-wise P2M distance for 10K resolution shapes with Laplace noise and a scale of 2% of the bounding sphere
radius.

Figure 4. Visual results of point-wise P2M distance for 10K resolution shapes with non-isotropic Gaussian noise and a scale of 2% of the
bounding sphere radius.

Figure 5. Visual results of point-wise P2M distance for 10K resolution shapes with noise uniformly distributed within a 3D sphere of radius
s. Here, s corresponds to the noise scale and is equal to 2% of the bounding sphere radius.

Figure 6. Visual results on two additional scenes of the RueMadame dataset [13].

	. Outline
	. Evaluation Metrics
	. Network Configuration Details
	. Further Comparison of the Generalization Ability
	. Results on the PUNet dataset with Different Noise Patterns
	. More Comparisons on real world scans

	. Comparison with Traditional Methods
	. Further Ablation Studies
	. Runtime and Number of Parameters for Learning-based Methods

