
Appendix
In this supplementary document, we provide results on three
additional datasets: PF-PASCAL [1], TSS [6], and Freiburg
cars [5]. We also visualize feature maps on SPair-71k [2]
and show the results of keypoint matches.

A. Implementation details
For the results labeled as ‘Ours+SD’ (e.g. in Tab. 1 in
the main paper), this model use our spherical mapper but
at inference time also combines the DINOv2 and Stable
Diffusion (SD) features, applying Eq. (7) with the fused
DINO+SD features in place of ϕ. We also show architeture
details in Fig. A1

B. Continuous surface embeddings
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CSE 28.1 23.4 24.1 25.5 86.4 12.1
Ours 80.0 80.2 66.7 71.2 63.9 68.6
Ours + SD 82.4 82.0 67.3 73.9 60.0 69.8

K
A

P CSE 36.7 30.2 32.8 32.8 72.2 27.1
Ours 69.7 63.2 54.8 54.3 48.7 47.9
Ours + SD 76.2 65.3 57.3 56.1 47.4 49.4

Table A1. Keypoint matching scores on SPair-71k evaluated using
PCK@0.1 and KAP@0.1 for CSE [3] and our models.

Although not directly comparable, the spherical embed-
ding learned by our model is similar to Continuous Surface
Embeddings (CSE) [3], in that it aims to densely represent
points on an object’s surface in a smooth way. However,
CSE is learned in a fully supervised way, using images
densely annotated with correspondences to 3D meshes of
object categories. In comparison, we only rely on view-
point and weak geometric priors. A consequence of this is
that our sphere mappings do not necessarily converge to a
unique solution, for instance, applying a random rotation
to it would still satisfy the geometric constraints that we
use during training. This makes it challenging to evaluate
our spheres under CSE protocol, as recovering the transfor-
mation between them and ground truth meshes is non triv-
ial. Still, CSE can easily be evaluated by keypoint metrics
on SPair-71k for the categories on which it was trained by
using the publicly released implementation. The PCK and
KAP@0.1 are shown in Tab. A1. Despite being supervised,
CSE only outperforms our approach on humans, most likely
because it is the only category with enough high-quality an-
notations. Another interesting results is that CSE suffers
a much smaller drop in performance when evaluated with
KAP instead of PCK, as its fully supervised regime makes
it more robust to object symmetries and repetitions, consti-
tuting a strong argument in favor of using KAP when eval-
uating correspondences.

DINOv2 0.1, 0.1, 0.1 0.3, 0.3, 0.3 1, 1, 0.3 0.1, 0.1, 0.03 0.3, 0.3, 0.1
56.2 62.2 62.5 61.4 62.0 63.6

Table A2. Average PCK@0.1 on SPair-71k for different values of
gemetric losses.

C. Additional ablation results

We investigate the balance between the different geometric
losses to assess the sensitivity of our model. In Tab. A2, we
show PCK@0.1 scores when training and testing on SPair-
71k where we set the losses to the same weight, or glob-
ally increase or decrease the weight using the following
color-coding: λrd, λo, and λvp. We observe that altering
the losses balance slightly decreases performances, but all
models consistently beat the DINOv2 backbone by a large
margin.

D. Additional datasets

Freiburg cars. Spair-71k training data is relatively limited,
i.e. it contains approximately only 50 training images per
category. In order to explore the behavior of our model
when more data is available, we trained it using images
from the Freiburg cars dataset [5]. Freiburg cars contains 46
scenes each centered around a single car, and there is an av-
erage of 120 images sampled from 360◦ around each car. As
it comes with precise viewpoint annotations, we can use it
to study the sensitivity of our model to the granularity of the
viewpoint supervision. We discretize the camera viewpoint
supervision into different numbers of discrete bins (e.g. four
bins would correspond to the camera viewing the car from
the front, back, and two sides) and evaluate these models on
Spair-71k car test pairs.

Our model trained and tested on SPair-71k from Tab. 1
in the main paper obtains at PCK@0.1 of 67.2 on cars. The
results in Tab. A3 show that there is no significant benefit
from having even finer-grained viewpoint supervision be-
yond a certain number of bins. The best performing model
trained on Freiburg cars improves PCK@0.1 by 4.6 points
compared to SPair-71k training. This illustrates the poten-
tial of adding additional training data even when the view-
point supervision is coarse.

As Freiburg cars scenes are densely sampled, we can also
use them to qualitatively assess the consistency of feature
maps under viewpoint changes. Images in Fig. A2 show
strong consistency of the maps across the whole viewpoint
range, while maintaining semantic consistence between vi-
sually different instances for our sphere mapper. Note, our
results in Fig. A2 are for our model trained on SPair-71k.
PF-PASCAL & TSS. We also evaluate our model on PF-
PASCAL [1] and TSS [6]. As these sets exhibit less chal-
lenging pose variations compared with SPair-71k, the ben-
efit of using spherical maps is more limited, as it can only
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Figure A1. Architecture details for our sphere mapper and spherical prototype. C denotes the dimension of the SSL embedding, and block
marked with L are simple linear layers used to change dimensionality.

# bins 4 8 16 32 64 128 360
PCK@0.1 60.1 71.8 71.1 71.2 69.2 68.1 71.0

Table A3. Impact of viewpoint supervision granularity. Here we
train with coarse-to-finer discretized poses from Freiburg cars and
evaluate on the car category in SPair-71k. Only when using very
few bins (i.e. four) does the performance significantly drop. This
indicates that our approach is capable of training on relatively
weak pose supervision. For context, for the results in the main
paper, we use the eight viewpoint bins provided by the SPair-71k
annotations.

PF-PASCAL, PCK@κ TSS, PCK@0.05
0.15 0.10 0.05 FG3DCar JODS Pascal avg

DINOv2 [4] 61.1 77.3 83.3 82.8 73.9 53.9 72.0
SD [7] 61.0 83.3 86.3 93.9 69.4 57.7 77.7
DINOv2 + SD [7] 73.0 86.1 91.1 94.3 73.2 60.9 79.7
Ours 66.2 83.9 90.2 83.1 74.1 54.4 75.5
Ours + SD 74.0 88.4 92.6 95.3 78.7 64.2 82.3

Table A4. Scores for PF-PASCAL and TSS.

help separate repeated parts that appear in the same image
and not issues due to large pose variation (as they are not
present). Nonetheless the results in Tab. A4 indicate that
our spherical maps yield consistent improvements.

E. Additional qualitative results and failure
cases

In Fig. A3 we present qualitative results illustrating key-
point matching on some particularly hard SPair-71k evalu-
ation pairs that exhibit large camera viewpoint differences.
For each keypoint in a source image, we show where its
matched nearest neighbor lies in the target image. These re-
sults show that our spherical maps make fewer mistakes on
repeated parts, and are more likely to predict points on the
correct side of objects in instances where there is visual am-
biguity. It is particularly visible on the car example, where
all models but ours map the left side of the source car to the
right side of the target car, as they both appear on the same
side of the image.

Our model still makes mistakes, though these are also
present in other models. In particular, it struggles in the
presence of large object scale variation (cow), confuses

quadruped legs (horse), and deals poorly with large intra-
class shape variations (chair) A limitation of our model is
the confusion it makes between legs of quadrupeds. How-
ever, these these mistakes are also present in other models.

F. Supplementary video
Finally, our project website contains supplementary videos
where we compare to different methods using held-out im-
age sequences. While the results demonstrate predictions
on images from short video sequences, the models do not
use any temporal information, and in our case of our ap-
proach we are training on the held-out SPair-71k training
set. It is very apparent in the video that the baseline methods
confuse the different sides of the cars and horses, in addi-
tion to generating the same features for the different wheels
of the car. This is evident by the fact that these distinct parts
have the same color which is obtained by performing PCA
to reduce the features to three dimensions. In contrast, our
spherical-based approach attempts to map each point on the
surface of the object to unique features. Note, that we show
images from the same car sequences as in Fig. A2 where
PCA is computed over images from those sequences, but in
the video PCA is compute over five sequences.
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Figure A2. Here we illustrate the multi-view consistency of our approach at test time on two different car sequences from the Freiburg
cars dataset [5]. For each sequence, we show input images from different view points, DINOv2, Stable Diffusion (SD), and DINOv2+SD
PCA feature maps, and our predicted spherical maps. While other models capture semantic parts, in contrast to us, they fail to correctly
disambiguate the two different sides of each car resulting in the same features for the left and right sides. They also fail to produce distinct
features for individual car wheels. Note, these large viewpoint changes are typically not assessed in the Spair-71k [2] benchmark. Please
see the supplementary video for 360◦ videos.
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Figure A3. Keypoint matching on SPair-71k [2]. In each pair, the left image acts as the source, from which keypoint features are sampled,
then the nearest neighbor of each feature is computed on the target to its right. Blue lines indicate correct matches, i.e. within a τ = 0.1
threshold of the ground truth, while red lines indicate incorrect matches.
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Figure A4. Example dense correspondence maps for categories from the SPair-71k [2] dataset.
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