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A. Validation performance curves
Figure 1 shows the evolution of the validation score as a
function of training epochs for rows (b)-(f) in Table 1 of
the main paper. These curves showcase the gain brought
by both middle and top adapters, and the positive impact of
conditioning them on the task at hand.

B. Additional ablation studies
Impact of conditioning the policy on the task at hand
— Row (b) in Table 1 reaches the same performance, even
slightly better, as row (a), showing that when adapters are
conditioned on the task at hand, conditioning the policy it-
self is not necessary. This seems to indicate that conditioned
adapters already insert task-related information into visual
embeddings fed to the policy.

Using the ’CLS’ token representation as input to the
policy — Row (c) in Table 1 performs worse than row (a),
indicating that our introduced tokens aggregation layer ψ
improves over the strategy used in previous work consisting
in feeding the output ’CLS’ token to the policy. This con-
firms our assumption that the ’CLS’ token is undertrained
under the MAE pre-training task.

Impact of the middle adapters when using top
adapters — Row (d) in Table 1 also performs worse com-
pared with row (a), showing that when training a condi-
tioned top adapter, middle adapters are still very important,
bringing a significant boost in performance.

C. Impact on other visual backbones
Table 2 shows the impact of our task-conditioned adapters
on the visual features extracted by two other SOTA ViT-
B backbones, i.e. PVR [23] and MVP [27]. As can be
seen, our adapters bring a boost in policy performance for
both pre-trained backbones, generalizing the conclusions
obtained with VC-1.

D. Visualizing the influence of task-
conditioned adaptation

This section focuses on investigating the impact of the intro-
duced adapters on the processing of visual features. All se-
quences of visual frames used in the following experiments
are taken from a held-out set of expert trajectories not used
at training time.

Influence of middle adapters on ViT attention maps
— We visualize here the attention map of the last layer
of the vision encoder. To this end, we sum attention maps
for all tokens and all heads, and normalize them between 0
and 1. These visualizations are shown in Figures 2 and 3.
The first row shows a sequence of visual frames and below,
for each model variant (No Adapter, Middle Adapter (NC),
Middle Adapter (C)), one can see the attention map overlaid
on top of the visual frame and displayed below as a colored
heatmap.

As can be seen in Figures 2 and 3, the middle adapters
help focus the attention on the most important parts of
the image compared with vanilla VC-1 attention without
adapters. When adapters are not conditioned (NC), they
tend to either produce very narrow (Figure 2 and first frames
in Figure 3) or quite broad (last frames in Figure 3) atten-
tion. Conditioning on the task at hand keeps the focus on
important regions and leads to covering the entire objects of
interest and important agent parts. Most importantly, Fig-
ures 2 and 3 show that, when adapters are conditioned on
the task embedding, more attention is put on the final goal
in all frames, while this is not the case for unconditioned
adapters.

Conditioning middle adapters helps insert task-
related information into visual embeddings — In order
to study the underlying mechanisms of adapter modules, we
examine the content of produced visual embeddings. Fig-
ure 4 shows t-SNE plots of visual embeddings for a set of
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Figure 1. Known task — Impact of visual adapters: Evolution of the validation performance during training for rows (b)-(f) in Table 1
of the main paper. In the legend, M and T refer respectively to the state of middle and top adapters, and -, NC or C mean they are absent,
not conditioned or conditioned on the task embedding. On all plots, the y-axis represents the performance score and the x-axis corresponds
to the training epoch. Colored lines represent the evolution of mean performance over 3 training runs (3 random seeds) and shaded areas
represent standard deviation.

frames for both the DMC Stand and Walk tasks. Visual
observations are identical for both tasks at the beginning
of rollouts, and very similar in the rest of the sequences,
making it very hard to distinguish between these 2 tasks
from a visual observation only. Embeddings from the con-
ditioned middle adapters form two well-separated clusters,
showcasing the task-related information brought by condi-
tioning adapters on the task at hand.

E. Non-linear probing of actions
Table 3 shows the performance of a probing MLP network
trained to regress the expert action to take from the vi-
sual embedding of a single frame only. As can be seen,
its performance improves drastically when trained on em-

beddings predicted by a vision encoder composed of condi-
tioned middle and top adapters. A conditioned top adapter
thus inserts action-related information within visual embed-
dings.

F. Diversity of known tasks

Table 5 (c) and Table 4 (b) show a model trained on Meta-
World only, which performs better on MetaWorld than mod-
els trained on all 3 benchmarks (the domain gap between
them is large). The lower performance on MetaWorld when
training on all 3 benchmarks is largely outweighed by the
ability to address Adroit and DMC.



Table 1. Known task — Additional ablation studies: Validation and test performance on known tasks of different neural variants. Row
(a) is equivalent to row (f) in Table 1 of the main paper. When using conditioned adapters, giving the task embedding as input to the policy
is not necessary. Our introduced tokens aggregation layer is better than using the representation of the ’CLS’ token. Finally, when training
a conditioned top adapter, middle adapters are still important and bring a boost in performance. Cond π: policy conditioned on the task
embedding – C: Conditioned – ’CLS’ token: using the ’CLS’ token representation as the frame embedding fed to the policy. Performance
is reported as mean ± std over 3 training runs (seeds).

Cond. Adapters ’CLS’ Multi-task performance
π Mid. Top token Adroit DMC MetaWorld Benchmarks avg Tasks avg

Val Test Val Test Val Test Val Test Val Test

(a) ✓ C C − 42.0 ± 0.8 42.3 ± 1.0 59.9 ± 0.9 60.0 ± 0.5 65.3 ± 1.0 54.5 ± 3.3 55.8 ± 0.1 52.3 ± 1.0 59.2 ± 0.1 54.8 ± 1.2

(b) − C C − 42.3 ± 2.0 40.8 ± 3.0 59.2 ± 1.0 59.2 ± 2.3 68.7 ± 2.2 57.6 ± 3.4 56.8 ± 0.8 52.5 ± 0.9 60.4 ± 0.8 55.5 ± 0.5

(c) ✓ C C ✓ 38.8 ± 5.9 36.2 ± 2.3 57.8 ± 1.9 58.1 ± 2.6 57.5 ± 8.0 50.9 ± 4.3 51.4 ± 2.8 48.4 ± 0.6 54.5 ± 2.9 51.4 ± 1.3

(d) ✓ − C − 34.7 ± 1.5 34.7 ± 3.3 51.4 ± 0.4 52.1 ± 0.5 53.6 ± 4.4 44.5 ± 4.7 46.6 ± 1.6 43.8 ± 1.8 49.5 ± 2.0 46.0 ± 1.9

Table 2. Known task — Impact on other visual backbones: Validation and test performance on known tasks for two additional visual
backbones (PVR [23] and MVP [27]). Our task-conditioned adapters improve the extracted visual features in both cases, leading to higher
multi-task policy performance. Performance is reported as mean ± std over 3 training runs (seeds).

ViT Ours Multi-task performance
Adroit DMC MetaWorld Benchmarks avg Tasks avg

Val Test Val Test Val Test Val Test Val Test

PVR [23]
− 34.7±2.8 30.2± 1.0 58.1±3.0 55.3± 7.2 41.8± 1.7 33.5± 1.4 44.8± 1.3 39.6± 3.0 47.4± 1.3 42.0± 3.5

✓ 43.3± 2.5 41.0± 5.1 61.9± 1.3 61.3± 1.2 66.8± 2.3 55.7± 3.4 57.3± 1.0 52.7± 3.1 60.9± 0.8 55.6± 2.7

MVP [27]
− 38.0±1.3 34.3±2.4 56.5±2.1 56.5±1.7 42.8±6.9 35.9±5.6 45.8±1.5 42.2±2.2 47.7±1.9 44.2±2.2

✓ 47.7±5.9 46.2±2.4 57.3±2.9 56.9±2.5 64.9±12.1 55.4±12.2 56.6±4.0 52.8±2.6 58.9±4.4 54.5±3.8

Table 3. Non-linear probing of actions: we explore the perfor-
mance of action regression from the visual embedding of a single
frame. Considered metrics are the Mean Squared Error (MSE)
and coefficient of determination (R2). The top adapter seems to
insert action-related information into the visual embedding, as the
probing MLP achieves the best performance.

Middle adapters Top adapter MSE R2

(a) − − 0.067 0.69
(b) NC − 0.069 0.57
(c) C − 0.069 0.59
(d) C NC 0.037 0.90
(e) C C 0.034 0.92

G. Few-shot adaptation baseline

Table 5 compares model finetuning on new tasks (b) with
our task embedding search (a). As expected, (b) performs
better but task embedding search (a) solves a harder prob-
lem, as we keep a single policy. Our adapters can thus be
used in 2 settings: (i) task embedding search, keeping a sin-
gle policy addressing all tasks (low memory footprint), (ii)
task-specific fine-tuning to reach the best performance pos-
sible if memory is not an issue (one specific set of 130M

Table 4. Known task — Diversity of known tasks: Validation
and test performance on MetaWorld known tasks when our ap-
proach with task-conditioned adapters is either trained on the three
considered benchmarks (Adroit, DMC, MetaWorld), or on tasks
from MetaWorld only. As expected, the model trained on known
tasks from MetaWorld only reaches higher performance. Perfor-
mance is reported as mean ± std over 3 training runs (seeds).

Training MetaWorld
Val Test

(a) All 3 benchmarks 65.3±1.0 54.5 ±3.3

(b) MetaWorld only 75.6±1.6 67.8±2.6

parameters for each task).

H. Architecture details
Vision encoder — we use a ViT-B backbone, initialized
from VC-1 weights, as the base vision encoder ϕ. It is made
of 12 self-attention layers, each composed of 12 attention
heads, with a hidden size of 768. The input image of size
224×224×3 is divided into a grid of 14×14 patches, where
each patch has thus a size of 16×16 pixels. An additional
’CLS’ token is appended to the sequence of image tokens



Table 5. Few-shot — Performance of a finetuned baseline (Ft.) and task embedding search (TE opt.) for a policy either trained on
MetaWorld only (MV) or all 3 benchmarks (All 3). tui refers to the i-th unknown task. Performance is reported as mean ± std over 3
training runs (seeds).

Opt. Train. Setting tu0 tu1 tu2 tu3 tu4 tu5 tu6 tu7 tu8 tu9 tu10 tu11 tu12 tu13 tu14 Mean

(a) TE opt. All 3 Single policy 2±4 1±2 55 ±26 41±21 4±4 34±10 81±21 72±12 0±0 11±17 34±30 48±6 47±2 53±21 4±1 33±2

(b) Ft. All 3 15 policies 1±2 0±0 49±44 69±22 5±2 62±8 96±4 91±7 2±3 54±8 50±4 22±19 66±7 89±1 3±2 44±3

(c) TE opt. MW Single policy 3±6 0±0 56±44 64±20 1±2 69±19 100±0 77±20 0±1 6±6 22±38 19±3 55±13 57±17 5±3 36±5
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Figure 2. Visualization of attention maps (Assembly task). First row: observed input frames. Following blocks: for each model type,
we show the attention map of the last ViT layer, first overlaid on top of the visual frame and below as a colored heatmap. In this example,
middle adapters allow to focus the attention on important regions, and task conditioning leads to a better covering of entire objects and
agent parts, along with greater attention towards the final goal for all frames.
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Figure 3. Visualization of attention maps (Relocate task). First row: observed input frames. Following blocks: for each model type,
we show the attention map of the last ViT layer, first overlaid on top of the visual frame and below as a colored heatmap. In this example,
middle adapters allow to focus the attention on important regions, and task conditioning leads to a better covering of the robotic hand and
the sphere goal in all frames.

to follow the setup used to pre-train the model.

Task embedding — the task embedding is a 1024-dim
vector. For known tasks, it is predicted by a linear embed-
ding layer from a 1-in-K vector where K=12.

Middle adapters — one adaptation module αl is in-
serted after each self-attention layer inside ϕ. It is com-
posed of 2 fully-connected layers with respectively 384 and
768 neurons. A GELU activation function is applied to the
output of the first layer. The input to a middle adapter is
the concatenation of the task embedding and a token rep-

resentation from the previous self-attention layer. It thus
processes all tokens as a batch.

Aggregation fully-connected layer — the input to the
aggregation fully-connected layer ψ is a concatenation of
the 768-dim representation of all 14×14=196 tokens. It is
implemented as a simple fully-connected layer predicting a
768-dim vector representation.

Top adapter — the top adapter τ is fed with the output
of ψ, again concatenated to the task embedding. It is com-
posed of 2 fully-connected layers that both have 768 neu-
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Figure 4. Task-related information inside visual embeddings: t-SNE plots of
visual embeddings for a set of frames for DMC Stand and Walk tasks. We chose
these tasks for their visual similarity, making it very hard to distinguish between
them from vision only. Conditioning of the middle adapters leads to two properly
separated clusters, showing the insertion of task-related information into the visual
embeddings.
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Figure 5. Few-shot — Impact of the num-
ber of demonstrations on few-shot adapta-
tion to unseen tasks: Few-shot performance
as a function of the number of demonstrations
used to optimize the task embedding. We can
achieve 23.8% from a single demonstration, and
more demonstrations can lead to higher perfor-
mance. However, the trend is not as simple
as 100 demonstrations lead to the same perfor-
mance as 5 demonstrations.

rons. A ReLU activation function is applied to the output of
the first layer.

Multi-task policy — The policy πm is a 3-layer MLP,
with 256 neurons for all layers and ReLU activation func-
tions. A batch normalization operation is applied to the in-
put to the policy. πm outputs a 30-dim action vector, as
30 is the number of components in the action space with
the most components among the 12 known tasks. When
solving a task with a smaller action space, we mask out the
additional dimensions.

I. Impact of the number of demonstrations on
few-shot adaptation to unseen tasks

Figure 5 presents the evolution of the average few-shot per-
formance of our method across the 15 unknown tasks de-
pending on the number of available demonstrations when
optimizing the task embedding. From only a single demon-
stration per task, we can already reach a satisfying 23.8%
mean performance. Adding more demonstrations can allow
to reach higher performance, but the scaling law does not
appear to be as simple as using 100 demonstrations leads to
the same final performance as 5 demonstrations.
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