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Supplementary Material

A. Illustration of a Dirichlet distribution
Figure 2 presents examples of Dirichlet distributions on the
unit simplex of R3.

low density

high density

Figure 2. Examples of Dirichlet distributions on the simplex of
R3, for ↵ = (10, 5.0, 5.0) (left) and ↵ = (0.975, 0.975, 3.0)
(right)

B. Majorization-Minimization algorithm
We provide the details for our new MM Algorithm 1 for
minimizing (10). Our approach is based on constructing
a quadratic bound of the function ln�(· + 1), which is a
consequence of the following lemma.

Lemma 2 ([15]). Let  be a twice-continuously differen-
tiable function on [0,+1[. Assume that  00 is decreasing
on [0,+1[. Let z 2 [0,+1[ and let

c (z) =

8
<

:
 00(0) if z = 0

2
 (0)�  (z) +  0(z)z

z2
otherwise.

(17)

Then, for every x 2 [0,+1[,

 (x)   (z) +  0(z)(x� z) +
1

2
c (z)(x� z)2. (18)

We are now ready to prove Lemma 1.

Proof. We first observe that ↵k 7! � ln�
⇣PK

i=1 ↵k,i

⌘
is

concave. Consequently, we can upper-bound this term at
�k using its first-order Taylor expansion around �k. Fur-
thermore, considering the relation

8t 2 (0,+1), ln�(t) = '(t)� ln t, (19)

and given that the prerequisites of Lemma 2 are fulfilled by
', the result in (13) follows immediately.

For a fixed value of �k 2 (0,+1)K , the minimizer b↵k

of the majorant given by Lemma 1 is such that, for every i 2

{1, . . . ,K}, b↵k,i is the unique positive root of the second
order polynomial equation

c(�k,i)↵
2
k,i + bk,i(�k)↵k,i = 1, (20)

with

bk,i(�k) = '0(�k,i)� (ln�)0
⇣ KX

j=1

�k,j
⌘
� c(�k,i)�k,i

�
 

NX

n=1

un,k

!�1 NX

n=1

un,k ln zn,i. (21)

Hence,

b↵k,i =
�bk,i(�k) +

q�
bk,i(�k)

�2
+ 4c(�k,i)

2c(�k,i)
, (22)

which yields the MM updates described in Algorithm 1.
In Table 3, we compare the convergence speed of the

MM Algorithm 1 and the Block MM Algorithm 2, using
our majorant (13) versus the one proposed by Minka in
[35]. For Algorithm 1, the convergence criterion is de-
fined as k↵(m+1)�↵(m)k2

k↵(m)k2  ", and for Algorithm 2 as
k↵(`+1)�↵(`)k2

k↵(`)k2  ", where " = 10�13. Our MM algorithm
is approximately twice as fast as Minka’s.

Algo. 1 Algo. 2
Minka’s [35] 2.04⇥ 10�1 2.09
Ours 7.62⇥ 10�2 1.04

Table 3. Time before reaching the convergence criterion in sec-
onds, for Algorithm 1 and 2. The displayed time is the average
execution time per task, computed over 1,000 tasks, on the Ima-
geNet dataset with 4 shots.

C. Estimation step on assignments in our algorithm
We provide more details on the derivation of the closed-
form update of variable un at each iteration ` 2 N. Con-
sider the function F given by

F (un) = �
KX

k=1

un,k ln (p (zn | ↵k)) + ◆�K (un)

� �

|Q| (ln(⇡
(`+1))+1)>(un�u(`)

n )+
KX

k=1

un,k lnun,k,

(23)



where ◆�K is the indicator function of the simplex �K ,
assigning zero to points within the simplex and +1 else-
where.

Let us see how to compute the minimizer of (23) via the
proximal operator (see [2, Eq. 24.2] for a definition). We
define the function  on RK as

 (x) =

( PK
k=1 xk ln(xk)� x2

k
2 , if x 2 �K ,

+1, otherwise.
(24)

The proximal operator of  , which is well-established as
the softmax function, allows for the practical computation
of the minimizer [13, Example 2.23]. Since F is proper,
lower semi continuous and convex, finding the minimizer
of F is equivalent to finding un such that 0 2 @F (un).
This reads

0 2 @F (un)

() 0 2 � ln(p (zn | ↵k))�
�

|Q| (ln(⇡
(`+1)) + 1)

+ @ (un) + un,

() un = softmax
✓✓

ln p (zn | ↵k) +
�

|Q| ln⇡
(`+1)
k

◆

k

◆
,

where we used the characterization of the proximity opera-
tor [2, Prop. 16.44].

D. Class-assignment in the zero-shot setting
Figure 3 gives an illustration of our graph matching proce-
dure for assigning each cluster to a unique class.

Figure 3. Illustration of the bipartite matching for class assign-
ment.

Note that it is possible to not perform the graph matching
procedure and simply assign to each cluster k 2 K the class
`⇤ 2 {1, . . . ,K} such that `⇤ = argmax

`2{1,...,K}
mk,`, where

mk = (mk,`)1`K is the average of simplex features as-
signed to cluster k. However, this leads in practice to multi-
ple clusters being assigned to the same class. We neverthe-
less provide the zero-shot accuracy results in Table 6.

E. Links with the EM algorithm
We give a proof of Proposition 1.

Proof. Given the mixture model (16), the EM algorithm
aims at maximizing the log-likelihood function

L(⇡,↵) =
X

n2Q
ln

 
KX

k=1

⇡kp (zn | ↵k)

!
(25)

with respect to ⇡ and ↵. The process involves two steps:
expectation and maximization, and the algorithm itera-
tively generates sequences {⇡(`)}`2N ⇢ �K and, for every
k 2 {1, . . . ,K}, {↵(`)

k }`2N ⇢ (0,+1)K .
During the expectation step, for a given iteration num-

ber ` 2 N, we compute the expected responsibilities. For
each query sample n 2 Q, we define u(`)

n = (u(`)
n,k)1kK

by

u(`)
n,k =

⇡(`)
k p

⇣
zn | ↵(`)

k

⌘

PK
i=1 ⇡

(`)
i p

⇣
zn | ↵(`)

i

⌘ . (26)

This quantity corresponds to the probability of the data
point n belonging to class k based on the current estimates
of ⇡(`) and ↵(`)

k .
In the maximization step, we derive an upper bound

for the log-likelihood at the current iterate using the re-
sponsibilities calculated in the expectation step, along with
Jensen’s inequality. This majorization reads

L(⇡,↵)  q((⇡,↵); (⇡(`),↵(`))), (27)

where q( · ; (⇡(`),↵(`))) is defined, for all ⇡ 2 �K and
↵ 2 ((0,+1)K)K , by

q((⇡,↵); (⇡(`),↵(`))) =
X

n2Q

KX

k=1

u(`)
n,k ln

 
⇡kp (zn | ↵k)

u(`)
n,k

!
.

This upper bound is separable and defines a tight majorant,
i.e., q((⇡(`),↵(`)); (⇡(`),↵(`))) = L(⇡(`),↵(`)). Next,
one maximizes the majorant with respect to ↵ and ⇡ un-
der the simplex constraints. This yields the expression

(8k 2 {1, . . . ,K}) ⇡(`+1)
k =

1

|Q|
X

n2Q
u(`)
n,k, (28)

i.e., the mixing coefficients are the average of the responsi-
bilities for each class over all data points in the query set.
On the other hand, for each class k 2 {1, . . . ,K}, the pa-
rameters ↵(`+1)

k are set by solving the optimization problem

maximize
↵k2(0,+1)K

X

n2Q
u(`)
n,k ln p (zn | ↵k) . (29)

We can then show that the updates are identical to those
performed in Algorithm 2 when � = |Q| and S = ?. The



identity of the updates on ↵ and ⇡ are obvious. For u, note
that Equation (26) can be rewritten

u(`+1)
n,k =

⇡(`+1)
k p(zn | ↵(`+1)

k )
PK

i=1 ⇡
(`+1)
i p(zn | ↵(`+1)

i )
,

=
exp

⇣
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k + ln p(zn | ↵(`+1)
k )

⌘
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i=1 exp

⇣
ln⇡(`+1)

i + ln p(zn | ↵(`+1)
i )

⌘ ,

or equivalently,

un = softmax
⇣
(ln⇡(`+1)

k + ln p(zn | ↵(`+1)
k ))k

⌘
, (30)

thus aligning with the update in Algorithm 2.

F. Zero-shot performance as a function of the size
the query set

We point to Figure 4 which displays the accuracy of our
methods EM-Dirichlet and Hard EM-Dirichlet in the zero-
shot setting versus the number of samples in the query set.

G. Additional results in the few-shot setting
In addition to the results in the 4-shot case presented in
Table 2, we provide the results for other number of shots.
Figure 5 displays the accuracy as a function of the number
of shots. This analysis includes our methods EM-Dirichlet
and Hard EM-Dirichlet, other transductive methods (BDC-
SPN, Laplacian Shot, ↵-TIM, PADDLE), and the inductive
Tip-Adapter method. We did not evaluate CoOp because of
the prohibitive time required to run the method, as under-
lined in Table 2. We observe that our method significantly
outperforms its closest competitor, TIP, on the challenging
SUN397 and ImageNet datasets, as well as on the average
of the 11 datasets. This gap gets even wider when the num-
ber of shots increases. Complete results for all datasets are
given in Figure 6.

H. Ablation study on each term of the objective
We provide an ablation study on our objective function,
which minimizes �L + � +  under simplex constraints,
where L is the log-likelihood, � a barrier term, and  a
partition complexity term promoting fewer clusters. Note
that, when removing barrier term �, our update step for the
assignment variables (Eq. (15) without the barrier term)
amounts to solving a linear programming problem, result-
ing in integer solutions (i.e., hard assignments), akin to what
we coined “Hard EM-Dirichlet”.

Table 4 demonstrates the effect of each term. The parti-
tion complexity term significantly enhances performance.
In contrast, the barrier term �, in isolation, does not im-
prove performance. However, when combined with  , it

shows utility in the 4-shot scenario. The inclusion of �
was primarily to maintain a soft assignment approach and
to make the link with the EM algorithm (Proposition 1).

Criterion Acc.

0-
sh

ot

�L 50.8
�L+ � 42.7
�L+ (= Hard EM-Dirichlet) 67.6
�L+ �+ (= EM-Dirichlet) 65.8

4-
sh

ot

�L 59.5
�L+ � 58.8
�L+ (= Hard EM-Dirichlet) 72.9
�L+ �+ (= EM-Dirichlet) 73.6

Table 4. Average accuracy on the 11 datasets, over 1,000 classifi-
cation tasks. Inference is performed on the text-vision probability
features.

I. Using the similarity scores as feature vectors
One might consider directly using the visual-textual embed-
dings as input features (specifically, the cosine similarities)
without applying a softmax function. It could be hypothe-
sized that methods targeting a Gaussian distribution might
perform more effectively with these raw features than with
probability features. However, as indicated in Table 5, this
is not the case. Employing a Gaussian distribution within
the joint visual-textual embedding space actually leads to
decreased accuracy when compared to our method that uti-
lizes probability features.

Method Acc. Loss in acc.
Soft K-means 28.2 2.1
EM-Gaussian (diag. cov.) 34.9 14.8

Table 5. Average accuracy on the 11 datasets, over 1,000 zero-shot
tasks using text-vision features (without softmax). The accuracy
loss is measured against the results with probability features.



Figure 4. Average accuracy on the 11 datasets as a function of the number of samples in the query set, over 1,000 tasks generated following
the protocol described in Section 6.1. As anticipated, the efficiency of transduction increases with the number of samples in the query set.
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Zero-shot CLIP 77.1 36.5 42.9 85.1 66.1 84.4 61.7 17.1 55.8 58.6 58.3 58.5

V
is

.e
m

bs
. Hard K-means 78.4 34.5 46.2 86.3 70.2 87.3 66.1 19.2 58.7 62.9 60.9 61.0

Soft K-means 79.3 28.4 42.8 67.5 64.7 86.0 62.7 17.7 57.5 59.0 59.3 56.8
EM-Gaussian (Id cov.) 14.0 14.5 9.4 6.9 5.3 30.3 7.4 1.9 2.5 5.3 3.9 8.3
EM-Gaussian (diag cov.) 77.1 37.1 44.1 86.9 68.9 85.8 63.8 18.4 57.3 60.1 59.3 59.9

Pr
ob

ab
ili

tie
s Hard K-means 80.2 34.7 45.9 88.7 69.0 86.9 66.6 20.1 59.7 63.7 61.0 61.5

Soft K-means 43.4 22.1 18.7 67.7 36.2 54.7 31.7 7.6 36.3 18.9 19.1 32.4
EM-Gaussian (Id cov.) 21.4 14.5 16.5 21.1 23.1 33.6 19.3 6.8 18.5 18.7 19.1 19.3
EM-Gaussian (diag cov.) 78.9 33.4 44.8 87.9 69.3 86.6 65.7 20.2 63.5 66.1 63.0 61.8
Hard KL K-means 84.3 34.4 46.2 90.3 72.3 88.3 69.5 21.4 68.6 62.4 61.0 63.5
EM-Dirichlet 89.0 32.9 48.7 91.2 73.1 90.4 70.5 21.4 69.5 78.1 78.0 67.5
Hard EM-Dirichlet 90.7 33.5 49.8 92.6 73.9 91.1 71.3 22.0 70.8 79.1 78.5 68.5

Table 6. Evaluation of the methods computing the accuracy without the graph matching. Average accuracy of clustering methods over
1,000 zero-shot classification tasks. Inference is performed both on the visual embeddings and on the text-vision probability features.



Figure 5. Accuracy versus shots for seven methods from Table 2 on SUN397, ImageNet, and the average across the 11 datasets.



Figure 6. Accuracy versus shots for eight methods from Table 2 on 9 datasets.
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