
Supplementary Material for “PoNQ: a Neural QEM-based Mesh
Representation”

Nissim Maruani
Inria, Université Côte d’Azur

nissim.maruani@inria.fr

Maks Ovsjanikov
LIX, École Polytechnique, IP Paris
maks@lix.polytechnique.fr

Pierre Alliez
Inria, Université Côte d’Azur

pierre.alliez@inria.fr

Mathieu Desbrun
Inria Saclay - Ecole Polytechnique
mathieu.desbrun@inria.fr

In this supplemental material, we discuss further evalua-
tions of our PoNQ representation by comparing it with [9]
and [10] in Sec. 1, before providing a number of implemen-
tation details in Sec. 2 which were not thoroughly covered
in the main paper.

1. Discussing Other Related Works

To complement the series of comparisons presented in the
main paper, we also discuss how PoNQ differs from two
other (less) related works.

1.1. Reach for The Spheres [9]

A recent work on surface reconstruction of SDF, called
Reach for The Spheres (RTS) [9], relies on the deforma-
tion of an initial mesh, thus requiring that its genus matches
the genus of the underlying SDF-encoded shape. In prac-
tice, several shapes of the Thingi30 have a genus strictly
higher than one. Consequently, and despite our best efforts,
we could not run the code provided by the authors of Reach
for The Spheres (RTS) [9] on the Thingi30 dataset: segmen-
tation faults and inverted elements systematically appeared
in the optimization process when starting from a unit sphere
— and using the output of a marching-cube (MC) extraction
instead did not solve this problem, since the resulting genus
depends on the MC table being used. Nevertheless, we pro-
vide for completeness a visual comparison of the two meth-
ods in Fig. 1 for two shapes that RTS could handle. While
RTS exhibits many artifacts and PoNQ is far more robust
to the genus of shapes, we note that the RTS empty sphere
constraint could potentially be added to our loss function.

1.2. Deep Marching Tetrahedra [10]

Regarding Deep Marching Tetrahedra (DMTet) [10], which
relies on the deformation of a regular tetrahedra grid, two
critical differences exist between their work and ours:

(a) RTS [9] (b) PoNQ (c) Ground truth

Figure 1. Learning-based results for PoNQ. Optimization-based
results for Reach For the Spheres [9]. Note that both method rely
on the same input, here a 323 SDF grid. RTS can either miss thin
structures (bottom rows) or fill thin voids (top rows).

• strictly speaking, DMTet is not a point-based approach:
their hybrid representation requires a neural network to
model a continuous field of SDF and displacements;

• unless one restricts the amplitude of the deformation, it

1



cannot guarantee intersection-free output meshes.
DMTet is thus quite distinct from PoNQ, making it difficult
to compare them fairly. Nonetheless, we tried to provide a
comparison; but given the absence of DMTet implementa-
tion for surface reconstruction from SDF grids, we found
ourselves unable to provide a meaningful visual compari-
son — just like VoroMesh [8] was unable to compare with
DMTet for the simpler case of the optimization-based task.

2. Implementation Details
We now cover in detail a series of aspects of PoNQ that
were not fully detailed in the main paper.

2.1. Training

For all the examples we show in our paper, we trained our
PoNQ network with the AdamW optimizer and a linear
combination of the losses, i.e.,

L = αCDLCD + αnLn + αALA + αv∗Lv∗

+αregLreg + αoccLocc

We rely on three training phases of 200 epochs each,
with batches of size 16 with the following learning rates
γ, weights α = (αCD, αn, αA, αv∗ , αreg, αocc) and point
samples S:
• γ = 6.4·10−5, α = (100, .1, .1, 100, 100, .1), S = 5·105
• γ = 3.2·10−5, α = (100, .1, .1, 100, 100, .1), S = 7·105
• γ = 3.2 · 10−5, α = (100, .1, .1, 100, 1, .1), S = 7 · 105.

2.2. Meshing

As explained in the main paper, the choices we made to de-
sign our QEM-based PoNQ representation allow for a sim-
ple meshing approach, inspired by computational geometry
to ensure robustness: due to the local optimality of the po-
sitions v*

i (in particular, their ability to capture corners and
sharp features), our output mesh is produced by filtering the
triangle facets of a 3D Delaunay triangulation of the optimal
positions v*

i . Given the PoNQ data (produced by a trained
network or through optimization), we now describe how a
PoNQ mesh is extracted in full detail.

0. Pre-processing We first normalize the quadrics by di-
viding them by their largest eigenvalue. While this techni-
cally changes their meaning (they now measure Euclidean
distances up to a multiplicative constant), it also removes
the possible bias due to variable sampling density. Addi-
tionally, a bounding box B of all the points v*

i is computed.

1. Triangulation of QEM optimal positions. We then
compute the Delaunay tetrahedralization of all points v*

i , to
which we add eight “protective” points defined as the cor-
ners of the bounding box B: all the adjacent tetrahedra to
these protective points will be guaranteed to be outside of
the shape we wish to reconstruct. The next two steps will

tag each of the remaining tetrahedra as either inside or out-
side based on local geometric information, so that our final
PoNQ mesh will simply be the triangle mesh forming the
boundary between the inside and outside regions, ensuring
watertightness and no self-intersections by design.

2. Tagging obvious inside/outside tetrahedra. We first
tag all the tetrahedra adjacent to the eight protective point
as outside. Tagging the rest of the tetrahedra seems daunt-
ing, but by leveraging the ideas put forth in the Crust algo-
rithm [1], we note that the location of the circumcenter of a
Delaunay tetrahedron whose four vertices are on the surface
to mesh (which is the case we are in) can often determine
the insideness or outsideness of this tetrahedron — corre-
sponding to whether this circumcenter is on the inside (resp.
outside) medial axis. We use a similar approach here, ex-
cept that our Delaunay vertices have additional information
to help us: we also know a local normal ni in the vicinity of
each vertex v*

i . Thus, each vertex and its assigned normal
defines an oriented plane, forming the boundary between
the outside half-space (the one pointed by the normal) and
the inside half-plane. Using this local test to determine in-
side/outside, we tag a tetrahedron as outside (resp., inside)
if both its circumcenter and barycenter are determined to be
in the outside (resp., inside) half-space of each of its four
vertices. We then go through every (non-protective) vertex
that already has at least one tagged adjacent tetrahedron.
If such a vertex does not have any adjacent outside (resp.,
inside) tetrahedron, we pick its untagged adjacent tetrahe-
dron with the smallest edge; if the size of this smallest edge
is below a certain large threshold (i.e., we are not in a very
sparse region of the domain), we then tag this selected tetra-
hedron as outside (resp., inside). The rationale behind this
last round of tagging is that we know that all vertices of our
3D Delaunay triangulation are on the surface, so unless the
smallest tetrahedron is too big (in this case, there is clearly
a large uncertainty), we can safely tag it to be on the oppo-
site side of the surface than what the other tags had already
determined. While this tagging procedure can, on rare occa-
sions, tag all tetrahedra, there are often a few remaining un-
tagged tetrahedra (typically caused by the presence of near
sharp features or thin structures) that are too ambiguous to
tag. We now need to lift the remaining uncertainty based on
additional PoNQ data.

3. Finishing up triangle selection. Delaunay-based
meshing approaches (like Crust) require a dense point sam-
pling (formally, an ϵ−sampling) to offer topological and ge-
ometric guarantees, which is not compatible with our desire
to deal with thin structures, sharp features and corners —
and this is the main reason why our earlier phase often ends
up not providing a tag for every tetrahedron. To finish our
tetrahedron tagging based on the ones we already have, we
propose to use a graph cut approach, inspired by existing



spectral graph partitioning [7]. For each Delaunay triangle
T between two adjacent tetrahedra for which at least one of
them is still undetermined, we compute a likelihood score
S(T ) that evaluates how confident we are that this triangle
is to appear on the final output mesh. We propose a score
that evaluates the fitness of T based on the local PoNQ nor-
mals and the local PoNQ quadrics matrices:

S(T ) = Sn(T ) + hSQ(T )

(with h set as the squared inverse of the edge length of the
SDF grid), where:

Sn(T ) =
(
2
π

∑
v*
i∈T

arccos(nt
T ni)

)2
,

SQ(T ) =
∑

v*
i∈T

∑
v*
j∈T

i ̸=j

[v*
j , 1]

tQi[v
*
j , 1],

where nT denotes the normal of triangle T . We can now
tag the remaining undetermined tetrahedra with a definite
inside or outside label: we compute a minimum cut of the
Voronoi graph (in which each dual of a tetrahedron is a
node, and each dual of a Delaunay triangle face is an edge)
using the already-tagged “inside” ones as a source and the
“outside” ones as a drain, and each edge weight between
two tetrahedra (with a common face T ) set to the score
S(T ). Since most of tetrahedra are already tagged, we can
merge Voronoi edges between marked tetrahedra to reduce
the graph size and thus accelerate computations. We now
just extract the final PoNQ mesh as the triangle mesh form-
ing the boundary between the inside and outside regions.

2.3. Ablation studies

(a) PoNQ (b) PoNQ w/out QEM

(c) PoNQ (d) PoNQ w/out SQ

Figure 2. A network trained without QEM (b) fails to recover
sharp edges. The second-order QEM information provided by SQ

helps to disambiguate tetrahedra labeling (c).

To further justify the need for QEM, we provide two ab-
lation studies: we re-generated models with a simpler ver-
sion of our meshing algorithm that does not rely on quadrics

(thus removing SQ), and we re-trained a network producing
only points, normals, and voxel occupancies (thus removing
the QEM part and its associated losses LA, Lv∗ , and Lreg).
Figure 2 shows that the QEM-optimal vertex placement is
essential to fit sharp features, and that using only Sn can
mess up labeling in intricate/thin regions. Quantitatively,
non-QEM versions fall behind our competitors in both sur-
face and sharp-edge fitting scores, see Table 1.

Method Grid CD ↓ F1 ↑ NC ↑ ECD ↓ EF1 ↑
size (×10−5)

retrained w/o QEM 323 1.327 0.840 0.960 0.184 0.598
PoNQ w/o SQ 323 1.801 0.851 0.964 0.191 0.715
PoNQ 323 1.514 0.852 0.964 0.184 0.713
retrained w/o QEM 643 0.921 0.891 0.979 0.115 0.837
PoNQ w/o SQ 643 0.931 0.892 0.980 0.103 0.863
PoNQ 643 0.886 0.892 0.980 0.109 0.866
retrained w/o QEM 323 1.387 0.803 0.942 0.139 0.286
PoNQ w/o SQ 323 1.475 0.810 0.943 0.137 0.315
PoNQ 323 1.344 0.810 0.942 0.137 0.314
retrained w/o QEM 643 0.784 0.922 0.971 0.102 0.489
PoNQ w/o SQ 643 0.779 0.924 0.971 0.102 0.511
PoNQ 643 0.758 0.924 0.971 0.100 0.511
retrained w/o QEM 1283 0.645 0.939 0.984 0.135 0.556
PoNQ w/o SQ 1283 0.671 0.938 0.984 0.126 0.584
PoNQ 1283 0.641 0.939 0.984 0.123 0.592

Table 1. Ablation studies on ABC (top) and Thingi30 (bottom).

2.4. Open surfaces

(a) Gr. Truth (b) PoNQ (c) Closed mesh (d) Open mesh

Figure 3. Optimization-based results for PoNQ when open bound-
aries are used.

We provide more results in Fig. 3, this time for open sur-
faces. Note that the QEM-optimized vertices v∗ snap to
sharp and boundary features, allowing for clean reconstruc-
tions. As explained in the main paper, we currently transit
via a closed mesh (see Fig. 3c) that is then filtered to cre-
ate holes between open boundaries, thus limiting our repre-
sentation of open surfaces. However, since the PoNQ rep-
resentation provides a precise fit of the target surface (see
Fig. 3b), we believe a more sophisticated meshing could al-
low for arbitrary open surfaces.



3. Edge-based CD: Discussion

(a) Surface-based ECD (b) Edge-based ECD

Figure 4. Comparison between two different ECD evaluation
methods: sampling surface points and identifying right-angle nor-
mal changes between neighbors (left image) is less accurate than
sampling sharp edges (right image), and fails to capture sharp
edges with angles different than 90 degrees.

The Edge Chamfer Distance was introduced in BSP-
Net [4] to evaluate sharp reconstructions on ShapeNet [2].
It is based on a sampling of the surface, and only cap-
tures sharp edges featuring an angle close to 90 degrees, see
Fig. 4a. While this metric might be sufficient for ShapeNet,
in which most sharp angles lie on the edges of boxy objects
(chairs, televisions...), it is no longer true for ABC [6] where
sharp edges can have a variety of dihedral angles. As a re-
sult, we observed a large variance in this metric evaluation
depending on the initial random surface sampling; more-
over, it also failed to capture the spurious sharp edges of
VoroMesh [8] due to faces of small area not being sampled.
For these two reasons, and since most meshes of the ABC
dataset have clean and well-defined sharp edges, we found
that sampling the sharp edges (defined as those with a di-
hedral angle larger than π

6 ) directly provided a more robust
and faithful metric (see cog teeth in Fig. 4b).

3.1. Additional timings

VoroMesh [8] provides two implementations for their mesh
extraction, based on SciPy and CGAL. Since our mesh ex-
traction is also based on SciPy, we use their SciPy one out
of fairness in Tab. 2 to evaluate and compare timings; we
also added the timings of the meshing phase of NMC [5]
and NDC [3] for comparison purposes. While our code is
not yet optimized, an implementation of PoNQ in CGAL
would undoubtedly allow for an even faster extraction.

4. Additional Renders
Finally, Figs. 5-9 exhibit further results comparing PoNQ to
previous works.

References
[1] Nina Amenta, Marshall Bern, and Manolis Kamvysselis. A

new Voronoi-based surface reconstruction algorithm. In Pro-

Method Grid Optimization (s) Meshing (s)
NDC [3] 323 - 0.001
NMC [5] 323 - 0.1
VoroMesh [8] 323 2.0 0.3
PoNQ 323 2.6 0.3
NDC [3] 643 - 0.02
NMC [5] 643 - 0.9
VoroMesh [8] 643 4.2 1.1
PoNQ 643 4.1 1.3
NDC [3] 1283 - 0.2
NMC [5] 1283 - 7.3
VoroMesh [8] 1283 36.2 4.8
PoNQ 1283 17.9 7.8

Table 2. Timings for optimization-based experiments.

ceedings of the 25th annual conference on Computer graph-
ics and interactive techniques - SIGGRAPH ’98, pages 415–
421, Not Known, 1998. ACM Press.

[2] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository, Dec. 2015. arXiv:1512.03012 [cs].

[3] Zhiqin Chen, Andrea Tagliasacchi, Thomas Funkhouser, and
Hao Zhang. Neural dual contouring. ACM Transactions on
Graphics, 41(4):1–13, July 2022.

[4] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. BSP-
Net: Generating Compact Meshes via Binary Space Parti-
tioning. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 42–51, Seattle, WA,
USA, June 2020. IEEE.

[5] Zhiqin Chen and Hao Zhang. Neural marching cubes. ACM
Transactions on Graphics, 40(6):1–15, Dec. 2021.

[6] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis
Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa,
Denis Zorin, and Daniele Panozzo. ABC: A Big CAD
Model Dataset For Geometric Deep Learning, Apr. 2019.
arXiv:1812.06216 [cs].

[7] Ravikrishna Kolluri, Jonathan Richard Shewchuk, and
James F. O’Brien. Spectral surface reconstruction from noisy
point clouds. In Proceedings of the 2004 Eurographics/ACM
SIGGRAPH symposium on Geometry processing, pages 11–
21, Nice France, July 2004. ACM.

[8] Nissim Maruani, Roman Klokov, Maks Ovsjanikov, Pierre
Alliez, and Mathieu Desbrun. VoroMesh: Learning Wa-
tertight Surface Meshes with Voronoi Diagrams. In 2023
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 14565–14574, 2023.

[9] Silvia Sellán. Reach For the Spheres: Tangency-Aware Sur-
face Reconstruction of SDFs. ACM Transactions on Graph-
ics, 2023.

[10] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and
Sanja Fidler. Deep Marching Tetrahedra: a Hybrid Rep-
resentation for High-Resolution 3D Shape Synthesis. In
Advances in Neural Information Processing Systems, vol-
ume 34, pages 6087–6101. Curran Associates, Inc., 2021.



(a) SAP (b) DPF (c) VoroMesh (d) PoNQ (e) Gr. Truth

Figure 5. Optimization-based results (top to bottom: 323, 643, 1283) on Thingi30.



(a) NDC (b) NMC (c) VoroMesh (d) PoNQ (e) Gr. Truth

Figure 6. Learning results (top: 323; bottom: 643) on ABC.



(a) NDC (b) NMC (c) VoroMesh (d) PoNQ (e) Gr. Truth

Figure 7. Learning results (top: 323; bottom: 643) on ABC.



(a) NDC (b) NMC (c) VoroMesh (d) PoNQ (e) Gr. Truth

Figure 8. Learning results (top to bottom: 323, 643, 1283) on Thingi30. Networks trained on ABC.



(a) NDC (b) NMC (c) VoroMesh (d) PoNQ (e) Gr. Truth

Figure 9. Learning results (top to bottom: 323, 643, 1283) on Thingi30. Networks trained on ABC.


	. Discussing Other Related Works
	. Reach for The Spheres sellanreach2023
	. Deep Marching Tetrahedra shendeep2021

	. Implementation Details
	. Training
	. Meshing
	. Ablation studies
	. Open surfaces

	. Edge-based CD: Discussion
	. Additional timings

	. Additional Renders

