
Gaussian Splatting SLAM

Supplementary Material

6. Implementation Details
6.1. System Details and Hyperparameters
6.1.1 Tracking and Mapping (Sec. 3.3.1 and 3.3.3)

Learning Rates We use the Adam optimiser for both
camera poses and Gaussian parameters optimisation. For
camera poses, we used 0.003 for rotation and 0.001 for
translation. For 3D Gaussians, we used the default learn-
ing parameters of the original Gaussian Splatting imple-
mentation [11], apart from in monocular setting where we
increase the learning rate of the positions of the Gaussians
µW by a factor of 10.

Iteration numbers 100 tracking iterations are performed
per frame for across all experiments. However, we termi-
nate the iterations early if the magnitude of the pose update
becomes less than 10�4. For mapping, 150 iterations are
used for the single-process implementation.

Loss Weights Given a depth observation, for tracking we
minimise both photometric Eq. (7) and geometric residual
Eq. (8) as:

min
TCW2SE(3)

�phoEpho + (1� �pho)Egeo , (12)

and similarly, for mapping we modify Eq. (11) to:

min
T k

CW2SE(3),G,
8k2W

X

8k2W
(�phoE

k
pho + (1� �pho)E

k
geo)

+ �isoEiso . (13)

We set �pho = 0.9 for all RGB-D experiments, and �iso =
10 for both monocular and RGB-D experiments.

6.1.2 Keyframing (Sec. 3.3.2)

Gaussian Covisibility Check (Sec. 3.3.2) As described
in Sec. 3.3.2, keyframe selection is based on the covisibility
of the Gaussians. Between two keyframes i, j, we define
the covisibility using the Intersection of Union (IOU) and
Overlap Coefficient (OC):

IOUcov(i, j) =
|Gv

i \ Gv
j |

|Gv
i [Gv

j |
, (14)

OCcov(i, j) =
|Gv

i \ Gv
j |

min(|Gv
i |, |Gv

j |)
, (15)

where Gv
i is the Gaussians visible in keyframe i, based on

visibility check described in Section 3.3.2, Gaussian Covisi-
bility. A keyframe i is added to the keyframe window Wk if
given last keyframe j, IOUcov(i, j) < kfcov or if the rela-
tive translation tij > kfmD̂i, where D̂i is the median depth
of frame i. For Replica kfcov = 0.95, kfm = 0.04 and for
TUM kfcov = 0.90, kfm = 0.08. We remove the regis-
tered keyframe j in Wk if the OCcov(i, j) < kfc, where
keyframe i is the latest added keyframe. For both Replica
and TUM, we set the cutoff to kfc = 0.3. We set the size
of the keyframe window to be for Replica, |Wk| = 10, and
for TUM, |Wk| = 8.

Gaussian Insertion and Pruning (Sec. 3.3.2) As we op-
timise the positions of Gaussians and prune geometrically
unstable Gaussians, we do not require any strong prior such
as depth observation for Gaussian initialisation. When in-
serting new Gaussians in a monocular setting, we randomly
sample the Gaussians position µW using rendered depth
D. Since the estimated depth may sometimes be incor-
rect, we account for this by initialising the Gaussians with
some variance. For a pixel p where the rendered depth Dp

exists, we sample the depth from N (Dp, 0.2�D). Other-
wise, for unobserved regions, we initialise the Gaussians
by sampling from N (D̂, 0.5�D), where D̂ is the median of
D. For pruning, as described in Section 3.3.2, we perform
visibility-based pruning, where if new Gaussians inserted
within the last 3 keyframes are not observed by at least 3
other frames, they are pruned. We only perform visibility-
based pruning once the keyframe window Wk is full. Ad-
ditionally, we prune all Gaussians with opacity of less than
0.7.

7. Evaluation details
7.1. Camera Tracking Accuracy (Table 1 and Ta-

ble 2)
7.1.1 Evaluation Metric

We measured the keyframe absolute trajectory error (ATE)
RMSE. For monocular evaluation, we perform scale align-
ment between the estimated scale-free and ground-truth tra-
jectories. For RGB-D evaluation, we only align the esti-
mated trajectory and ground truth without scale adjustment.

7.1.2 Baseline Results

Table 1 Numbers for monocular DROID-SLAM [38]
and ORB-SLAM [21] is taken from [14]. We have lo-

cally run DSO [5], DepthCov [4] and DROID-VO [38] –
which is DROID-SLAM without loop closure and global
bundle adjustment. For the RGB-D case, numbers for
NICE-SLAM [48], DI-Fusion [8], Vox-Fusion [45], Point-
SLAM [29] are taken from Point-SLAM [29], and numbers
for iMAP [35], BAD-SLAM [31], Kintinous [42], ORB-
SLAM [21] are from iMAP [35], and ald all the other base-
lines: ESLAM [9], Co-SLAM [41] are from each individual
papers.

Table 2 and 5 We took the numbers from Point-
SLAM [29] paper.

Table 4 The numbers are from Co-SLAM [41] paper.

7.2. Rendering Performance (Table 5)
We provide the full detail of the rendering performance
evaluation in Table 7.

In Table 5, we reported the photometric quality metrics
(PSNR, SSIM and LPIPS) and rendering fps of our meth-
ods. We demonstrated that our rendering fps (769) is much
higher than other existing methods (VoxFusion is the sec-
ond best with 2.17fps). Here we describe the detail of how
we measured the fps. The rendering time refers to the dura-
tion necessary for full-resolution rendering (1200⇥ 680 for
the Replica sequence). For each method, we perform 100
renderings and report the average time taken per rendering.
The reported rendering fps is found by taking 1 and dividing
it by the average rendering time. We summarise the num-
bers in Table 8. Note that the “rendering fps” means the
fps just for the forward rendering, which differs from the
end-to-end system fps reported in Table 9 and 10.

7.3. The convergence basin analysis (Table 6 and
Fig 5)

7.3.1 The detail of the benchmark Dataset

For convergence basin analysis, we create three datasets by
rendering the synthetic Replica dataset. In addition to the
qualitative visualisation in Figure 5, we report more detailed
camera pose distributions in Figure 8. Figure 8 shows the
camera view frustums of the test (red), training (yellow) and
target (blue) views. As we mentioned in the main paper, we
set the training view in the shape of a square with a width of
0.5m and test views are distributed with radii ranging from
0.2m to 1.2m, covering a larger area than the training views.
We only apply displacements to the camera translation but
not to the rotation. For each sequence, we use a total of 67
test views.

7.3.2 Training setup

For each method, the 3D representation is trained for 30000
iterations using the training views. Here, we detail the train-

Test views Training views

Target view Overlayed views

Figure 8. 2D Visualisation of the camera pose distributions
used for convergence basin analysis in Figure 5.

ing setup of each of the methods:

Ours We evaluated our method under two settings: “w/
depth” and “w/o depth”, where we train the initial 3D Gaus-
sian map Ginit with and without depth supervision. In the
“w/o depth” setting, the 3D Gaussians’ positions are ran-
domly initialised, and we minimise the monocular mapping
cost Eq. (11) for the 3D Gaussian training, but keeping the
camera poses fixed. Specifically, let k 2 N be a number of
training views and 3D Gaussians G, we find Ginit by:

Ginit = argmin
G

X

8k2W
E

k
pho + �isoEiso . (16)

Note that training views’ camera poses T k
CW are fixed dur-

ing the optimisation.
In the “w/ depth” setting, we train the Gaussian map by

minimising the same cost function as our RGB-D SLAM
system:

Ginit = argmin
G

X

8k2W
(�phoE

k
pho + (1� �pho)E

k
geo)

+ �isoEiso , (17)

where we use �pho = 0.9 and �iso = 10 for all the experi-
ments

Baseline Methods For Hash Grid SDF, we trained the
same network architecture as Co-SLAM [41]. For MLP

Method Metric room0 room1 room2 office0 office1 office2 office3 office4 Avg. Rendering FPS

NICE-SLAM [48]
PSNR[dB] ↑ 22.12 22.47 24.52 29.07 30.34 19.66 22.23 24.94 24.42

0.54SSIM ↑ 0.689 0.757 0.814 0.874 0.886 0.797 0.801 0.856 0.809
LPIPS↓ 0.33 0.271 0.208 0.229 0.181 0.235 0.209 0.198 0.233

Vox-Fusion [45]
PSNR[dB] ↑ 22.39 22.36 23.92 27.79 29.83 20.33 23.47 25.21 24.41

2.17SSIM ↑ 0.683 0.751 0.798 0.857 0.876 0.794 0.803 0.847 0.801
LPIPS↓ 0.303 0.269 0.234 0.241 0.184 0.243 0.213 0.199 0.236

Point-SLAM [29]
PSNR[dB] ↑ 32.40 34.08 35.5 38.26 39.16 33.99 33.48 33.49 35.17

1.33SSIM ↑ 0.974 0.977 0.982 0.983 0.986 0.96 0.960 0.979 0.975
LPIPS↓ 0.113 0.116 0.111 0.1 0.118 0.156 0.132 0.142 0.124

Ours
PSNR[dB] ↑ 34.83 36.43 37.49 39.95 42.09 36.24 36.7 36.07 37.50

769SSIM ↑ 0.954 0.959 0.965 0.971 0.977 0.964 0.963 0.957 0.960
LPIPS↓ 0.068 0.076 0.075 0.072 0.055 0.078 0.065 0.099 0.070

Table 7. Rendering performance comparison of RGB-D SLAM methods on Replica. Our method outperforms most of the rendering
metrics compared to existing methods. Note that Point-SLAM uses sensor depth (ground-truth depth in Replica) to guide sampling along
rays, which limits the rendering performance to existing views. The numbers for the baselines are taken from [29].

Method Rendering FPS ↑ Rendering time
per image [s] ↓

NICE-SLAM [48] 0.54 1.85
Vox-Fusion [45] 2.17 0.46

Point-SLAM [29] 1.33 0.75
Ours 769 0.0013

Table 8. Further detail of Rendering FPS and Rendering Time
comparison based on Table 5.

SDF, we trained the network of iMAP [35]. For both base-
lines, we supervised networks with the same loss functions
as Co-SLAM, which are colour rendering loss Lrgb, depth
rendering loss Ldepth, SDF loss Lfs, free-space loss Lfs,
and smoothness loss Lsmooth. Please refer to the original
Co-SLAM paper for the exact formulation (equation (6) -
(9)). All the training hyperparameters (e.g. learning rate
of the network, number of sampling points, loss weight)
are the same as Co-SLAM’s default configuration of the
Replica dataset. While Co-SLAM stores training view in-
formation by downsampling the colour and depth images,
we store the full pixel information because the number of
training views is small.

7.3.3 Testing Setup

For testing, we localise the camera pose by minimising only
the photometric error against the ground-truth colour image
of the target view.

Ours Let the camera pose TCW 2 SE(3) and initial 3D
Gaussians Ginit, the localised camera pose T est

CW is found
by:

T est
CW = argmin

TCW

��I(Ginit,TCW)� Ītarget

��
1
. (18)

Note that Ginit is fixed during the optimisation. We ini-
tialise TCW at one of the test view’s positions, and optimi-

Method Total Time [s] FPS
Monocular 798.9 3.2

RGB-D 986.7 2.5
Table 9. Performance Analysis using fr3/office. Both monocular
and RGB-D implementations use multiprocessing. We report the
total execution time of our system, FPS computed by dividing
the total number of processed frames by the total time.

Method Total Time [s] FPS
RGB-D 1111.1 1.8

RGB-D (sp) 1904.7 1.1
Table 10. Performance Analysis using replica/office1. RGB-D
uses a multi-process implementation and RGB-D-sp is the single-
process implementation. We report the total execution time of
our system, FPS computed by dividing the total number of pro-
cessed frames by the total time.

sation is performed for 1000 iterations. We perform this lo-
calisation process for all the test views and measure the suc-
cess rate. Camera localisation is successful if the estimated
pose converges to within 1cm of the target view within the
1000 iterations.

Baseline Methods For the baseline methods, the camera
localisation is performed by minimising colour volume ren-
dering loss Lrgb, while all the other trainable network pa-
rameters are fixed. The learning rates of the pose optimiser
are also the same as Co-SLAM’s default configuration of
Replica dataset.

8. Further Ablation Analysis (Table 3)
8.1. Pruning Ablation (Monocular input)
In Table 8.1, we report the ablation study of our proposed
Gaussian pruning, which prunes randomly initialised 3D

Input Method fr1/desk fr2/xyz fr3/office Avg.

Mono
w/o pruning 78.2 4.5 57.0 46.6

Ours 3.78 4.60 3.50 3.96
Table 11. Pruning Ablation Study on TUM RGB-D dataset
(Monocular Input). Numbers are camera tracking error (ATE
RMSE) in cm.

Input Method fr1/desk fr2/xyz fr3/office Avg.

RGB-D
w/o Eiso 1.60 1.42 1.32 1.43

Ours 1.50 1.44 1.49 1.47

Table 12. Isotropic Loss Ablation Study on TUM RGB-D
dataset (RGB-D input). Numbers are camera tracking error (ATE
RMSE) in cm.

Method r0 r1 r2 o0 o1 o2 o3 o4 Avg.
w/o Eiso 0.44 0.86 0.28 0.75 0.99 0.36 0.28 2.6 0.82

Ours 0.44 0.32 0.31 0.44 0.52 0.23 0.17 2.25 0.58

Table 13. Isotropic Loss Ablation Study on Replica dataset
(RGB-D input). Numbers are camera tracking error (ATE RMSE)
in cm.

Gaussians effectively in a monocular SLAM setting. As the
result shows, Gaussian pruning plays a significant role in
enhancing camera tracking performance. This improvement
is primarily because, without pruning, randomly initialised
Gaussians persist in the 3D space, potentially leading to in-
correct initial geometry for other views.

8.2. Isotropic Loss Ablation (RGB-D input)

Table 12 and 13 report the ablation study of the effect of
isotropic loss Eiso for RGB-D input. In TUM, as Table 12
shows, isotropic regularisation does not improve the per-
formance but only shows a marginal difference. However,
for Replica, as summarised in Table 13, isotropic loss sig-
nificantly improves camera tracking performance. Even
with the depth measurement, since rasterisation does not
consider the elongation along the viewing axis. Isotropic
regularisation is required to prevent the Gaussians from
over-stretching, especially for textureless regions, which are
common in Replica.

8.3. Effect of Spherical Harmonics (SH)

While we disabled SHs in the main paper for simplicity,
here we report the ablation study of the effect of SHs. The
3DGS paper [11] shows that addition of SH leads to small
improvements in rendering metrics, and we have found sim-
ilar improvement with SH enabled in our system (Tab.15a).
We did not observe a significant change in runtime with
SH enabled, but it notably increases Gaussian map size and
hence GPU memory usage. Though an analytical Jacobian
propagates the gradients from SH to camera poses, ATE
marginally gets worse when SH is enabled (Tab. 16), as SH
may incorrectly explain non-view directional effects caused
by the camera motion, degrading the trajectory estimate.

01-easy 02-easy 03-medium 04-difficult 05-difficult
Point-SLAM [29] - - - - -

Ours 0.121 0.141 2.197 4.515 3.190
Vins-Fusion [28] 0.540 0.460 0.330 0.780 0.500

SVO [6] 0.040 0.070 0.270 0.170 0.120
ORB-SLAM3 [1] 0.029 0.019 0.024 0.085 0.052

Table 14. ATE RMSE (meter) on EuRoC Machine Hall with
Stereo Depth. Baseline numbers are from [1]. The third best result
is highlighted with a dash line.

8.4. Mapping Performance with ORB-SLAM

One of the most straightforward approaches for real-time
operation is to combine an existing tracking system and
3DGS. In particular, frame-based SLAM methods have
been well-studied for years and is capable of providing re-
liable tracking. In this section, we compare our unified
3DGS-based method to the combined approach. We have
run RGB-D ORB-SLAM to recover the poses and train
3DGS with the poses and sensor depth of the keyframes,
equivalent to performing offline splatting. Though ORB-
SLAM is best in terms of ATE (Tab.1 main), we find no sig-
nificant difference across the rendering metrics (Tab.15b).
SH is omitted in the synthetic Replica dataset as it con-
tains no view-directional effects. While using an off-the-
shelf tracker with a 3DGS mapper is possible, this work has
focused on the value of the 3DGS throughout the entire al-
gorithms, which is unexplored and therefore provides new
insights. Further performance improvement of the unified
approach will be an interesting future work.

8.5. Large-scale Scenes with Stereo Inputs:

This work focuses on pioneering 3DGS-based SLAM for
live operation in small-scale scenes. However, we tested
our method on the large-scale EuRoC Machine Hall dataset
with depth from stereo (Tab.14). Fig.1 is a qualitative recon-
struction result from our system. Our method is competitive
in “easy” sequences, although performance drops for more
difficult, longer sequences. Note that Point-SLAM [29]
fails on all sequences in this dataset (over 3m ATE within
the first 500 frames). In future work, we expect to improve
our method by incorporating loop closure. In principle, loop
closure will be easier to incorporate compared to other rep-
resentations such as voxel grids (where feature allocations
are fixed), via a method similar to surfel-based approaches
like ElasticFusion [43].

TUM Replica
Method PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #

(a)
Ours (w/o SH) 21.89 0.733 0.327 38.94 0.968 0.0703
Ours (w. SH) 24.37 0.804 0.225 - - -
Point-SLAM 21.39 0.727 0.463 24.37 0.840 0.185

(b)
ORB+GS (w/o SH) 25.12 0.837 0.161 37.11 0.964 0.040
ORB+GS (w.SH) 25.44 0.842 0.146 - - -

Table 15. Mean Rendering metrics for TUM and Replica (RGBD).

Memory Usage for RGB-D SLAM ATE RMSE
Ours

(w/o SH)
Ours

(w. SH)
Point-SLAM

ORB+GS
(w/o SH)

ORB+GS
(w. SH)

Ours
(w/o SH)

Ours
(w. SH)

3.97MB 11.47MB 38.0MB 45.97MB 186.5MB 1.47cm 1.56cm

Table 16. Mean Memory and ATE metrics for TUM (RGBD).

8.6. Memory Consumption and Frame Rate (Ta-
ble. 4)

8.6.1 Memory Analysis

In memory consumption analysis, for Table. 4, we mea-
sure the final size of the created Gaussians. The memory
footprint of our system is lower than the original Gaus-
sian Splatting, which uses approximately 300-700MB for
the standard novel view synthesis benchmark dataset [11],
as we only maintain well-constrained Gaussians via pruning
and do not store the spherical harmonics.

8.6.2 Timing Analysis

To analyse the processing time of our monocular/RGB-
D SLAM system, we measure the total time required to
process all frames in the TUM-RGBD fr3/office dataset.
This approach assesses the performance of our system as
a whole, rather than isolating individual components. By
adopting this approach, we gain a more realistic understand-
ing of the system’s true performance which better reflects
the real-world operating conditions, as it avoids the assump-
tion of an idealised, sequential interleaving of the tracking
and mapping processes. As shown in Table 10, our sys-
tem operates at 3.2 FPS with monocular and 2.5 FPS with
depth. The FPS is found by dividing the number of pro-
cessed frames by the total time. We conducted a similar
analysis with the Replica dataset office2. Here, we compare
the RGB-D method with and without multiprocessing. As
expected, single-process implementation takes longer as it
performs more mapping iterations.

9. Camera Pose Jacobian
Use of 3D Gaussian as a primitive and performing camera
pose optimisation is discussed in [12]; however, the method
assumes a smaller number of Gaussians and is based on ray-
intersection not splatting; hence, is not applicable to 3DGS.
While many applications of 3DGS exist, for example, dy-
namic tracking and 4D scene representation [16, 44], they
assume offline application and require accurate camera po-
sition. In contrast, we perform camera pose optimisation
by deriving the minimal analytical Jacobians on Lie group,

and for completeness, we provide the derivation of the Ja-
cobians presented in Eq. (6).

DµC

DTCW
= lim

⌧!0

Exp(⌧) · µC � µC

⌧
(19)

= lim
⌧!0

(I + ⌧
^) · µC � µC

⌧
(20)

= lim
⌧!0

⌧
^ · µC

⌧
(21)

= lim
⌧!0

✓
⇥µC + ⇢

⌧
(22)

= lim
⌧!0

�µ⇥
C✓ + ⇢

⌧
(23)

=
⇥
I �µ⇥

C

⇤
(24)

where T · x is the group action of T 2 SE(3) on x 2 R3.
Simiarly, we compute the Jacobian with respect to W.

Since the translational component is not involved, we only
consider the rotational part RCW of TCW .

DW

DRCW
= lim

✓!0

Exp(✓) �W �W

✓
(25)

= lim
✓!0

(I + ✓
^) �W �W

✓
(26)

= lim
✓!0

✓
^

✓
�W (27)

= lim
✓!0

✓
⇥

✓
�W (28)

Since skew symmetric matrix is:

✓
⇥ =

2

4
0 �✓z ✓y

✓z 0 �✓x

�✓y ✓x 0

3

5 (29)

The partial derivative of one of the component (e.g. ✓x) is:

@✓
⇥

@✓x
=

2

4
0 0 0
0 0 �1
0 1 0

3

5 = e⇥1 (30)

where e1 = [1, 0, 0]>, e2 = [0, 1, 0]>, e3 = [0, 0, 1]>.

@W

@✓x
= e⇥1 W =

2

4
01⇥3

�W3,:

W2,:

3

5 (31)

@W

@✓y
= e⇥2 W =

2

4
W3,:

01⇥3

�W1,:

3

5 (32)

@W

@✓z
= e⇥3 W =

2

4
�W2,:

W1,:

01⇥3

3

5 (33)

where Wi,: refers to the ith row of the matrix. After
column-wise vectorisation of Eq. (31), (32), (33), and stack-
ing horizontally we get:

DW

DRCW
=

2

4
�W⇥

:,1

�W⇥
:,2

�W⇥
:,3

3

5 , (34)

where W:,i refers to the ith column of the matrix. Since the
translational part is all zeros, with this we get Eq. (6).

10. Additional Qualitative Results
We urge readers to view our supplementary video for con-
vincing qualitative results. In Fig. 9 - Fig. 16, we further
show additional qualitative results. We visually compare
other state-of-the-art SLAM methods using differentiable
rendering (Point-SLAM [29] and ESLAM [9]).

11. Limitation of this work
Although our novel Gaussian Splatting SLAM shows com-
petitive performance on experimental results, the method
also has several limitations.
• Currently, the proposed method is tested only on small

room-scale scenes. For larger real-world scenes, the tra-
jectory drift is inevitable. This could be addressed by in-
tegrating a loop closure module into our existing pipeline.

• Although we achieve interactive live operation, hard real-
time operation on the benchmark dataset (30 fps on TUM
sequences) is not achieved in this work. To improve
speed, exploring a second-order optimiser would be an
interesting direction.

Monocular RGB-D

Figure 9. Novel view rendering and Gaussian visualizations on TUM fr1/desk

ESLAM Point-SLAM Ours (Mono) Ours (RGBD) GT

Figure 10. Rendering comparison on TUM fr1/desk

Monocular RGB-D

Figure 11. Novel view rendering and Gaussian visualizations on TUM fr2/xyz

ESLAM Point-SLAM Ours (Mono) Ours (RGBD) GT

Figure 12. Rendering comparison on TUM fr2/xyz

Monocular RGB-D

Figure 13. Novel view rendering and Gaussian visualizations on TUM fr3/office

ESLAM Point-SLAM Ours (Mono) Ours (RGBD) GT

Figure 14. Rendering comparison on TUM fr3/office

Figure 15. Novel view rendering and Gaussian visualizations on Replica

ESLAM Point-SLAM Ours GT

Figure 16. Rendering comparison on Replica

References
[1] Carlos Campos, Richard Elvira, Juan J. Gómez, José M. M.

Montiel, and Juan D. Tardós. ORB-SLAM3: An accurate
open-source library for visual, visual-inertial and multi-map
SLAM. IEEE Transactions on Robotics (T-RO), 37(6):1874–
1890, 2021.

[2] J. Czarnowski, T. Laidlow, R. Clark, and A. J. Davi-
son. Deepfactors: Real-time probabilistic dense monocular
SLAM. IEEE Robotics and Automation Letters (RAL), 5(2):
721–728, 2020.

[3] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram
Izadi, and Christian Theobalt. BundleFusion: Real-time
Globally Consistent 3D Reconstruction using On-the-fly
Surface Re-integration. ACM Transactions on Graphics
(TOG), 36(3):24:1–24:18, 2017.

[4] Eric Dexheimer and Andrew J. Davison. Learning a Depth
Covariance Function. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2023.

[5] J. Engel, V. Koltun, and D. Cremers. Direct sparse odom-
etry. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 2017.

[6] C. Forster, M. Pizzoli, and D. Scaramuzza. SVO: Fast Semi-
Direct Monocular Visual Odometry. In Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA), 2014.

[7] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

[8] Jiahui Huang, Shi-Sheng Huang, Haoxuan Song, and Shi-
Min Hu. Di-fusion: Online implicit 3d reconstruction with
deep priors. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2021.

[9] M. M. Johari, C. Carta, and F. Fleuret. ESLAM: Efficient
dense slam system based on hybrid representation of signed
distance fields. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2023.

[10] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and
A. Kolb. Real-time 3D Reconstruction in Dynamic Scenes
using Point-based Fusion. In Proc. of Joint 3DIM/3DPVT
Conference (3DV), 2013.

[11] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3D gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics
(TOG), 2023.

[12] Leonid Keselman and Martial Hebert. Approximate differ-
entiable rendering with algebraic surfaces. In Proceedings
of the European Conference on Computer Vision (ECCV),
2022.

[13] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Proceedings of the International
Conference on Learning Representations (ICLR), 2015.

[14] Heng Li, Xiaodong Gu, Weihao Yuan, Luwei Yang, Zilong
Dong, and Ping Tan. Dense rgb slam with neural implicit

maps. In Proceedings of the International Conference on
Learning Representations (ICLR), 2023.

[15] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. NeurIPS,
2020.

[16] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan. Dynamic 3d gaussians: Tracking by per-
sistent dynamic view synthesis. 3DV, 2024.

[17] J. McCormac, A. Handa, A. J. Davison, and S. Leutenegger.
SemanticFusion: Dense 3D semantic mapping with convo-
lutional neural networks. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA),
2017.

[18] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In Proceedings of the European Conference on Com-
puter Vision (ECCV), 2020.

[19] N. J. Mitra, N. Gelfand, H. Pottmann, and L. J. Guibas. Reg-
istration of Point Cloud Data from a Geometric Optimization
Perspective. In Proceedings of the Symposium on Geometry
Processing, 2004.

[20] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics
(TOG), 2022.

[21] R. Mur-Artal and J. D. Tardós. ORB-SLAM2: An Open-
Source SLAM System for Monocular, Stereo, and RGB-D
Cameras. IEEE Transactions on Robotics (T-RO), 33(5):
1255–1262, 2017.

[22] R. Mur-Artal, J. M. M Montiel, and J. D. Tardós. ORB-
SLAM: a Versatile and Accurate Monocular SLAM System.
IEEE Transactions on Robotics (T-RO), 31(5):1147–1163,
2015.

[23] R. A. Newcombe. Dense Visual SLAM. PhD thesis, Imperial
College London, 2012.

[24] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D.
Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and A.
Fitzgibbon. KinectFusion: Real-Time Dense Surface Map-
ping and Tracking. In Proceedings of the International Sym-
posium on Mixed and Augmented Reality (ISMAR), 2011.

[25] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2020.

[26] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger.
Real-time 3D Reconstruction at Scale using Voxel Hashing.
In Proceedings of SIGGRAPH, 2013.

[27] Victor Adrian Prisacariu, Olaf Kähler, Ming-Ming Cheng,
Carl Yuheng Ren, Julien P. C. Valentin, Philip H. S. Torr,
Ian D. Reid, and David W. Murray. A framework for the vol-
umetric integration of depth images. CoRR, abs/1410.0925,
2014.

[28] Tong Qin, Jie Pan, Shaozu Cao, and Shaojie Shen. A general
optimization-based framework for local odometry estimation
with multiple sensors, 2019.

[29] Erik Sandström, Yue Li, Luc Van Gool, and Martin R. Os-
wald. Point-slam: Dense neural point cloud-based slam. In
Proceedings of the International Conference on Computer
Vision (ICCV), 2023.

[30] Thomas Schöps, Torsten Sattler, and Marc Pollefeys. Sur-
felmeshing: Online surfel-based mesh reconstruction. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 2020.

[31] Thomas Schöps, Torsten Sattler, and Marc Pollefeys. Bad
slam: Bundle adjusted direct rgb-d slam. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[32] J. Solà, J. Deray, and D. Atchuthan. A micro Lie theory for
state estimation in robotics. arXiv:1812.01537, 2018.

[33] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik
Wijmans, Simon Green, Jakob J. Engel, Raul Mur-Artal,
Carl Ren, Shobhit Verma, Anton Clarkson, Mingfei Yan,
Brian Budge, Yajie Yan, Xiaqing Pan, June Yon, Yuyang
Zou, Kimberly Leon, Nigel Carter, Jesus Briales, Tyler
Gillingham, Elias Mueggler, Luis Pesqueira, Manolis Savva,
Dhruv Batra, Hauke M. Strasdat, Renzo De Nardi, Michael
Goesele, Steven Lovegrove, and Richard Newcombe. The
Replica dataset: A digital replica of indoor spaces. arXiv
preprint arXiv:1906.05797, 2019.

[34] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. A Benchmark for the Evaluation of RGB-D SLAM
Systems. In Proceedings of the IEEE/RSJ Conference on In-
telligent Robots and Systems (IROS), 2012.

[35] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison. iMAP: Implicit
mapping and positioning in real-time. In Proceedings of the
International Conference on Computer Vision (ICCV), 2021.

[36] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

[37] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang
Zeng. Dreamgaussian: Generative gaussian splatting for ef-
ficient 3d content creation. Proceedings of the International
Conference on Learning Representations (ICLR), 2024.

[38] Zachary Teed and Jia Deng. DROID-SLAM: Deep Visual
SLAM for Monocular, Stereo, and RGB-D Cameras. In Neu-
ral Information Processing Systems (NIPS), 2021.

[39] Emanuele Vespa, Nikolay Nikolov, Marius Grimm, Luigi
Nardi, Paul HJ Kelly, and Stefan Leutenegger. Efficient
octree-based volumetric SLAM supporting signed-distance
and occupancy mapping. IEEE Robotics and Automation
Letters (RAL), 2018.

[40] Angtian Wang, Peng Wang, Jian Sun, Adam Kortylewski,
and Alan Yuille. Voge: a differentiable volume renderer us-
ing gaussian ellipsoids for analysis-by-synthesis. 2022.

[41] Hengyi Wang, Jingwen Wang, and Lourdes Agapito. Co-
slam: Joint coordinate and sparse parametric encodings for
neural real-time slam. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2023.

[42] T. Whelan, M. Kaess, H. Johannsson, M. F. Fallon, J. J.
Leonard, and J. B. McDonald. Real-time large scale dense
RGB-D SLAM with volumetric fusion. International Jour-
nal of Robotics Research (IJRR), 34(4-5):598–626, 2015.

[43] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker,
and A. J. Davison. ElasticFusion: Dense SLAM without a
pose graph. In Proceedings of Robotics: Science and Sys-
tems (RSS), 2015.

[44] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng
Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang.
4d gaussian splatting for real-time dynamic scene rendering.
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2024.

[45] Xingrui Yang, Hai Li, Hongjia Zhai, Yuhang Ming, Yuqian
Liu, and Guofeng Zhang. Vox-fusion: Dense tracking and
mapping with voxel-based neural implicit representation. In
Proceedings of the International Symposium on Mixed and
Augmented Reality (ISMAR), 2022.

[46] Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li
Zhang. Real-time photorealistic dynamic scene representa-
tion and rendering with 4d gaussian splatting. Proceedings
of the International Conference on Learning Representations
(ICLR), 2024.

[47] Taoran Yi, Jiemin Fang, Guanjun Wu, Lingxi Xie, Xiaopeng
Zhang, Wenyu Liu, Qi Tian, and Xinggang Wang. Gaussian-
dreamer: Fast generation from text to 3d gaussian splatting
with point cloud priors. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2024.

[48] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hu-
jun Bao, Zhaopeng Cui, Martin R. Oswald, and Marc Polle-
feys. Nice-slam: Neural implicit scalable encoding for slam.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2022.

[49] Zihan Zhu, Songyou Peng, Viktor Larsson, Zhaopeng Cui,
Martin R Oswald, Andreas Geiger, and Marc Pollefeys.
Nicer-slam: Neural implicit scene encoding for rgb slam. In-
ternational Conference on 3D Vision (3DV), 2024.

[50] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Ewa
splatting. IEEE Transactions on Visualization and Computer
Graphics, 8(3):223–238, 2002.

