Supplementary

This supplementary material offers additional details and extended information on the token optimization used in the
experiments of the paper Open-Vocabulary Attention Maps with Token Optimization for Semantic Segmentation in Diffusion
Models (see Section 4), additional evaluation, and qualitative examples of the results.

A. Implementation Details
A.1. Token Optimization via OVAM

Synthetic Images and Ground Truth Generation. To optimize a token for each of the 20 classes of the VOC Challenge
[2], we generated one image per class using the text prompt A photograph of a (classname). We employed Stable Diffusion
1.5', the same architecture used for other OVAM experiments. We utilized 30 time steps for image generation, and default
parameters of the model. The target class object in the generated image was manually annotated at a resolution of 512x512.

Initializing Token Optimization. The optimization procedure, along with other components of OVAM, is implemented
in PyTorch [6]. We use gradient descent to optimize tokens. Initially, the Stable Diffusion 1.5 Text Encoder (CLIP ViT-
L/14 [7]) is employed to encode the text prompt A photograph of a (classname). This encoder produces tokens with shape
1x768 and includes two special characters to mark the start and end of the text: (SoT) and (EoT). We initialize an attribution
prompt, X', for optimization with tokens corresponding to (SoT) and the classname, forming an array of size 2x768. The
(SoT) token is recognized for attracting background attention [9].

Performing Token Optimization. During optimization, X’ is used to generate OVAM according to the methodology
outlined in the paper, resulting in two attention maps of size 2x64x64. These are scaled to an image resolution of 2x512x512
using bilinear interpolation. For each channel associated with a token, binary cross-entropy is utilized to measure the dis-
crepancy with the annotated ground truth. The loss is then backpropagated to update X’. An initial learning rate of oz = 100
is set, with a decay rate of v = 0.7 applied every 120 steps. We run the optimization for 500 epochs, which takes less
than a minute on an A40 GPU, and the best embedding is saved (Fig. S1b). Figure S1 displays the learning curves for this
optimization. Despite the spiked profile of the curves by class (Fig. Sla), the procedure converges to values that generate
accurate attention maps for all classes (see Fig. S3).
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Figure S1. Losses during optimization. (a) shows the losses during the training process, and (b) presents the best losses achieved.

Use of Optimized Tokens. The 20 tokens, each optimized using one annotated training image, are subsequently employed
to generate attention maps for different images, thereby without the need for repeated optimization. The annex Sections A.2
and A.3 details the process of creating attention maps using these tokens and Section C provides qualitative examples of
OVAM-generated maps. It also discusses the results of utilizing these tokens in conjunction with other methods.

A.2. Evaluation of OVAM with Optimized Tokens

Evaluation with Natural Text. In the evaluation of OVAM attention maps with natural text (Fig. S2a), an attribution
text is transformed using the Stable Diffusion 1.5 text encoder to produce a text embedding with dimensions 768 x [x.
This embedding is then used to compute OVAM attention maps of dimensions [x: x 64 x 64. Relevant maps (e.g., those
corresponding to class name nouns) are extracted and resized to an image resolution of 512 x 512.

IStable Diffusion 1.5 model card: https://huggingface.co/runwayml/stable-diffusion-vl-5 (Accessed November 2023)


https://huggingface.co/runwayml/stable-diffusion-v1-5

Evaluation with Optimized Tokens. For the evaluation using optimized tokens (Fig. S2b), the input, shaped 2 x 768
(representing one token for the background and another for the class object), is utilized to compute two attention maps of
dimensions 2 x 64 x 64. The channel corresponding to the class object is selected and resized to form a 512 x 512 heatmap.

Threshold Difference. For binarizing maps generated from non-optimized tokens, a threshold of 7 = 0.4 is applied,
followed by self-attention post-processing and dCRF. This threshold choice is based on values used in DAAM [9], a work in
which OVAM’s theoretical foundation is based. However, when using optimized tokens, we observe a shift in attention scale,
with higher values near foreground objects (as illustrated in Fig. S3). Preliminary experiments suggest 7 = 0.8 as a more
suitable threshold for evaluating optimized tokens.
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Figure S2. Comparison between the evaluation of OVAM attention maps based on (a) a natural text description, where the attentions for
the word bird are extracted, and (b) the evaluation using an optimized token for the class bird.

A.3. Evaluation of other Stable Diffusion-based works

In this subsection we include further details of the evaluation of other Stable Diffusion-based works used in the experi-
ments. Specifically, we employ DAAM [9], Attn2Mask [ 1 1], DatasetDM [10], and Grounded Diffusion [5].

Grounded Diffusion Implementation Details. Grounded Diffusion [5] extends Stable Diffusion for generating seg-
mentation masks based on textual descriptions, by incorporating an additional trainable grounding module. This module,
requiring annotated data for training, processes attentions generated during image synthesis alongside a word or token em-
bedding. For our experiments, we utilized the official implementation available at https://github.com/Lipurple/
Grounded-Dif fusion, employing the weights trained with VOC classes and default setup provided by the authors. To
evaluate with an optimized token, we adapted their evaluation script, allowing for direct token input instead of using a text
word that is later converted into a token.

DatasetDM Implementation Details. DatasetDM [10] extends Stable Diffusion for various perception tasks, such as
semantic segmentation, pose detection, and depth estimation. It includes a decoder that processes diffusion attentions and
convolutional features. This decoder is trained using supervised examples. In our experiments, we employed DatasetDM’s
configuration for semantic segmentation along with the weights provided by the authors, trained for segmenting VOC classes.
Official implementation used is available at https://github.com/showlab/DatasetDM. To evaluate optimized
tokens, we modified their evaluation script to allow direct token input, instead of using a text word that is later converted.

DAAM Implementation Details. DAAM [9] is based on the direct extraction of cross-attentions during the synthesis
process in Stable Diffusion. These attentions, extracted from all generation timesteps, blocks, and heads, are then aggregated
and thresholded. We utilized the implementation available at https://github.com/castorini/daam, applying
a threshold of 7 = 0.4, as recommended by the authors. For our experiments, we employed Stable Diffusion 1.5 with a
30-step generation process, aligning with the OVAM configuration. To evaluate DAAM in scenarios where the target class is
not explicitly mentioned in the text prompt or using optimized tokens, we adapted DAAM to use OVAM attentions (similar
adaptation illustrated in S2), which provides the same result when the word is mentioned but allowing the evaluation in all
cases. For optimized tokens we use a threshold 7 = 0.8.

Attn2Mask. The concurrent work Attn2Mask [1 1] does not have any public implementation available at the time of
writing this paper. Due to its similarity to OVAM without token optimization, we implemented Attn2Mask as described by
the authors. For the implementation, we use Stable Diffusion 1.5 for image generation with 100 time steps. We extract cross-
attentions at ¢ = 50 and aggregate them. The aggregated attentions are binarized with a threshold of 7 = 0.5 and a dCRF [4]
post-processing is applied using the SimpleCRF [3] implementation with default parameters. To evaluate optimized tokens or
classes in images where the class name is not mentioned, we modify the use of cross-attention with open-vocabulary attention
maps (similar adaptation illustrated in S2). For optimized tokens, we use a threshold of 7 = 0.8.
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B. Additional Experiments
B.1. Synthetic Data Training

Extending the evaluation of the experiment in which various semantic segmentation architectures were trained using a
synthetic dataset generated by OVAM (Section 4.3), this additional experiment compares the performance of optimized
tokens for generating synthetic data for semantic segmentation on the VOC Challenge [2]. To generate each dataset, 1,000
synthetic images were produced using COCO captions as prompts through various Stable Diffusion extensions: DAAM [9],
DatasetDM [ 10], Grounded Diffusion [5], and OVAM, to extract pseudo-masks. Subsequently, a Uppernet architecture with a
ResNet-50 backbone was trained on these datasets, evaluated against the official VOC challenge protocol. This study further
investigates the utility of optimized tokens: for each dataset, we extracted pseudo-masks using class names as descriptors for
the VOC’s 20 classes, comparing the outcomes with and without the use of optimized tokens. The incorporation of optimized
tokens significantly enhanced mask quality (as evidenced in Figures S4 - S7), which, in turn, improved the performance of
the trained segmentor across all classes when compared to the non-optimized approach (refer to Table S1). These findings
affirm the value of optimized tokens in boosting the precision of synthetically generated data by these methods, enabling
effective method adaptation without additional computational costs.

Token Selected classes (VOC validation set IoU %)

Method Optim. [ aeroplane bicycle bird boat bus car cat dog horse person train mioU
DAAM [9] X 27.2 16.6 41.1 21.9 56.0 37.3 32.7 30.6 259 23.1 384|275
v 37.0 28.7 48.8 28.4 53.5 54.8 334 31.6 409 243 50.3| 32.5

DatasetDM [10] X 60.0 23.0 449 414 450 52.8 339 275 489 143 41.5] 340
v 60.7 31.8 51.6 41.7 58.7 56.8 37.3 32.7 489 20.1 56.3| 35.5

Grounded X 63.4 102 343 12.6 17.2 20.6 38.2 38.1 46.6 10.8 129 235
Diffusion [5] v 67.4 271 43.6 459 63.6 48.8 42.0 38.6 489 11.3 44.2| 349
OVAM ')/( 49.9 314 28.0 259 51.2 54.0 152 235 42.6 109 38.2| 30.0

57.5 32.2 44.6 41.1 58.1 55.2 424 28.0 444 224 519| 36.1

Table S1. Evaluation of VOC challenge performance for a model trained on synthetic data, comparing the impact of token optimization.

B.2. Presence of token in prompts

To explore the impact of explicitly mentioning the word used for extracting attentions (attribution prompt) within the
image synthesis prompt (generator prompt), Table S2 expands on the overview provided in Table 1 (Section 4.1). This
table breaks down the COCO-cap results by class and distinguishes between cases where the class name—used for mask
generation—is included in the generator prompt or not. This detailed evaluation reveals no discernible trend to suggest that
the explicit inclusion of the token in the prompt markedly influences the mIoU of the generated masks.

Method ) Token Selected classes (COCO-cap IoU %) mloU
included [aeroplane bicycle bird boat bus car cat dog horse person train

X 37.3 33.0 479 265 77.6 54.0 86.2 80.8 51.5 239 559 48.1

DAAM [9] v 24.7 343 56.8 33.3 84.3 38.8 80.5 76.5 49.1 21.6 404 | 48.7
| all | 306 338 53.0 31.9 82.6 42.8 83.0 77.9 498 22.7 446|484

X 75.8 19.4 85.1 78.1 80.2 37.2 832 749 82.0 56.7 51.6| 60.2

DatasetDM [10] v 72.3 29.6 89.0 69.7 959 59.3 72.1 68.8 83.9 482 85.2]| 58.9
| all | 741 257 874 71.3 91.4 51.9 762 71.7 835 522 729|593

Grounded X 84.3 479 80.0 61.5 949 0.0 89.6 83.1 86.6 53.7 67.9]| 52.0

Diffusion v 85.0 584 834 17.7 80.5 27.4 859 853 83.7 492 445 479
[5] | all ] 846 549 819 30.8 81.4 25.1 87.3 84.4 841 518 472|502

X 77.8 67.5 524 46.0 83.8 455 70.5 64.1 66.1 250 58.2| 58.4

OVAM v 53.6 62.7 56.2 534 85.2 48.5 65.8 66.7 744 152 50.9]| 58.3
| all ] 651 643 546 51.9 849 475 67.9 65.8 715 197 530|582

Table S2. Table comparing mloU whether word used for pseudo-mask generation is included in the generator prompt.



C. Qualitative Examples
C.1. Qualitative comparison of OVAM Attention Maps

Aeroplane Bicycle Bird

Figure S3. Qualitative Examples of synthetic images generated with Stable Diffusion 1.5 [8] and OVAM Attention Maps before binariza-
tion. For each class name, we show the obtained synthetic image (left), the attention map generated using the class name (center) and
class-specific optimized tokens (right) for each of the 20 classes from the VOC challenge [2]. Images have been generated using text
prompts extracted from COCO captions [1].



C.2. Use of OVAM-optimized Tokens with Other Methods
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Figure S4. Qualitative Examples of DAAM-Generated Pseudo-Masks: Each set in the figure presents a synthetic image generated with
Stable Diffusion [8] using a COCO caption [1] (left), accompanied by a mask generated through DAAM [9] using VOC class names [2]
(center), and a mask generated using an OVAM-optimized token specific to the class (right).
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Figure S5. Qualitative Examples of Attn2Mask-Generated Pseudo-Masks: Each set in the figure presents a synthetic image generated
with Stable Diffusion [8] using a COCO caption [1] (left), accompanied by a mask generated through Attn2Mask [1 1] using VOC class
names [2] (center), and a mask generated using an OVAM-optimized token specific to the class (right).



Il Aecroplane M Bicycle Il Boat

Il Bottle I Bus Il Cat

I Cow I Dining table I Horse
I Motorbike I Person Il Potted plant
I Sofa B Train

Figure S6. Qualitative Examples of Grounded Diffusion-Generated Pseudo-Masks: Each set in the figure presents a synthetic image
generated with Stable Diffusion [8] using a COCO caption [1] (left), accompanied by a mask generated through Grounded Diffusion [5]
using VOC class names [2] (center), and a mask generated using an OVAM-optimized token specific to the class (right).
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Figure S7. Qualitative Examples of DatasetDM-Generated Pseudo-Masks: Each set in the figure presents a synthetic image generated
with Stable Diffusion [8] using a COCO caption [ 1] (left), accompanied by a mask generated through DatasetDM [10] using VOC class
names [2] (center), and a mask generated using an OVAM-optimized token specific to the class (right). Notably, masks with non-optimized
tokens sometimes segment a foreground object that does not match the intended descriptor (e.g., cat, bus, motorbike). The use of optimized
tokens helps in aligning DatasetDM masks more accurately with the specified objects
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