
Task-Driven Wavelets using Constrained Empirical Risk Minimization

Supplementary Material

6. Supplementary information CERM
In this appendix, we provide the mathematical details of
our CERM framework. In Sec. 6.1, we provide a proof of
Theorem 2.2. Next, we briefly compare our method to that of
Lagrange multipliers in Sec. 6.2. In the subsequent sections,
Sec. 6.4 to Sec. 6.6, we provide the computational details
for performing SGD on a Riemannian manifold defined by a
finite system of equations.

6.1. Proof of Theorem 2.2
Theorem 6.1. If zero is a regular value of F , then the CERM
problem in (2) is equivalent to solving an ordinary ERM
problem on a Riemannian manifold (N , gN) of dimension
p�q. Here N = Rp�p̃⇥M is an embedded C2-submanifold
of Rp and M := F

�1(0). The equivalent minimization
problem is given by

min
(↵,✓)2N

E (L (G (X,↵� ◆(✓)) , Y)) , (7)

where ◆ : M ! Rp̃ is the inclusion map.

Proof. The solution set M := F
�1(0) is an embedded C

2-
submanifold of Rp̃ of dimension p̃ � q by the Implicit Func-
tion Theorem, since zero is a regular value of F . A detailed
review of this statement is provided in Theorem 6.2. Since
M is naturally embedded in Rp̃, we may endow it with the
pull-back metric gM, turning it into a Riemannian manifold
(M, gM). Here gM := ◆

⇤
gflat, where gflat is the standard

Euclidean metric on Rp̃. The constrained ERM problem can
now be reformulated as an ordinary ERM problem on the
product manifold (N , gN) :=

�
Rp�p̃ ⇥ M, gflat � gM

�
.

Note that dim(N) = p � q. Here gN = gflat � gM is
the product metric and gflat corresponds* to the standard Eu-
clidean metric on Rp�p̃. Altogether, having these geometric
structures in place, the CERM problem in (2) is equivalent
to (7), which proves the statement.

6.2. Relation to Lagrange Multipliers and known
RSGD Methods

Lagrange multipliers We compare our strategy with a re-
lated alternative, namely the method of Lagrange Multipliers.
Lagrange Multipliers can be understood from a geometric
perspective by essentially writing down the necessary con-
ditions for stationarity in a special local chart, namely one

*Formally, we should incorporate the dimension p̃ into the notation for
the flat metric on Rp̃. However, to avoid clutter in the notation, we will
denote the standard Euclidean metric on any finite-dimensional vector space
in the same way.

in which M is embedded into Rp̃ as the graph of the in-
verse chart. The resulting necessary conditions for a point
⇠
⇤ 2 Rp to solve (2) is the existence of a so-called Lagrange

multiplier µ⇤ 2 Rq so that
(

rgflatH(⇠⇤) +
Pq

j=1 µ
⇤
j⇡

T
p̃ rgflatFj(⇡p̃(⇠⇤)) = 0,

F (⇡p̃(⇠⇤)) = 0.
(8)

Here we have defined H : Rp ! R by H(⇠) :=
E (L(G(X, ⇠), Y)).

The system of equations in (8) is referred to as the
Karush–Kuhn–Tucker (KKT) conditions. For general non-
linear problems, the KKT-conditions constitute a highly non-
linear system of equations and are difficult to solve directly.
Many techniques for solving the constrained problem in (2)
are based on adaptations of Newton’s method for (8), e.g.,
Sequential Quadratic Programming (SQP) or Interior Point
methods to name a few, see [5] for more. The dynamics
of such algorithms, i.e., the behavior of the generated se-
quence of points, takes place in a higher dimensional space
Rp ⇥Rq than what we started with and is largely determined
by Newton’s method for solving (8).

Our approach is fundamentally different from such meth-
ods in the following sense. Firstly, the dynamics of our
optimization scheme takes place on a lower dimensional
submanifold N defined by the constraints. Once we have
initialized any initial point on N , we use the intrinsic ge-
ometry of the manifold to find a next point by following
descent trajectories confined to the manifold, e.g., geodesics.
We therefore satisfy the desired constraints throughout the
entire optimization procedure thereby exploring the space of
feasible parameters directly. Finally, the dynamics of our al-
gorithm is completely determined by the (negative) gradient
flow of the objective, and not by Newton’s method for (8).

Riemannian Stochastic Gradient Descent As mentioned
in the introduction, performing SGD on Riemannian mani-
folds is well-known and has been studied extensively before,
see, e.g., [6, 14, 34, 35, 42]. To the best of our knowledge,
however, current methods require an explicit description of
charts on the underlying manifold and mostly adopt a com-
pletely extrinsic point of view. This process involves manual
computations on paper on a per-case basis. For instance, the
authors of [34, 35] present methods for three specific cases:
the space of positive definite matrices, Grassman, and Stiefel
manifolds. Our main contribution and novelty is of a com-
putational nature: we do not require an explicit description
of the underlying manifold, thereby avoiding any per-case
computations. We only requires an implicit description of

the manifold given in the form of a finite-dimensional set
of equations. We use this knowledge alone to construct the
tools needed for performing SGD numerically. This makes
our framework highly flexible and enables us to deal with a
vast class of constraints for which we can construct appro-
priate (graph) charts and perform local computations, e.g.,
computing Riemannian metrics and gradient operators, in an
automated fashion. Due to this automation, the user is only
required to provide an implementation of a constraint.

Finally, we mention the methods developed in [7, Chapter
7.7], which are most closely related to ours. The main differ-
ence between our and their technique is that we adopt an en-
tirely intrinsic point of view and provide explicit algorithms
amenable to numerical computations. To be more specific
about the differences, let us start by clarifying the point about
the intrinsic and extrinsic perspectives. The first key differ-
ence is that [7] does not directly follow the gradient flow of
the objective L to be optimized. Instead, they reason extrin-
sically about the gradient rgML and the associated paths to
follow. Specifically, the authors exploit the observation that
the tangent space T✓Rp̃ of the ambient manifold Rp̃ admits
an orthogonal decomposition of the form T✓M � T✓M?,
where ✓ 2 M is the current point in the descent algorithm.
We are a bit sloppy here with the notation: to make sense of
this decomposition, one has to explicitly embed the tangent
space T✓M into T✓Rp̃ using the derivative of the embedding
map ◆ : M ! Rn, which is intimately tied to the extrinsic
point of view. The authors then proceed and explain how to
project onto the orthogonal complement T✓M?, which is
extrinsic to M, using the derivative of the constraint. This
requires no knowledge of a particular coordinate system on
M; the standard coordinates on the ambient vector space
can be used. Subsequently, they use this orthogonal decom-
position to compute the embedding of the gradient rgML(✓)
into T✓Rp̃. They then continue to operate extrinsically and
suggest defining a so-called retraction map R : TM ! M
using the extrinsic (flat) geometry. The particular suggested
retraction involves projecting a path (straight line) in Rp̃

back to M, which involves solving another (nonlinear) con-
straint optimization problem, see [7, Chapter 7.7, formula
7.76]. This suggestion requires that for each point in the
ambient space, there exists a local neighborhood around it,
for which an associated unique closest point in M exists.
The authors mention that this is a highly non-trivial issue and
conclude that the proposed method is therefore difficult to
implement numerically for general manifolds; no alternative
is provided.

Our method, on the other hand, does provide such a gen-
eral numerical implementation, and does not require solving
any additional optimization problems. Let us discuss the
key differences with our method. First, we do not embed
rgML(✓) into the ambient space. Instead, we construct a
local coordinate system on M and perform computations

entirely intrinsic to M; we never consider the (extrinsic)
orthogonal complement T✓M?. Furthermore, our choice
to choose specific coordinates on M allows us to construct
a well-defined retraction map, different than the one in [7,
Chapter 7.7], amenable to numerical computations. Namely,
we directly follow the geodesic, or an approximation of it,
in the direction of �rgML(✓). We can do so because we
explicitly compute the Riemannian metric, allowing us to
compute geodesics and components of the Levi-Civita con-
nection (explained in Sec. 6.6). In particular, even if we
do not use the exact geodesic, we are ensured to remain on
M for sufficiently short integration times, since all compu-
tations are performed intrinsically in our coordinate chart.
This intrinsic approach means we never follow paths outside
of M, which must be projected back. This is why we do not
need to solve another constrained optimization problem to
get back to M, but the suggestion in [7, Chapter 7.7] does.
Finally, our specific choice for a retraction map ensures that
the dynamics of our optimization algorithm are completely
determined by the gradient flow of L.

6.3. Graph coordinates on M

In this section we explain how to construct a special (local)
coordinate system, a so-called graph chart, on M around
a point ✓⇤ 2 M. This chart will be used extensively to
perform numerical computations, e.g., to evaluate the Rie-
mannian metric gM. The existence of this special chart is
guaranteed by the Implicit Function Theorem and naturally
comes up in the proof of the so-called Pre-Image Theorem
[19], which provides sufficient conditions for M = F

�1(0)
to be an embedded submanifold of Rp̃. Below, we will es-
sentially repeat the proof of this theorem, in a somewhat
simplified setting, see [19] for the slightly more general case
dealing with smooth maps between general manifolds. The
reason for including an explicit proof is that the computa-
tional steps form the backbone of our method.

Theorem 6.2 (Pre-image theorem). Let F : Rp̃ ! Rq be a
map of class Ck, where k � 2. If zero is a regular value of
F , then F

�1(0) is an embedded C
k-submanifold of Rp̃ of

dimension p̃ � q.

Proof. Assume zero is a regular value of F and let ✓⇤ 2
F

�1(0) be arbitrary. Then DF (✓⇤) must have q linearly
independent columns. For the sake of concreteness, assume


@F

@✓j1

(✓⇤) . . .
@F

@✓jq

(✓⇤)

�
(9)

is an isomorphism on Rq, where j1 < . . . < jq and
1  jk  p̃. This gives rise to the decomposition
Rp̃ = Rq � Rp̃�q, where the first subspace corresponds
to the coordinates with multi-index (j1, . . . , jq), and the
second subspace contains the remaining coordinates. Let

⇡q : Rp̃ ! Rq and ⇡p̃�q : Rp̃ ! Rp̃�q denote the projec-
tions onto the first, and second subspace, respectively, and
write v := ⇡q(✓) and � := ⇡p̃�q(✓) for the corresponding
coordinates. We may then view F as a function of (v,�).
More formally, we define a new map F̃ : Rq � Rp̃�q ! Rq

by F̃ (v,�) := F (⌫(v,�)), where ⌫ : Rq � Rp̃�q ! Rp̃ is
a permutation which puts the coordinates (v,�) back in the
original ordering.

Next, write v
⇤ = ⇡q(✓⇤), �⇤ = ⇡p̃�q(✓⇤) and observe

that DvF̃ (v⇤,�⇤) is an isomorphism on Rq by construc-
tion. Therefore, by the Implicit Function Theorem, there
exists a unique C

k-map ⇣̃ : B ⇢ Rp̃�q ! Rq, where B

is an open neighborhood of �⇤, such that ⇣̃(�⇤) = v
⇤ and

F̃

⇣
⇣̃(�),�

⌘
= 0 for all � 2 B. Altogether, this shows that

the map ⇣ : B ! F
�1(0) defined by ⇣(�) := ⌫(⇣̃(�),�) is

a local parameterization of F�1(0), i.e., its inverse ⇤ := ⇣
�1

is a local chart on U := ⇣(B) ⇢ F
�1(0). Therefore, since

✓
⇤ 2 F

�1(0) is arbitrary, it follows from this observation
that F�1(0) is an embedded C

k-submanifold of dimension
p̃ � q.

Remark 6.3 (Relaxation). Strictly speaking, one still needs to
show that U is open in F

�1(0), and that there is a chart in the
ambient manifold Rp̃ in which F

�1(0) is locally described
by setting the first q coordinates to zero. We omitted the
details because they follow in a straightforward manner from
our arguments. In particular, the proof of Theorem 6.2 also
shows that we may relax the condition that zero is a regular
value of F . Specifically, let R ⇢ F

�1(0) be the set of
regular points of F . If R 6= ;, then R is an embedded
C

k-submanifold of Rp̃ of dimension p̃ � q.

Remark 6.4 (Graph coordinates and Lagrange Multipliers).
The coordinates associated with the chart ⇤ are commonly
referred to as graph coordinates since M is locally parame-
terized by the graph of ⇣̃. The existence of Lagrange Multi-
pliers can be proven by writing the necessary conditions for
stationarity of the objective in (2) in this chart.

Remark 6.5 (Regularity). If F is C1 or analytic, then the
manifold inherits the same regularity.

Throughout this paper, we assume that zero is a regular
value of F , which guarantees that (M, gM) is an embedded
C

2 Riemannian manifold. In the discussion below, we will
consider a point ✓⇤ 2 M, and explain how to explicitly eval-
uate the Riemannian metric at this point relative to the chart
⇤. In turn, this will enable us to compute gradients. To avoid
clutter in the notation, we henceforth assume without loss
of generality, that the first q components of DF (✓⇤) are lin-
early independent, i.e., (j1, . . . , jq) = (1, . . . , q), and hence
F = F̃ . Note that this assumption will hold on an entire
open neighborhood of ✓⇤. For points outside this neighbor-
hood, one needs to choose another set of components that

constitute a linearly independent system, thereby obtaining
a different chart ⇤.

In practice, we do not have an explicit formula for the
chart ⇤ constructed in Theorem 6.2. Nonetheless, we can
compute with it implicitly as explained below. For the sake
of illustration, however, we will first consider a toy example
before we proceed, in which explicit computations and for-
mulae are available. We will continue this example through-
out this section to complement the otherwise abstract numer-
ical recipes.

Example 6.6 (The unit sphere S2). Consider the map F :
R3 ! R defined by F (✓) := ✓

2
1 + ✓

2
2 + ✓

2
3 � 1. Clearly,

M = F
�1(0) corresponds to the unit sphere S2. We will

use Theorem 6.2 to prove that S2 is a C
1 two-dimensional

embedded submanifold of R3. While one can easily prove
this by constructing explicit charts, e.g., using stereographic
projection or polar coordinates, our goal is to demonstrate
how to use Theorem 6.2 and explicitly construct the chart ⇤.

First observe that DF (✓) = 2
⇥
✓1 ✓2 ✓3

⇤
. Further

note that for any ✓ 2 F
�1(0) at least one of the com-

ponents ✓j must be nonzero. Therefore, DF (✓) is sur-
jective for all ✓ 2 F

�1(0), i.e., zero is a regular value
of F . Consequently, S2 = F

�1(0) is a 2-dimensional
embedded submanifold of R3 by Theorem 6.2. More-
over, without explicitly constructing charts, we immedi-
ately see that S2 is a C

1-manifold (analytic even), since
F is a C

1-map. The chart ⇤ from the proof is easily con-
structed in this case. To see this, suppose ✓1 > 0, then
� = (✓2, ✓3), ⇣(�1,�2) =

⇣p
1 � �

2
1 � �

2
2 ,�1,�2

⌘
and

⇤(✓) = (✓2, ✓3). The (maximal) domain of this chart is
U = {✓ 2 S2 : ✓1 > 0}.

6.4. Riemannian metric on N

In this section we express the product metric on N in lo-
cal coordinates with respect to the chart � := (idRp�p̃ ,⇤).
Here idRp�p̃ denotes the identity map on Rp�p̃. We start
by deriving a representation of gM relative to ⇤. For
this purpose, denote the coordinates associated to ⇤ by
(�1, . . . ,�p̃�q), and the standard coordinates on Rp̃�q by�
�
1
, . . . ,�

p̃�q
�
. Recall that the pullback metric on M is

given by gM = ◆
⇤h·, ·i. Therefore, in local coordinates, we

have gM = (gM)ij d�i ⌦ d�
j
, where (gM)ij : U ! R is

given by

(gM)ij(✓) =

⌧
◆⇤,✓

✓
@

@�i

����
✓

◆
, ◆⇤,✓

✓
@

@�j

����
✓

◆�

=

⌧
@⇣

@�i
(⇤(✓)),

@⇣

@�j
(⇤(✓))

�
,

1  i, j  p̃ � q ,

where we recall that ⇣ = (⇣̃(�),�)) is a local parameteriza-
tion of the manifold. In practice, we are only interested in

a specific choice for ✓, namely ✓ = ✓
⇤. For this choice, the

chart ⇤ := ⇣
�1 is explicitly known: ⇤(✓⇤) = �

⇤. Hence,
to evaluate the metric at ✓⇤, we need to explicitly compute
D⇣(�⇤).

To evaluate D⇣ (�⇤), first observe that D⇣(�) =⇥
D⇣̃(�)T I(p̃�q)⇥(p̃�q)

⇤T
for any � 2 B. Here

I(p̃�q)⇥(p̃�q) denotes the (p̃ � q) ⇥ (p̃ � q) identity ma-
trix. Furthermore, we can compute the derivative of ⇣̃ by
using its defining property (see the proof of Theorem 6.2)

F

⇣
⇣̃(�),�

⌘
= 0, � 2 B.

More precisely, differentiating both sides of this equation
and evaluating at �⇤ yields

DvF (✓⇤)D⇣̃(�⇤) = �D�F (✓⇤). (10)

Both DvF (✓⇤) and D�F (✓⇤) can be explicitly evaluated.
Moreover, DvF (✓⇤) is a non-singular q ⇥ q matrix. Hence
we can compute D⇣̃(�⇤) by solving the linear system of
equations in (10). Subsequently, we can explicitly evaluate
the components of the Riemannian metric at ✓⇤:

(gM)ij(✓
⇤) =

⌧
@⇣

@�i
(�⇤),

@⇣

@�j
(�⇤)

�
, 1  i, j  p̃ � q.

(11)

Finally, we evaluate the product metric gN = gflat � gM
on N relative to (idRp�p̃ ,⇤) at ✓⇤:

gN (↵, ✓⇤) ' [gN (↵, ✓⇤)]⇤ (12)

:=

"
I(p�p̃)⇥(p�p̃) 0(p�p̃)⇥(p̃�q)

0(p̃�q)⇥(p�p̃) [gM(✓⇤)]⇤

#
, (13)

where ↵ 2 Rp�p̃ and [gM(✓⇤)]⇤ 2 GL(p̃ � q,R) is the
symmetric matrix whose (i, j)th component is given by
(gM)ij(✓⇤).

Example 6.7 (The unit sphere S2 - continued). We end this
section by continuing Example 6.6 and computing the com-
ponents of the Riemannian metric gS2 relative to ⇤. This
computation is only included to provide a concrete applica-
tion of the abstract theory above. In practice, the compu-
tations, e.g., solving the equation in (10), are implemented
numerically. Now, a straightforward computation shows that

D⇣(�) =

2

664

� �1p
1 � �

2
1 � �

2
2

� �2p
1 � �

2
1 � �

2
2

1 0
0 1

3

775 .

Therefore, the components of the Riemannian-metric relative
to ⇤ are given by

[gS2(✓)]⇤ =
1

1 � ✓
2
2 � ✓

2
3


1 � ✓

2
3 ✓2✓3

✓2✓3 1 � ✓
2
2

�
.

6.5. Computing gradients on N

In this section we explain how to compute the gra-
dient of a smooth map L : N ! R relative
to � = (idRp�p̃ ,⇤). For notational convenience,
we denote the coordinates associated to (idRp�p̃ ,⇤) by
(u1

, . . . , u
p�q), where

�
u
1
, . . . , u

p�p̃
�
=

�
↵
1
, . . . ,↵

p�p̃
�

and (up�p̃+1
, . . . , u

p�q) =
�
�
1
, . . . ,�

p̃�q
�

are the coordi-
nates associated to idRp�p̃ and ⇤, respectively. In the next
section, we will use these computations to find a minimizer
of L using SGD. We remind the reader that our specific use
case is the constrained ERM problem in (2), which corre-
sponds to finding a minimum of

L(↵, ✓) = E (L (G (X,↵� ◆(✓)) , Y)) .

The gradient of L on N with respect to gN is the unique
vector field rgN L 2 X(N) satisfying dL = gN (·,rgN L).
Such a vector field must exist since gN is non-degenerate.
In local coordinates,

dL =
@L
@uj

du
j
, rgN L = c

j @

@uj
,

where c
1
, . . . c

p�q : N ! R are smooth (uniquely deter-
mined) functions. We can easily determine these functions
by plugging them into the defining equation for the gradient

and evaluating both sides at
@

@ui
. This yields the following

linear system of equations:

c
j(gN)ij =

@L
@ui

, 1  i  p � q.

Here (gN)ij : Rp�p̃ ⇥ U ! R are the components of gN
relative to �. Similar as before, we define [gN (↵, ✓)]� 2
GL(p � q,R) to be the symmetric matrix whose (i, j)th

component is given by (gN)ij(↵, ✓). Then

rgN L = g
ij
N
@L
@uj

@

@ui
,

where g
ij
N (↵, ✓) are the components of the inverse of

[gN (↵, ✓)]�.
In practice, of course, we will not invert the matrix

[gN (↵, ✓⇤)]�. Instead, we numerically solve the system
of equations at our point of interest (↵, ✓⇤) for the unknown
coefficients

�
c
j(↵, ✓⇤)

�p�q

j=1
by exploiting the block structure

of the metric, see (12). In particular, we immediately see
that the first p � p̃ components of rgN L(↵, ✓⇤) are given

by c
j(↵, ✓⇤) =

@L
@↵j

(↵, ✓⇤), where 1  j  p � p̃. In

other words, since the metric on Rp�p̃ is flat, the associated
components of the gradient reduce to the usual ones. On the

other hand, for the coordinates on M, we have

p�qX

j=1

c
j(↵, ✓⇤)(gN)ij(↵, ✓

⇤) =

=
p�qX

j=p�p̃+1

c
j(↵, ✓⇤) ([gM(✓⇤)]⇤)(i+p̃�p,j+p̃�p) ,

for p � p̃ + 1  i  p � q by (12). Therefore, the last
p̃� q components

�
c
j(↵, ✓⇤)

�p�q

j=p�p̃+1
of rgN L(↵, ✓⇤) can

be obtained by solving the linear (square) system

[gM(✓⇤)]⇤

0

B@
c
p�p̃+1(↵, ✓⇤)

...
c
p�q(↵, ✓⇤)

1

CA =

0

BBBB@

@L
@�1

(↵, ✓⇤)

...
@L

@�p̃�q
(↵, ✓⇤)

1

CCCCA
.

(14)

Computing partial derivatives We need one final ingre-
dient to compute the gradient of L. Namely, we need to
evaluate its partial derivatives with respect to the coordinate
system defined by � = (idRp�p̃ ,⇤). Clearly there is no dif-

ficulty in computing
@L
@↵i

(↵, ✓⇤), since (↵1
, . . . ,↵

p�p̃) are

the standard coordinates on Rp�p̃, and thus correspond to
the “usual” partial derivatives one encounters in calculus
on vector spaces. For the partial derivatives with respect to
(�1, . . . ,�p̃�q), however, we have to be more careful, and
compute from the perspective of the (non-trivial) chart:

@L
@�i

(↵, ✓⇤) =
@(L � ��1)

@�i
(�(↵, ✓⇤))

=
@

@�i

����
�⇤
(� 7! L(↵, ⇣(�))

= D✓L(↵, ✓⇤)
@⇣

@�i
(�⇤), 1  i  p̃ � q,

(15)

since ��1 = (idRp�p̃ , ⇣) and ⇣(�⇤) = ✓
⇤. In the last line

we assumed that L(↵, ·) has a smooth extension to some
open neighborhood V ⇢ Rp̃ of M for all ↵ 2 Rp�p̃. This
is the case for all our applications, where L comes from the
constrained minimization problem in (2).

Altogether, we now have all the ingredients to numeri-
cally evaluate the gradient of a smooth map L : N ! R
relative to the chart (idRp�p̃ ,⇤). The steps are summarized
in Algorithm 2.

Example 6.8 (The unit sphere S2 - continued). We continue
our example of the unit sphere and explain how to compute
the gradient of a smooth map L : S2 ! R. We assume that

Algorithm 2 Compute rgN L(↵, ✓⇤) relative to � given
(↵, ✓⇤) 2 N .

1: Compute DF (✓⇤).
2: Compute D⇣(�⇤) =

⇥
D⇣̃(�⇤)T I(p̃�q)⇥(p̃�q)

⇤T
by

solving (10).
3: Compute [gN (↵, ✓⇤)]� by evaluating (12).
4: Compute the components of rgflatL(↵, ✓⇤) by evaluating

D↵L(↵, ✓⇤).
5: Compute the partial derivatives @L

@�i (↵, ✓⇤) for 1  i 
p̃ � q using (15).

6: Compute the components of rgML(↵, ✓⇤) by solving
(14).

L can be smoothly extended to an open neighborhood of S2
in R3. To compute the gradient relative to ⇤, we need to
solve the system in (14). For this purpose, we first explicitly
compute the inverse of [gS2(✓)]⇤:

([gS2(✓)]⇤)
�1 =


1 � ✓

2
2 �✓2✓3

�✓2✓3 1 � ✓
2
3

�
.

Again, we stress that in practice, we do not invert this matrix,
but solve the system of equations numerically instead. Next,
we compute the partial derivatives of L relative to ⇤ =
(�1,�2) using (15):

@L
@�1

(✓) =
@L
@✓2

(✓) � ✓2

✓1

@L
@✓1

(✓),

@L
@�2

(✓) =
@L
@✓3

(✓) � ✓3

✓1

@L
@✓1

(✓).

Here
✓
@L

@✓j

◆3

j=1

denote the partial derivatives with respect

to the standard coordinates on R3, i.e., these are the “usual”
partial derivatives from calculus on vector spaces. Hence

rgS2 L(✓) = c1(✓)
@

@�1

����
✓

+c2(✓)
@

@�2

����
✓

'

c1(✓)
c2(✓)

�
,

where

c1(✓) =
@L
@✓2

(✓) � ✓2

✓
✓1
@L
@✓1

(✓) + ✓2
@L
@✓2

(✓) + ✓3
@L
@✓3

(✓)

◆
,

c2(✓) =
@L
@✓3

(✓) � ✓3

✓
✓1
@L
@✓1

(✓) + ✓2
@L
@✓2

(✓) + ✓3
@L
@✓3

(✓)

◆
.

6.6. Stochastic Gradient Descent
In this section we explain how to perform SGD on Rieman-
nian manifolds using graph coordinates. For previous work
on SGD on Riemannian manifolds, we refer the reader to
[6, 14, 34, 35, 42]. The presented technique is completely

intrinsic to the manifold N and involves following (approxi-
mate) geodesics in the direction of the (negative) gradient of
L. To explain this idea in more detail, we first briefly recall
the notion of geodesics and refer the reader to [18, 19] for a
more comprehensive introduction to differential geometry.

6.6.1 Geodesics and parallel transport

The analog of a gradient descent step on a Riemannian man-
ifold (N , gN) is to follow “a straight line”, confined to the
manifold, in the direction of the negative gradient. In or-
der to make sense of this, one first needs to generalize the
notion of a straight line to arbitrary Riemannian manifolds.
On Euclidean vector spaces, one can define a straight line
as a curve whose velocity is constant. This notion makes
sense on a vector space, since different tangent spaces can
be related to one another, but does not make sense on a
general manifold. An equivalent notion, which can be gen-
eralized to a Riemannian manifold, is to define a straight
line as a curve whose acceleration is zero. The key idea here
is that the notion of acceleration can be made sense of on
any Riemannian manifold. More precisely, one can define a
so-called affine connection or covariant derivative r, not to
be confused with the notation for a gradient, which allows
one to measure the change of one vector field in the direction
of another. Formally, a connection is a differential operator
r : X(N) ⇥ X(N) ! X(N), which is C

1(N)-linear in
the first variable, R-linear in the second, and satisfies the
Leibniz rule. Given two vector fields V,W 2 X(N), one
typically writes rV W and interprets this new vector field as
measuring the change of W in the direction of V .

A connection is a so-called local operator in the sense
that rV W (u) is completely determined by V (u) 2 TuN
and the behavior of W in a neighborhood around u 2 N .
We may therefore write rV W (u) = rV (u)W (u). This
local property can in turn be used to measure the change
of a vector field in the direction of a curve. More precisely,
given a curve �, there exists a unique (differential) operator
Dt associated to � and r, which enables one to differentiate
vector fields V 2 �(�) in the direction of �. This operator
is uniquely determined by three properties: it is R-linear,
satisfies the Leibniz rule, and if V 2 �(�) can be extended
to a vector field Ṽ defined on an open neighborhood of �(t),
then DtV (t) = r�̇(t)Ṽ (�(t)). One can now make sense of
acceleration by defining it as the derivative of the velocity
field �̇ in the direction of � itself, i.e., acceleration is defined
by Dt�̇. A “straight line” or geodesic is then simply defined
as a curve whose acceleration field is zero. The existence of
geodesics is guaranteed, at least locally, by the existence and
uniqueness theorem for ODEs, see the discussion below.

A covariant derivative r allows one to generalize many
more familiar concepts from Euclidean vector spaces to Rie-
mannian manifolds. For instance, given a curve � : [0, T] !

N and tangent vector V0 2 T�(t0)N , one may extend V0 to a
vector field V 2 �(�) which “is parallel” to V0 everywhere,
see Figure 6. This extension V is referred to as the paral-
lel transport of V0 along �. The notions of geodesics and
parallel transport, however, heavily depend on the choice of
connection. In general, there exist infinitely many connec-
tions on a Riemannian manifold. There exists exactly one
connection, however, the so-called Levi-Civita connection,
which in a sense is “naturally aligned” with the Rieman-
nian metric. This specific connection may be summarized
in a geometric way by the following two conditions, which
are usually taken for granted on Euclidean spaces. First,
if � : [0, T] ! N is a curve and V0,W0 2 T�(t0)N are
tangent vectors with angle � between them, then the parallel
extensions V,W 2 �(�) must have angle � between them
as well at any point on � (metric compatibility), see Figure 6.
Secondly, for any coordinate chart on N , the rate of change
of one coordinate direction in the direction of another must
not change if we swap directions (torsion free). In this paper
we always use the Levi-Civita connection.

Finally, we provide a local description of a geodesic �.
Let t0 2 (0, T) and assume (U, u1

, . . . , u
p�q) is any chart

containing �(t0), then there exists a � > 0 such that �((t0 �
�, t0 + �)) ⇢ N . Write @l = @

@ul and observe that for each
1  i, j  p � q, there exist smooth functions �k

ij : U ! R
such that r@i@j = �k

ij@k, since (@l)
p�q
l=1 is a frame on U .

The coefficients
�
�k
ij : 1  i, j, k  p � q

are called the

Christoffel symbols of r on U . They completely characterize
the connection on U . The equation for a geodesic starting at
an initial point u0 with initial velocity V0 is given by
8
>>>><

>>>>:

�̈
k(t) + �̇

i(t)�̇j(t)�k
ij(�(t)) = 0, 1  k  p � q,

�̇
k(t0) = V

k
0 , 1  k  p � q,

�(t0) = u0,

(16)

see [18]. Here we have expressed � and the components of
its velocity in local coordinates:

�̇(t) = �̇
i(t)@i

��
�(t)

, �
i := u

i � �.

This is a second-order ordinary differential equation for
the unknown curve (geodesic) �. In general, this equation is
nonlinear. The existence and uniqueness theorem for ODEs
only guarantees the existence of a local solution. The so-
lution may be extended outside of U by considering other
charts. However, due to the nonlinearity, there may be ob-
structions to extending the solution beyond a certain point. In
general, there is no guarantee that a geodesic can be extended
and defined for all t 2 R. A manifold with the property that
geodesics exist for all time is called complete. In particular,
any compact manifold is complete [18]. We remark that

Figure 6. In this figure we depict a curve � : [0, T] ! M (in blue) on which we have drawn two points, �(t0) and �(t), for some
t, t0 2 (0, T). In addition, we have drawn the tangent spaces associated to these points. The tangent vectors V0,W0 2 T�(t0)M are
“parallel transported” along � resulting in vector fields V,W 2 �(�). The Levi-Civita connection is the unique torsion free connection for
which the angle between any two vectors V0,W0 2 T�(t0)M and their parallel extensions remains constant.

for the purpose of SGD local existence is sufficient, since
we need to take sufficiently small steps on the manifold to
guarantee descent of the objective.

6.6.2 Gradient descent steps

We will now explain how to define a gradient de-
scent step on our manifold of interest (N , gN) =�
Rp�p̃ ⇥ M, gflat � gM

�
by computing approximate solu-

tions of the geodesic equation (16). The main idea is to
follow the geodesic starting at our current point (↵, ✓⇤) in
the direction of the negative gradient �rgN L(↵, ✓⇤) for
a small amount of time. While there exist many efficient
techniques to compute high order approximate solutions
of ODEs, e.g., Runge-Kutta solvers, they typically rely on
evaluating the associated vector field on a neighborhood of
the initial condition. In our set up, this would correspond
to evaluating the Christoffel symbols at different points on
the manifold. While it would be possible to explore nearby
points in our chart � = (idRp�p̃ ,⇤), e.g, by computing a
second or higher order Taylor-expansion of ⇣, our objective
is not to just simply explore N . Instead, we are only inter-
ested in following paths on N which lead to a decrease in L.

In particular, we are limited to choosing sufficiently small
step-sizes, since we wish to stay on descent directions for L.
For this reason, since we only need to integrate the geodesic
equation for small amounts of time, we use a first or second
order Taylor-expansion to approximate the solution of (16).

More precisely, let � :=
⇥
�
1

. . . �
p�q

⇤T denote the
curve in local coordinates, then

�(t0 + h) = �(u0) + [V0]�h � 1

2
h
2
V

i
0V

j
0 �ij(u0) + o(h2),

�ij(u0) :=

2

64
�1
ij(u0)

...
�p�q
ij (u0)

3

75

as h ! 0. For our particular case, we set

u0 = (↵, ✓⇤), V0 = �rgN L (↵, ✓⇤) ' �c(↵, ✓⇤),

c(↵, ✓⇤) :=

2

4
c
1(↵, ✓⇤)
. . .

c
p�q(↵, ✓⇤)

3

5 ,

where c(↵, ✓⇤) are the components of the gradient relative
to �. We define the second order gradient descent step with

step-size h based at (↵, ✓⇤) for L by

↵̃

�̃

�
=


↵

�
⇤

�
� c(↵, ✓⇤)h � 1

2
h
2
c
i(↵, ✓⇤)cj(↵, ✓⇤)�ij(↵, ✓

⇤).

Here �(↵, ✓⇤) = (↵,�⇤) is the coordinate representation of
(↵, ✓⇤). Similarly, we define the first order gradient descent
step with step-size h based at (↵, ✓⇤) by


↵̃

�̃

�
=


↵

�
⇤

�
� c(↵, ✓⇤)h.

Note very carefully that the gradient descent steps are taken
in the local coordinate system. For sufficiently small h,
we are guaranteed that the new point (↵̃, �̃) is contained in
the current chart for both the first and second order steps.
However, to get back to the manifold, we have to evaluate
��1(↵̃, �̃) = (↵̃, ⇣(�̃)). In addition, we also have to explic-
itly evaluate the Christoffel symbols. The computational
details are given below.

6.6.3 Evaluating the inverse chart

We will use a Taylor expansion to evaluate the inverse chart
⇣ on M at �̃ . Subsequently, we use Newton’s method to
refine the approximation. The resulting point that we find
must necessarily correspond to ⇣(�̃), and is thus completely
determined by �̃, since ⇣ is locally unique as explained
in Theorem 6.2. This justifies the claim made in Sec. 6.2
that the search dynamics of our algorithm is completely
determined by the negative gradient flow of L, since �̃ is.

Below we provide the computational details for the case
of a second order Taylor expansion; the first order case is
obtained by ignoring the second order terms. To avoid clutter
in the notation, we will henceforth (interchangeably) write


↵(k+1)

�(k+1)

�
=


↵̃

�̃

�
,


↵(k)

�(k)

�
=


↵

�
⇤

�
, ✓(k) = ⇣

�
�(k)

�
.

This notation also emphasizes that we move from a given
point at step k 2 N0 to a next point.

The second order Taylor expansion of ⇣̃ around �(k) is
given by

⇣̃
�
�(k+1)

�
= ⇣̃

�
�(k)

�
+D⇣̃

�
�(k)

�
dk +

1

2
D

2
⇣̃
�
�(k)

�
[dk, dk],

where dk := �(k+1) � �(k), as �(k+1) ! �(k). We have ex-
plained in Section 6.4 how to explicitly compute D⇣̃

�
�(k)

�
,

which was needed to evaluate the Riemannian metric. Here
we employ the same strategy to compute the second deriva-
tive D

2
⇣̃
�
�(k)

�
2 B2(Rp̃�q

,Rq), where B2(Rp̃�q
,Rq) de-

notes the space of Rq-valued
�2
0

�
-tensors on Rp̃�q . We start

by rewriting (10) as

DF

⇣
⇣̃(�),�

⌘
D⇣̃(�)
IRp̃�q

�
= 0, � 2 B.

Next, we differentiate both sides with respect to � and evalu-
ate at �(k). This yields

DvF
�
✓(k)

�
D

2
⇣̃
�
�(k)

�
[s1, s2] =

� D
2
F
�
✓(k)

� ✓D⇣̃
�
�(k)

�
s1

s1

◆
,

✓
D⇣̃

�
�(k)

�
s2

s2

◆�

(17)

for all s1, s2 2 Rp̃�q. To compute the (i, j)th component
of D

2
⇣̃
�
�(k)

�
with respect to the standard basis, i.e., in

order to compute @2⇣̃
@�i@�j

�
�(k)

�
, we evaluate both sides of

(17) at (s1, s2) = (ei, ej) and solve the equation for each
1  i, j  p̃ � q. This equation admits a unique solution,
since DvF

�
✓(k)

�
is an isomorphism on Rq .

Finally, we approximate ⇣̃
�
�(k+1)

�
using its second (or

first) order Taylor expansion and then use Newton’s method
to evaluate

��1
�
↵(k+1),�(k+1)

�
=
�
↵(k+1), ⇣

�
�(k+1)

��
.

More precisely, we first approximate ⇣
�
�(k+1)

�
by

⇣
�
�(k+1)

�
⇡

v(k+1)

�(k+1)

�
,

v(k+1) := ⇣̃
�
�(k)

�
+D⇣̃

�
�(k)

�
dk +

1

2
D

2
⇣̃
�
�(k)

�
[dk, dk].

(18)

We then refine this approximation by finding a zero of the
map v 7! F

�
v,�(k+1)

�
using Newton’s method and v(k+1)

as initial guess. In particular, we solve the equation for v,
while �(k+1) remains fixed. The zero that we find must nec-
essarily correspond to ⇣

�
�(k+1)

�
, since ⇣ is locally unique

as explained in Theorem 6.2. Altogether, this yields the
desired point

�
↵(k+1), ✓(k+1)

�
2 N . See Figure 7 for a

visualization of the steps described in this section.

6.6.4 Evaluating the Christoffel symbols

We end this section by explaining how to explicitly evaluate
the Christoffel symbols �k

ij at (↵, ✓⇤). Recall that a con-
nection is locally completely characterized by the Christof-
fel symbols. The constraints that uniquely determine the
Levi-Civita connection, i.e., metric compatibility and torsion-
freeness, therefore also impose constraints on the Christoffel
symbols. In fact, the standard proof for the existence of the
Levi-Civita connection is constructive and establishes an
explicit relationship between the Christoffel symbols and the
Riemannian metric:

�k
ij =

1

2
(gN)kl

✓
@(gN)jl
@ui

+
@(gN)il
@uj

� @(gN)ij
@ul

◆
,

where 1  i, j, k  p� q, see [18, 19] for instance. We will
use this expression to numerically evaluate the Christoffel
symbols.

✓
�(k+1)

v(k+1)

◆

Figure 7. In this figure we visualize the computational steps for performing SGD on N . We assume for the sake of clarity that there are no
unconstrained parameters, i.e., N = M. We start at a previously computed point ✓(k) 2 M with associated coordinates �(k) relative to ⇤.
We remind the reader that the inverse of ⇤ embeds a patch of M into Rp̃ as the graph of ⇣̃. Next, we perform a gradient descent step by
following the first or second order Taylor expansion of the geodesic (depicted in orange) starting at �(k) in the direction of �rgML

�
✓(k)

�

for a small amount of time. This yields the next point �(k+1), which is still contained in the chart. Finally, we evaluate the inverse chart ⇣ at
the new point in two steps. First, we approximate ⇣̃

�
�(k+1)

�
⇡ v(k+1) using a first or second order Taylor expansion of ⇣̃, see (18). We

then use Newton’s method to refine this approximation and compute ✓(k+1) = ⇣
�
�(k+1)

�
.

It follows immediately from the block structure of the
metric gN in (12) that

�k
ij(↵, ✓

⇤) = 0, 1  i  p � p̃, 1  j  p � q,

�k
ij(↵, ✓

⇤) = 0, p � p̃+ 1  i  p � q, 1  j  p � p̃,

for all 1  k  p� q. The reason why these coefficients are
zero is because there is no interplay between the submani-
folds Rp�p̃ and M, which together make up N , and because
the metric on Rp�p̃ is flat. In particular, this shows that the
component in Rp�p̃ of a geodesic on N is just a straight line
as expected.

It remains to consider the case p � p̃+ 1  i, j  p � q,
which is associated to the non-trivial metric gM on M. We
use the expression in (11) to compute the partial derivatives
of the relevant components of gM. More precisely, observe
that
@ (gM)ij
@�l

(✓⇤) =
@

@�l

����
�⇤

✓
� 7!

⌧
@⇣

@�i
(�),

@⇣

@�j
(�)

�◆

=

*
@⇣̃

@�i
(�⇤),

@
2
⇣̃

@�l@�j
(�⇤)

+
+

*
@⇣̃

@�j
(�⇤),

@
2
⇣̃

@�l@�i
(�⇤)

+

for 1  i, j, l  p̃ � q. We can evaluate this expres-
sion numerically, since we can explicitly evaluate D⇣̃(�⇤)
and D

2
⇣̃(�⇤). Finally, to compute the relevant Christof-

fel symbols, we define vectors wij(�⇤) 2 Rp̃�q for each
1  i, j  p̃ � q by

[wij(�
⇤)]l :=

1

2

✓
@(gM)jl
@�i

+
@(gM)il
@�j

� @(gM)ij
@�l

◆
(�⇤),

where 1  l  p̃ � q. The remaining (non-zero) Christoffel
symbols associated to M can now be computed by solving
the following linear system of equations:

[gM(✓⇤)]⇤[�
k
ĩj̃
(↵, ✓⇤)]p̃�q

k=1 = wij(�
⇤),

ĩ = i+ p � p̃, j̃ = j + p � p̃.

7. Supplementary information Multiresolution
Analysis

In this section, we provide the mathematical details needed
for our main application. In Sec. 7.3 we review the Discrete
Wavelet Transform (DWT), which plays the role of the de-
coder in our auto-contouring network. In Sec. 7.4 we explain
how to set up constraints for learning wavelet filters.

7.1. Formal definition MRA
Definition 7.1 (Formal definition MRA [26]). Let Tk :
L
2(R) ! L

2(R) and Dj : L
2(R) ! L

2(R) denote the
translation and normalized dilation operator, respectively,
defined by Tk�(t) = �(t � k) and Dj�(t) = 2

j
2 �(2jt) for

� 2 L
2(R) \ C

1
0 (R) and j, k 2 Z. A multiresolution anal-

ysis of L2(R) is an increasing sequence of closed subspaces
(Vj)j2Z, such that

(i)
T

j2Z Vj = {0},

(ii)
S

j2Z Vj is dense in L
2(R),

(iii) � 2 Vj if and only if D1� 2 Vj+1,

(iv) V0 is invariant under translations,

(v) 9' 2 L
2(R) such that {Tk'}k2Z is an orthonormal

basis for V0.

Condition (ii) formalizes the idea that any signal in
L
2(R) can be arbitrarily well approximated using an ap-

propriate resolution level. Condition (iii) encapsulates the
idea that Vj+1 is the next resolution level with respect to
our choice of dilation operators Dj , i.e., there are no other
resolution levels between Vj and Vj+1. Combined with (iv)
it implies that each subspace Vj is invariant under integer
shifts. Finally, condition (v) formalizes the idea that the
subspaces are spanned by translations and dilations of the
map '; the so-called scaling function or father wavelet. In-
deed, it is straightforward to show that {'jk : k 2 Z} is an
orthonormal basis for Vj , where 'jk := DjTk'.

7.2. The scaling equation
In this section we review the so-called scaling equation,
which is key for understanding many fundamental aspects of
MRAs, both theoretical and computational. We will heavily
rely on it in the subsequent sections to set up the desired
constraints and to efficiently compute with wavelets. The
key observation is that since V0 ⇢ V1, there exists a unique
sequence h 2 `

2(Z) such that

' =
X

k2Z
hk'1k. (19)

This equation is referred to as the scaling equation; one of the
fundamental properties of a scaling function. Similarly, since
 2 W0 ⇢ V1, there exists a unique sequence g 2 `

2(Z),
the so-called high-pass filter associated to h, such that

 =
X

k2Z
gk'1k. (20)

For Mallat’s mother wavelet, we have gk = (�1)k�1
h1�k.

aj

dj�g̃

�h̃

aj+1

(a) Decomposition

aj

dj

�h

�g

+ aj+1

(b) Reconstruction

Figure 8. (a) Decomposing approximation coefficients at level
j + 1 into approximation and detail coefficients at level j. Here h̃
and g̃ are defined in (22) and (23), respectively, and ⇤ is the two-
sided discrete convolution. The symbol # corresponds to operator
S#, which downsamples a sequence by discarding all terms with
odd index. (b) Reconstruction of the approximation coefficients at
level j + 1 from the approximation and detail coefficients at level
j. The symbol " corresponds to operator S", which upsamples a
sequence by putting zeros in between every term.

7.3. The Discrete Wavelet Transform

The scaling equation (19) can be used to derive an efficient
scheme for computing a (finite) multiresolution decompo-
sition of a signal �. More precisely, given initial approxi-
mation coefficients aj+1 at level j + 1, the scaling equation
can be used to compute the approximation and detail coeffi-
cients at level j. Conversely, the orthogonal decomposition
Vj+1 = Vj � Wj can be used to reconstruct aj+1 given the
approximation and detail coefficients aj and dj , respectively,
at resolution level j. The mapping associated to these op-
erations is called the (1-level) Discrete Wavelet Transform
(DWT). It provides an efficient way to obtain a multireso-
lution decomposition of a signal. The associated algorithm,
which iteratively applies the 1-level DWT, is known as the
so-called Pyramid Algorithm [26].

Decomposition Let aj+1 2 `
2(Z) be approximation coef-

ficients at an initial resolution level j + 1, where j 2 Z. To
obtain the approximation and detail coefficients at level j,
we first note that

'jk =
X

l2Z
hl�2k'j+1,l, k 2 Z. (21)

This relation between 'j+1 and 'j can be easily derived by
substituting the right hand side of the scaling equation (19)

into the definition of 'jk. Consequently,

ajk = h�j+1,'jki =
⇣
S
#
⇣
aj+1 ⇤ h̃

⌘⌘

k
, h̃k := h�k,

(22)

where ⇤ : `2(Z) ⇥ `
2(Z) ! `

2(Z) denotes the two-sided
discrete convolution and S

#
h : `2(Z) ! `

2(Z) is defined by
(S#(c))k := c2k. The resulting map aj+1 7! S

#
⇣
aj+1 ⇤ h̃

⌘

is typically referred to as the DWT at level j. An analogous
computation for the detail coefficients shows that

dj = S
(aj+1 ⇤ g̃) , g̃k := g�k. (23)

The decomposition of the approximation coefficients at level
j + 1 into approximation and detail coefficients at level j is
illustrated in Figure 8a.

Reconstruction The inverse DWT can be derived in a
similar fashion using the decomposition Vj+1 = Vj�Wj . To
make the computation explicit, we use (20) and the scaling
equation again to write

 jk =
X

l2Z
gl�2k'j+1,l, k 2 Z.

Consequently, since Vj+1 = Vj � Wj ,

�j+1 =
X

k2Z
ajk'jk +

X

k2Z
djk jk

=
X

k,l2Z
(ajkhl�2k + djkgl�2k)'j+1,l

=
X

k2Z

�
S
"(aj) ⇤ h+ S

"(dj) ⇤ g
�
k
'j+1,k,

where S
" : `2(Z) ! `

2(Z) is defined by

(S"
c)k :=

(
c k

2
, k ⌘ 0 mod 2,

0, k ⌘ 1 mod 2.

This shows that the approximations coefficients at level j+1
are given by

aj+1 = S
"(aj) ⇤ h+ S

"(dj) ⇤ g.

The reconstruction procedure is schematically shown in Fig-
ure 8b.

Remark 7.2 (Numerical implementation DWT). The convo-
lutions appearing in the decomposition and reconstruction
formulae can be efficiently computed using the Fast Fourier
Transform (FFT).

7.4. Setting up constraints for wavelet filters
In this section we set up a finite system of equations whose
solutions, under some mild non-degeneracy condition, cor-
respond to wavelet filters. Recall that a wavelet filter is a
sequence h 2 `

2(Z) that characterizes a scaling function '.
We reformulate the key requirements on ', namely that its
translates are orthogonal and Fourier transform is nonzero,
in terms of the low pass filter h. In turn, this imposes con-
straints on admissible filters h in the form of a system of
equations. Solutions of this system are commonly referred to
as Quadratic Mirror Filters (QMFs), see Definition 7.5. We
remark that these equations and conditions are well-known
and refer the reader to [29, 31] for a more comprehensive
treatment.

The refinement mask A first important observation fol-
lows from taking the Fourier Transform of the scaling equa-
tion, which yields

'̂(⇠) = H

✓
⇠

2

◆
'̂

✓
⇠

2

◆
, H(⇠) :=

1p
2

X

k2Z
hke

�2⇡i⇠k
.

(24)

Here H : [0, 1] ! C is a 1-period map typically referred
to as the refinement mask. Throughout this paper, we shall
abuse terminology and frequently refer to both H and h as
the low pass filter associated to '. Both the low pass filter
and refinement mask completely characterize the scaling
function. We will formulate necessary conditions on h by
analyzing properties of the refinement mask H . The relation
in (24) will be used extensively to derive these conditions.

Existence and uniqueness of MRAs The scaling equa-
tion plays a seminal role in establishing the existence and
uniqueness of an MRA given a candidate h for a low-pass
filter. While there is no need to explicitly construct ', we
do briefly discuss its existence here to justify the claim that
we are learning wavelets. In addition, the discussion will
reveal a necessary condition on H . The idea for proving the
existence of a scaling map ', given a low-pass filter h, is
to “reconstruct” its Fourier transform '̂ using the scaling
equation. To see how, suppose we start with a scaling map
'. Then repeated application of (24) yields

'̂(⇠) = '̂

✓
⇠

2k

◆ kY

j=1

H

✓
⇠

2j

◆
, ⇠ 2 R.

Assuming that '̂ is continuous at ⇠ = 0, we may consider
the limit as k ! 1, which yields

'̂(⇠) = '̂(0)
1Y

j=1

H

✓
⇠

2j

◆
, (25)

provided the latter product exists. Since '̂ is not identically
zero, we must have that '̂(0) 6= 0. This imposes a constraint
on H , namely H(0) = 1. Without loss of generality, we
may further assume that '̂(0) = 1.

Conversely, if we start with a sequence h instead of a
scaling map ', we may try to use the right-hand side of (25)
to define a candidate for '̂. More precisely, if the infinite
product converges to a map in L

2(R), one may use the in-
verse Fourier transform to define a corresponding candidate
for '. As it turns out, if h decays sufficiently fast to zero,
and we assume that H(0) = 1, where we now define H via
(24), then ⇠ 7!

Q1
j=1 H

⇣
⇠
2j

⌘
is in L

2(R), continuous at
⇠ = 0, and satisfies (25). For a more precise statement, we
refer the reader to [12, 29]. In this paper, we exclusively
deal with finite sequences h, for which these assumptions
are always (trivially) satisfied. Hence we may use (25) to
define a candidate for a scaling map '. However, we still
need to impose additional constraints on h, to ensure that the
translates of ' are orthogonal.

Orthogonality To reformulate the orthogonality condi-
tions into a system of equations for h, we first rewrite the
system h'0k,'0li = �kl in frequency space. The recurrence
relation for the Fourier transform of ' in (24) may then be
used to derive a necessary condition on the refinement mask
H . Subsequently, we can reformulate this necessary con-
dition as an equivalent condition on h. The details can be
found in [31]. Here we only state the relevant results.

Lemma 7.3 (Orthogonality refinement mask). Suppose
' 2 L

2(R) satisfies the dilation equation for a refinement
mask H with Fourier coefficients h 2 `

2(Z). If the family
('0k)k2Z is orthonormal, then

|H(⇠/2)|2 + |H(⇠/2 + 1/2)|2 = 1, (26)

for a.e. ⇠ 2 R2.

Proof. See [31].

Remark 7.4. The condition in (26) is often referred to as the
Quadratic Mirror Filter condition.

Definition 7.5 (Quadratic Mirror Filter). A Quadratic Mirror
Filter (QMF) is a sequence h 2 `

2(Z) which satisfies (26)
and H(0) = 1.

The reason for introducing this terminology is that
QMFs correspond to wavelet filters under an additional non-
degeneracy condition. Here we only state the result for finite
filters.

Theorem 7.6. Suppose h is a finite QMF. If
inf0⇠ 1

4
|H(⇠)| > 0, then

' := F�1

0

@⇠ 7!
1Y

j=1

H

✓
⇠

2j

◆1

A

is a scaling function and defines an MRA of L2(R). Here
F : L2(R) ! L

2(R) denotes the Fourier transform.

Proof. See [38] Theorem 8.35.

Remark 7.7. One may expect that any finite filter h satis-
fying (26) will define a scaling function whose translates
are orthogonal. However, this is unfortunately not the case,
and the additional requirement that inf0⇠ 1

4
|H(⇠)| > 0 is

needed to avoid degenerate cases.

Next, we derive a system of equations for h that is equiva-
lent to (26). To formulate this system of equations, we define
operators M,R : `2(Z) ! `

2(Z) by (Mc)k := (�1)kck
and (Rc)k := c�k. For brevity, we will frequently write
c̃ := R(c) as before. Even though we are dealing with real-
valued filters h in practice, below we state the results for
general complex-valued sequences.

Lemma 7.8 (Orthogonality low-pass filter). Suppose H is a
refinement mask with Fourier coefficients h 2 `

2(Z). Then
the orthonormality constraint in (26) is equivalent to the
following system of equations:

8
>>><

>>>:

X

l2Z
|hl|2 = 1, k = 0,

X

l2Z
hl�2khl = 0, k 2 N.

(27)

Proof. We start by computing the Fourier coefficients c(h) 2
`
1(Z) of the lefthand-side of (26). To this end, observe that

the 2-periodic map ⇠ 7! H

⇣
⇠
2

⌘
and its conjugate have

Fourier coefficients 1p
2
h̃ and 1p

2
h, respectively. Therefore,

since H 2 L
2([0, 1]), the product ⇠ 7!

���H
⇣

⇠
2

⌘���
2

is L1 with

Fourier coefficients 1
2 h̃⇤h. Similarly, the Fourier coefficients

of ⇠ 7!
���H

⇣
⇠+1
2

⌘���
2

are given by 1
2M(h̃) ⇤ M(h). Hence

2c(h) = h̃ ⇤ h+M(h̃) ⇤ M(h).

Unfolding the definitions yields

(c(h))k =
1

2

X

l2Z

�
1 + (�1)k

�
hl�khl, k 2 Z.

Note that (c(h))k = 0 whenever k is odd, since

�
(�1)k + 1

�
=

(
2, k ⌘ 0 mod 2,

0, otherwise.
(28)

The equation in (26) is equivalent to the statement that
(c(h))k = �0k for k 2 Z, since the Fourier coefficients
of a L

1-function are unique. Hence (26) is equivalent to
(c(h))2k = �0,2k for k 2 Z by the observation in (28).
Finally, the latter statement is equivalent to (c(h))2k = �0,2k

for k 2 N0, since
X

l2Z
hl�2khl =

X

l2Z
hl+2khl

for any k 2 Z. The two cases in (27) show the demands
for k = 0 and positive even indices, respectively. This
establishes the result.

Remark 7.9. A more direct way to arrive at (27) is to plug
in the dilation relation into hTk','i and use the orthogo-
nality of ('1k)k2Z. The equivalence with (26) can then be
established in a similar (but slightly different) way.

QMF conditions We are now ready to set up the desired
constraints. In general, the QMF conditions are not sufficient
to guarantee that h is the low pass filter of a scaling function,
see the discussion in Remark 7.7. However, in numerical
experiments, we never seem to violate the non-degeneracy
condition when only imposing the QMF conditions. For this
reason, the only constraints that we impose are the QMF
conditions. We do provide an option to include the non-
degeneracy condition in Remark 7.12.

To properly write down the QMF conditions as constraints
on a sequence h, we introduce some additional notation. Let
AM (R) denote the space of one-dimensional R-valued two-
sided sequences of order M , i.e.,

AM (R) :=
⇢
a

���� a : {1 � M, . . . ,M � 1} ! R
�
.

Note that AM (R) is a vector space over R of dimension
2M � 1. In particular, AM ' R2M�1. The reason for
introducing this notation is to explicitly keep track of the
two-sided ordering of sequences. We are now ready to gather
all the demands that we have derived, and place them into
the general framework of Section 2.

Definition 7.10. Let M 2 N�3 be a prescribed order. The
QMF-map is the function FM : AM (R) ! RM defined by

(FM (h))k :=

8
>>>>>><

>>>>>>:

(h� ⇤ h)0 � 1, k = 0,

(h� ⇤ h)2k, 1  k  M � 1,

�
p
2 +

X

|l|M�1

hl, k = M.

The first M equations correspond to the orthonormality
constraints. Note that we only have to impose (h�⇤h)2k = 0
for 1  k  M � 1, since (h� ⇤ h)2k = 0 for k � M . The
last equation corresponds to the condition that H(0) = 1.
The set of regular points in F�1

M (0) is a real-analytic (M�2)-
dimensional submanifold of R2M�1 by Remark 6.3. In
particular, we can get as many degrees of freedom as desired
by choosing a sufficiently large order M .

We summarize the interpretation and importance of the
constraints in a theorem.

Theorem 7.11. If FM (h) = 0 and inf0⇠ 1
4

|H(⇠)| > 0,
then h is the low-pass filter of a scaling map '.

Remark 7.12 (Imposing the non-degeneracy condition). The
additional non-degeneracy condition inf0⇠ 1

4
|H(⇠)| > 0

can be imposed, for instance, by requiring that H has no
zeros in [0, 1

4]. Since we consider finite filters only, the
refinement mask H is analytic (entire even). Hence the latter
condition may be imposed by requiring that

˛
@Er

H
0(z)

H(z)
dz = 0, (29)

where Er ⇢ C is an ellipse with foci 0 and 1
4 and r > 0 is a

free parameter which controls the sum of the major and mi-
nor axis. We remind the reader that the above integral counts
the zeros of H (up to a scaling factor) in Er, provided H has
no zeros on @Er. For any parameterization of @Er, we can
numerically evaluate the integrand of (29) on an associated
uniform grid by using the Fourier expansion of H . We may
therefore numerically compute a Fourier expansion of the
integrand, which in turn allows numerical approximation of
the contour integral.

8. Supplementary Information Contour Predic-
tion

In this section we provide the details of our auto-contouring
application. In Sec. 8.1 we explain how to represent periodic
curves using wavelets. In Sec. 8.2 we provide additional
details about the data, e.g., how ground-truth curves are con-
structed, what preprocessing steps are taken, etc.. Finally,
in Sec. 8.3, we present the full details of our network archi-
tecture and training schedule. In addition, we provide more
examples of learned wavelets.

8.1. Wavelet Representations of periodic curves
We start by explaining how to compute a multiresolution
decomposition of a scalar-valued periodic signal � with
period ⌧ > 0. First, we address the issue that periodic
signals are not contained in L

2(R) by considering the cut-
off �̃(t) := �(t)1[�⌧,⌧](t), which is contained in L

2(R). In
general, such a cut-off will introduce discontinuities at the
boundary points �⌧ and ⌧ . These artifacts do not present an

issue for us, however, since (by periodicity) we can restrict
our analysis to a strict subset [I0, I1] ⇢ [�⌧, ⌧] of length ⌧ .

To compute a multiresolution decomposition of �̃ using
the DWT, we need to compute the approximation coefficients
aj1(�̃) 2 `

2(Z) of �̃ at some initial resolution level j1 2 N.
To explain how such an initial approximation can be obtained
in the first place, we derive an explicit formula for the approx-
imation coefficients ajk(�̃) = h�̃,'jki. While we will not
directly use this formula, we do remark it can be efficiently
implemented and provides an alternative method to initialize
wavelet coefficients thereby addressing the so-called wavelet
crime [1, 23]. For our purposes, this expression will be key
for identifying which coefficients to consider, i.e., which
spatial locations k 2 Z associated to ajk(�̃) are relevant for
representing �̃.

Lemma 8.1 (Initialization approximation coefficients). Let
' 2 L

2(R) be the scaling map of an MRA with low-pass
filter h 2 `

2(Z) and associated refinement mask H . Assume
h is nonzero for only a finite number of indices k 2 Z so that
supp(') ⇢ [�r1, r2] for some r1, r2 > 0. If � 2 C

2
per([0, ⌧])

is a ⌧ -periodic map with Fourier coefficients (�m)m2Z, then

h�̃,'jki = 2�
j
2

X

m2Z
�me

i!(⌧)m k
2j

1Y

n=1

H

⇣
� m

⌧2j+n

⌘
,

(30)

for any j 2 Z and k 2 {dr1 �2j⌧e, . . . , b2j⌧ �r2c}, where
!(⌧) := 2⇡

⌧ is the angular frequency of �.

Proof. Let j 2 Z and k 2 {dr1 � 2j⌧e, . . . , b2j⌧ � r2c} be
arbitrary. A change of variables shows that

h�̃,'jki = 2�
j
2

ˆ
[r1,r2]

�̃
�
2�j(t+ k)

�
'(t) dt,

since supp(') ⇢ [�r1, r2]. Note that the latter holds for all
k 2 Z. For k 2 {dr1 � 2j⌧e, . . . , b2j⌧ � r2c} in particular,
we have that 2�j(t + k) 2 [�⌧, ⌧] for all t 2 [�r1, r2].
Therefore, for such k, we may plug in the Fourier expansion
for �̃ and compute

ˆ
[�r1,r2]

�̃
�
2�j(t+ k)

�
'(t) dt =

=

ˆ
[�r1,r2]

X

m2Z
�me

i!(⌧)m t+k

2j '(t) dt.

Next, note that that series inside the integral converges point-
wise to �

�
2�j(t+ k)

�
'(t) on [�r1, r2]. Furthermore, the

partial sums can be bounded from above on [�r1, r2] by a
constant, since � 2 C

2
per([0, ⌧]) and ' is bounded. Therefore,

we may interchange the order of summation and integration

t

�1 1�

1

2

1

2

�
�

1� 21�j1

2

Figure 9. The re-parameterized cut-off signal �⇤(t) =
�(⌧ t)1[�1,1](t) depicted in blue. We only need to compute ap-
proximation coefficients associated to the smaller region [� 1

2 ,
1
2].

by the Dominated Convergence Theorem:
ˆ
[�r1,r2]

X

m2Z
�me

i!(⌧)m t+k

2j '(t) dt =

X

m2Z
�me

i!(⌧)m k
2j

ˆ
[�r1,r2]

e
i!(⌧)m t

2j '(t) dt.

Finally, changing the domain of integration to R again, we
see that

X

m2Z
�me

i!(⌧)m k
2j

ˆ
[�r1,r2]

e
i!(⌧)m t

2j '(t) dt =

=
X

m2Z
�me

i!(⌧)m k
2j '̂

⇣
� m

⌧2j

⌘
.

The stated result now follows from the observation that
'̂(⇠) =

Q1
l=1 H(⇠

2l) holds pointwise for any ⇠ 2 R, since
h is nonzero for only a finite number of indices, see [29,
Theorem 8.34].

Remark 8.2. It is straightforward to show that the partial
sums converge uniformly on [�r1, r2]. It is therefore not
needed to resort to the Dominated Convergence Theorem.

Remark 8.3. The bounds dr1 � 2j⌧e and b2j⌧ � r2c are
the smallest and largest integer, respectively, for which the
Fourier series for � can be plugged into h�̃,'jki. The bounds
are somewhat artificial, however, since the argument may be
repeated for any cut-off of � on [�s⌧, s⌧], where s 2 N�2.
The choice for s is ultimately irrelevant, however, since
we are interested in the minimal number of approximation
coefficients needed to cover �; see the discussion below.

Lemma 8.1 provides a convenient way to initialize ap-
proximation coefficients. To explain how, we first re-
parameterize � to have period 1 and consider the cut-off
�
⇤(t) := �(⌧ t)1[�1,1](t). The motivation for this re-

parameterization is that we can now conveniently relate
specific approximation coefficients to sample values of �.
To be more precise, recall that '̂ is continuous at zero and
H(0) = 1. Therefore, if the initial resolution level j1 is
sufficiently large, the infinite product in (30) will be close to
1 (for small m). Furthermore, in practice, we have a finite

number of Fourier coefficients, i.e., �m = 0 for |m| � N .
Therefore, if j1 is sufficiently large relative to N , then

aj1k(�
⇤) ⇡ 2�

j1
2 �

⇤(k2�j1), dr1 � 2j1e  k  b2j1 � r2c.
(31)

That is, on sufficiently high-resolution levels the approx-
imation coefficients are close to the (scaled) sample val-
ues of the underlying signal; a well-known general fact of
MRAs. Consequently, the approximation coefficients needed
to cover [�1, 1] (approximately) are (aj1k(�

⇤))b2
j1�r2c

k=dr1�2j1e.
Motivated by this observation, and the fact that we only need
�
⇤ on [� 1

2 ,
1
2], we use the scaled sample values in (31) to

initialize the coefficients (aj1k(�⇤))
2j1�1�1
k=�2j1�1 , which cover

[� 1
2 ,

1�21�j1

2] approximately, see Figure 9.
We stress that in order for the above approximations to be

accurate, the initial resolution level j1 needs to be sufficiently
large. Furthermore, to ensure that �2j1�1

> dr1 � 2j1e and
2j1�1 � 1 < b2j1 � r2c, we require that

j1 � max

⇢⇠
log (r1 + 1)

log(2)
+ 1

⇡
,

⇠
log (r2 � 1)

log(2)
+ 1

⇡ �
.

One can explicitly express the support of ' in terms of the
order M of the wavelet. Specifically, the scaling relation
can be used to shown that supp ' ⇢ [1 � M,M � 1], thus
providing explicit values for r1 and r2. A rigorous proof is
out of the scope of this paper and we refer the reader to [38,
Theorem 8.38].

8.2. Ground Truth
Let (x, y) 2 X ⇥ Rns⇥np be an image (slice) - contour pair,
where x is a slice of the CT or MRI scan, y is a sequence
of np 2 N points approximating the boundary of a simply
connected region R = R(x), and ns = 2 is the number of
spatial components. Since we only have access to binary
masks, and not to the raw annotations themselves, we extract
y using OPENCV. We remark that y is not constrained to an
integer-valued grid.

Approximation coefficients The ground truth consists of
the approximation coefficients of �⇤ at an initial resolution
level j2 2 N. Here �⇤ is the re-parameterized cut-off of an
initial parameterization � of @R as explained in the previ-
ous section. We approximate the approximation coefficients
using (31), which requires evaluating �⇤ on a dyadic grid.
To accomplish this, we compute a Fourier expansion for �.
To be more precise, we first parameterize @R by arc length
resulting in a curve �. The arc length ⌧ is approximated
by summing up the Euclidian distances between subsequent
points on y. We re-parameterize � to have period 1, as ex-
plained in Sec. 8.1, and additionally “center” it using the
average midpoint of the contours in the training set. The

ROI |Dtrain| |Dval| |Dtest|
Spleen 2509 386 371

Prostate 454 77 63

Table 2. The number of samples (slices) in the train-val-test splits
for the prostate and spleen. This count includes empty slices, i.e.,
slices which do not contain a contour. The split was made on
volume (patient) level.

Fourier coefficients of the resulting contour are then com-
puted by evaluating it on an equispaced grid of [0, 1] of size
2N�1, where N 2 N, using linear interpolation and the Dis-
crete Fourier Transform. Since the contours are real-valued,
we only store the Fourier coefficients (�̃m)N�1

m=0 2 (Cns)N .
Fourier coefficients that are too small, i.e., have no

relevant contribution, are set to zero. To be more pre-
cise, note that the magnitude of the approximated Fourier
coefficients will typically stagnate and stay constant (ap-
proximately) beyond some critical order, since all com-
putations are performed in finite (single) precision. We
locate this critical order m

⇤
0(s) 2 N for each compo-

nent s 2 {1, 2}, if present, by iteratively fitting the
best line, in the least squares sense, through the pointsn⇣

m,

���(|[�̃m̃]s|)
m
m̃=m0

���
1

⌘
: m0  m  N � 1

o
for 1 

m0  N � 1. We iterate this process until the residual
is below a prescribed threshold �N > 0. In practice, we set
�N = 0.1. The Fourier coefficients with index strictly larger
than m

⇤
0(s) are set to zero. Finally, we use the approximation

in (31) to initialize the approximation coefficients aj2 .

Consistency To have consistent parameterizations for all
slices, we ensure that @R is always traversed anti-clockwise
(using opencv). Furthermore, since parameterizations are
only determined up to a translation in time, we need to pick
out a specific one. We choose the unique parameterization
such that �⇤ starts at angle zero at time zero relative to the
midpoint c = (c1, c2) 2 R2 of R. This is accomplished by
exploiting the Fourier representation of �. More precisely,
let

�(t) =
X

|m|N�1

�̃me
i!(⌧)mt

, !(⌧) =
2⇡

⌧
,

be the initial contour with Fourier coefficients ⌘ :=
(�̃m)N�1

m=1�N . The midpoint c of the region enclosed by
� is given by (by Green’s theorem)

cs =
1

�(R)

ˆ
R
us d�(u1, u2) = (�1)s

([⌘]1 ⇤ [⌘]2 ⇤ [⌘0]s)0
([⌘]1 ⇤ [⌘0]2)0

,

(32)

where s 2 {1, 2}. Here � denotes the Lebesgue measure on
R2 and [⌘]s, [⌘0]s are the Fourier coefficients of [�]s and its

derivative, respectively.
We can now compute the desired parameterization by

determining t0 2 [0, ⌧] such that

arccos
✓

[�(�t0) � c]1
k�(�t0) � ck2

◆
⇡ 0,

and then use the shifted parameterization t 7! �(t � t0).
While t0 can be easily found using Newton’s method, it
suffices in practice to simply re-order y from the start, before
computing the Fourier coefficients of �. More precisely, we
first define a shift ỹ of y by

ỹk := yk + k⇤ mod np ,

k
⇤ := argmin

⇢
arccos

✓
[yk � c]1
kyk � ck2

◆�np�1

k=0

,

where 0  k  np � 1, and then compute the Fourier
coefficients of the resulting curve.

The resulting dataset D thus consists of tuples
(x, aj2(�

⇤(x))). Before feeding the images x into the model,
we linearly rescale the image intensities at each instance to
[0, 1]. Furthermore, we use extensive data augmentation: we
use random shifts, random rotations, random scaling, elastic
deformations and horizontal shearing. A custom (random)
split of the available data was made to construct a train-
validation-test split. The sizes of the datasets are reported in
Table 2.

8.3. Architecture and Training Details

In this section, we provide the details of the network archi-
tecture and optimization procedure.

8.3.1 Architecture

Our network is a hybrid analog of the U-Net. It consists of a
two-dimensional convolutional encoder, a bottleneck of fully
connected layers, and a one-dimensional decoder. The en-
coder and decoder are connected through skip-connections.
The approximation and detail coefficients at the lowest reso-
lution level j0 are predicted in the bottleneck. Afterwards,
the Pyramid Algorithm takes over to compute approximation
coefficients at higher resolution levels (the decoder) using
learnable wavelet filters. The needed detail coefficients at
the higher resolution levels are predicted using the skip-
connections. In practice, the detail coefficients are negligible
on sufficiently high-resolution levels. For this reason, we
only predict detail coefficients up to a prescribed level j1.
The predictions at higher resolution levels j1 < j  j2 are
computed without detail coefficients. The specific values
for the architecture were determined using a hyperparameter
search.

Flatten

fc(nin, nlatent)

Bottleneck

fc(nlatent, nlatent)

+

{
fc(nlatent , nout)

Prediction branch

Residual block 3� 3

.

.

.

AvgPool 2� 2

Residual block 3� 3

Skip connection

{

Residual convblock

nr

nb

Figure 10. The components of the network: the bottleneck, fully
connected prediction layers, and convolutional block, respectively.

Encoder The encoder consists of nd 2 N down-sampling
blocks. Each block consists of nr 2 N (convolutional)
residual blocks, using GELU-activation and kernels of size
3 ⇥ 3, followed by an average-pooling layer of size 2 ⇥ 2.
The initial number of filters nf 2 N used in the first block
is doubled after each other block. For example, if nd = 5
and the number of kernels at the first block is nf = 32, then
the subsequent blocks have 32, 64, 64, and 128, kernels,
respectively.

Bottleneck The encoder is followed by a bottleneck which
consists of a stack of fully connected layers. The first layer
in the bottleneck compresses the feature map from the en-
coder path to a feature map with nc channels using a 1 ⇥ 1
convolution. Next, this compressed feature map is trans-
formed to a vector in Rnlat , where nlat 2 N refers to the
latent dimension of the MLP. Attached to this layer are four
branches to predict the approximation and detail coefficients
[vj0(x)]s, [wj0(x)]s 2 R2j0 , respectively. Here s 2 {1, 2}
corresponds to the spatial component of the contour. Each
branch consists of nb 2 N fully-connected layers. The first
nb � 1 layers map from Rnlat to itself with GELU-activation
and residual connections in between. The final layer trans-
forms the nlat-dimensional output to an element in R2j0 .

Decoder The detail coefficients at levels j0  j < j1 are
predicted using skip-connections. For each skip-connection,
we first compress the feature map from the encoder path
to a feature map with nc channels using a 1 ⇥ 1 convolu-
tion. Subsequently, two prediction branches, each having
the same architecture as above, are used to predict the detail
coefficients in R2j (one for each spatial component). The
predicted approximation coefficients at level j0 and detail
coefficients at levels j0  j  j1 �1 are used as input to the
Pyramid algorithm to reconstruct approximation coefficients
up to level j1 using learnable wavelet filters. The approxima-
tion coefficients at levels j1 + 1  j  j2 are reconstructed
without detail coefficients.

Hyperparameters The choices for the hyperparame-
ters were based on a hyperparameter search, optimiz-
ing the Dice score. For the spleen and prostate we

have set (nd, nr, nlat, nb, nc, j2) = (6, 4, 124, 3, 16, 7) and
(nd, nr, nlat, nb, nc, j2) = (5, 4, 116, 2, 16, 7) respectively,
and considered wavelet orders 3  M  8. Furthermore,
for each order, we used the lowest possible resolution level
j0 and j1 = j2. In particular, j0(M) = 3 for M 2 {3, 4}
and j0(M) = 4 for M 2 {5, 6, 7, 8}.

8.4. Wavelet Examples
In Figures 11, 12, 13, 14 we show more examples of initial-
ized and task-optimized wavelets.

�2 �1 0 1 2
t

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

2.5

�3 �2 �1 0 1 2 3
t

�3

�2

�1

0

1

(a) Order 3 - initial wavelet

�2 �1 0 1 2
t

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

�3 �2 �1 0 1 2 3
t

�1.0

�0.5

0.0

0.5

1.0

1.5

(b) Order 3 - task-optimized wavelet

�3 �2 �1 0 1 2 3
t

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

2.5

�2 0 2
t

�3

�2

�1

0

1

(c) Order 4 - initial wavelet

�3 �2 �1 0 1 2 3
t

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

�2 0 2
t

�1.0

�0.5

0.0

0.5

1.0

1.5

(d) Order 4 - task-optimized wavelet

�4 �2 0 2 4
t

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

�4 �2 0 2 4
t

�1.0

�0.5

0.0

0.5

1.0

(e) Order 5 - initial wavelet

�4 �2 0 2 4
t

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

�4 �2 0 2 4
t

�1.0

�0.5

0.0

0.5

1.0

1.5

(f) Order 5 - task-optimized wavelet

�4 �2 0 2 4
t

�0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

�6 �4 �2 0 2 4 6
t

�3

�2

�1

0

1

(g) Order 6 - initial wavelet

�4 �2 0 2 4
t

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

�6 �4 �2 0 2 4 6
t

�1.0

�0.5

0.0

0.5

1.0

(h) Order 6 - task-optimized wavelet

�5.0 �2.5 0.0 2.5 5.0
t

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

2.5

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�3

�2

�1

0

1

2

(i) Order 7 - initial wavelet

�5.0 �2.5 0.0 2.5 5.0
t

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�1.00

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

(j) Order 7 - task-optimized wavelet

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�2

�1

0

1

2

(k) Order 8 - initial wavelet

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�1.00

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

(l) Order 8 - task-optimized wavelet

Figure 11. Initial and final learned wavelets for different orders for first spatial component of spleen.

�2 �1 0 1 2
t

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

�3 �2 �1 0 1 2 3
t

�1.0

�0.5

0.0

0.5

1.0

(a) Order 3 - initial wavelet

�2 �1 0 1 2
t

0.0

0.2

0.4

0.6

0.8

1.0

�3 �2 �1 0 1 2 3
t

�1.0

�0.5

0.0

0.5

1.0

(b) Order 3 - task-optimized wavelet

�3 �2 �1 0 1 2 3
t

�0.5

0.0

0.5

1.0

1.5

2.0

�2 0 2
t

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

2.5

(c) Order 4 - initial wavelet

�3 �2 �1 0 1 2 3
t

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

�2 0 2
t

�1.0

�0.5

0.0

0.5

1.0

1.5

(d) Order 4 - task-optimized wavelet

�4 �2 0 2 4
t

�1.0

�0.5

0.0

0.5

1.0

1.5

�4 �2 0 2 4
t

�1.0

�0.5

0.0

0.5

1.0

(e) Order 5 - initial wavelet

�4 �2 0 2 4
t

�0.5

0.0

0.5

1.0

1.5

2.0

�4 �2 0 2 4
t

�1

0

1

2

3

(f) Order 5 - task-optimized wavelet

�4 �2 0 2 4
t

�0.5

0.0

0.5

1.0

1.5

2.0

�6 �4 �2 0 2 4 6
t

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

(g) Order 6 - initial wavelet

�4 �2 0 2 4
t

�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

�6 �4 �2 0 2 4 6
t

�1.0

�0.5

0.0

0.5

1.0

(h) Order 6 - task-optimized wavelet

�5.0 �2.5 0.0 2.5 5.0
t

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�1.5

�1.0

�0.5

0.0

0.5

1.0

(i) Order 7 - initial wavelet

�5.0 �2.5 0.0 2.5 5.0
t

�0.8

�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�1.0

�0.5

0.0

0.5

1.0

(j) Order 7 - task-optimized wavelet

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�1

0

1

2

3

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�4

�3

�2

�1

0

1

2

(k) Order 8 - initial wavelet

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�0.8

�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�1.00

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

(l) Order 8 - task-optimized wavelet

Figure 12. Initial and final learned wavelets for different orders for second spatial component of spleen.

�2 �1 0 1 2
t

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

�3 �2 �1 0 1 2 3
t

�1.0

�0.5

0.0

0.5

1.0

1.5

(a) Order 3 - initial wavelet

�2 �1 0 1 2
t

�1

0

1

2

3

�3 �2 �1 0 1 2 3
t

�1

0

1

2

3

(b) Order 3 - task-optimized wavelet

�3 �2 �1 0 1 2 3
t

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

�2 0 2
t

�1.0

�0.5

0.0

0.5

1.0

(c) Order 4 - initial wavelet

�3 �2 �1 0 1 2 3
t

�0.25

0.00

0.25

0.50

0.75

1.00

1.25

�2 0 2
t

�1.5

�1.0

�0.5

0.0

0.5

1.0

(d) Order 4 - task-optimized wavelet

�4 �2 0 2 4
t

�0.5

0.0

0.5

1.0

1.5

2.0

�4 �2 0 2 4
t

�2.5

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

(e) Order 5 - initial wavelet

�4 �2 0 2 4
t

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

�4 �2 0 2 4
t

�1.0

�0.5

0.0

0.5

1.0

1.5

(f) Order 5 - task-optimized wavelet

�4 �2 0 2 4
t

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

1.25

�6 �4 �2 0 2 4 6
t

�1.0

�0.5

0.0

0.5

1.0

(g) Order 6 - initial wavelet

�4 �2 0 2 4
t

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

�6 �4 �2 0 2 4 6
t

�1.0

�0.5

0.0

0.5

1.0

(h) Order 6 - task-optimized wavelet

�5.0 �2.5 0.0 2.5 5.0
t

�1

0

1

2

3

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�1

0

1

2

3

(i) Order 7 - initial wavelet

�5.0 �2.5 0.0 2.5 5.0
t

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�1.0

�0.5

0.0

0.5

1.0

(j) Order 7 - task-optimized wavelet

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

0.0

0.5

1.0

1.5

2.0

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

(k) Order 8 - initial wavelet

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�0.25

0.00

0.25

0.50

0.75

1.00

1.25

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�1.5

�1.0

�0.5

0.0

0.5

1.0

(l) Order 8 - task-optimized wavelet

Figure 13. Initial and final learned wavelets for different orders for first spatial component of prostate.

�2 �1 0 1 2
t

�0.5

0.0

0.5

1.0

1.5

�3 �2 �1 0 1 2 3
t

�2.5

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

(a) Order 3 - initial wavelet

�2 �1 0 1 2
t

�0.25

0.00

0.25

0.50

0.75

1.00

1.25

�3 �2 �1 0 1 2 3
t

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

(b) Order 3 - task-optimized wavelet

�3 �2 �1 0 1 2 3
t

�1

0

1

2

�2 0 2
t

�3

�2

�1

0

1

(c) Order 4 - initial wavelet

�3 �2 �1 0 1 2 3
t

�1.0

�0.5

0.0

0.5

1.0

1.5

�2 0 2
t

�1.0

�0.5

0.0

0.5

1.0

1.5

(d) Order 4 - task-optimized wavelet

�4 �2 0 2 4
t

�1.0

�0.5

0.0

0.5

1.0

1.5

�4 �2 0 2 4
t

�1.5

�1.0

�0.5

0.0

0.5

1.0

(e) Order 5 - initial wavelet

�4 �2 0 2 4
t

�1.0

�0.5

0.0

0.5

1.0

1.5

�4 �2 0 2 4
t

�1.5

�1.0

�0.5

0.0

0.5

1.0

(f) Order 5 - task-optimized wavelet

�4 �2 0 2 4
t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

�6 �4 �2 0 2 4 6
t

�1.0

�0.5

0.0

0.5

1.0

(g) Order 6 - initial wavelet

�4 �2 0 2 4
t

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

�6 �4 �2 0 2 4 6
t

�1.0

�0.5

0.0

0.5

1.0

(h) Order 6 - task-optimized wavelet

�5.0 �2.5 0.0 2.5 5.0
t

�0.25

0.00

0.25

0.50

0.75

1.00

1.25

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�1.5

�1.0

�0.5

0.0

0.5

1.0

(i) Order 7 - initial wavelet

�5.0 �2.5 0.0 2.5 5.0
t

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�1.0

�0.5

0.0

0.5

1.0

(j) Order 7 - task-optimized wavelet

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�2

�1

0

1

2

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�3

�2

�1

0

1

(k) Order 8 - initial wavelet

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
t

�0.5

0.0

0.5

1.0

1.5

(l) Order 8 - task-optimized wavelet

Figure 14. Initial and final learned wavelets for different orders for second spatial component of prostate.

