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Method ATE
Constant Depth 0.257

Constant Normals 0.208
Ours 0.153

Table 3. Ablation study on TUM. We ablate our odometry by
flattening out SuperPrimitives. See the main text for the details.

Method MAE RMSE iMAE iRMSE
Ours With Depth From DPT-Hybrid 128.03 213.32 57.86 91.82

Ours 109.0 204.15 47.32 83.40

Table 4. Ablation Study on VOID. The quality of the unscaled
depth obtained from method via surface normal integration is
quantitatively compared against direct monocular depth estima-
tion with DPT-Hybrid.

6. Ablation Study
6.1. Surface Normal vs Depth Prior
While a monocular depth prior has been widely used in 3D
reconstruction [2, 8], in this work we use a surface normal
prior instead. This choice is driven by the fact that surface
normals have stronger generalisation abilities and capture
better scene geometry. This observation is confirmed with
an ablation study on the depth completion experiment de-
scribed in Sec. 4.1.

In this ablation experiment, we replaced our unscaled
depth estimates D (obtained by integrating surface nor-
mals) with the outputs of DPT-Hybrid [37], a state-of-the-
art depth estimator. All depth scales are then optimised in
the same way as in the original method.

Our approach marginally outperforms its DPT counter-
part on the VOID depth completion benchmark on all met-
rics (Tab. 4). Qualitatively (Fig. 7), our method is better at
preserving structural properties of the scene, such as walls.

6.2. Surface Normal Quality Impact
We investigate how the surface normal quality affects the
performance of our method, especially for pose estimation.
There are two ablation levels we performed in this case.
The first one just assumes constant depth z = const within
each SuperPrimitive. This makes our method akin to Mul-
tiplane images (MPI) [44, 59]. To emulate planar but pos-
sibly slanted segments, we replaced surface normal vectors
with their averaged value within each SuperPrimitive inde-
pendently. Our full odometry system performs significantly
better than its two ablated counterparts, see Tab. 3.

7. Implementation Details
Segments Post Processing. Segments ⌦i extracted from
the segmentation model may not be connected a priori. We

OursDepth from
DPT-HybridInput Image

Figure 7. Qualitative Ablation on VOID.

perform a simple mask connectivity check and split a prim-
itive into two in the case of detected mask discontinuities.
Depth scales. Our depth scaling is implemented via stor-
ing a point pi within the segment ⌦i. We represent depth
scales si as the log-depth value at pi. This point pi is the
same as the query point provided to the segmentation model
as an input. This depth scale parametrisation allows con-
verting partially available depth maps into a set of depth
scaled SuperPrimitives.

7.1. Few-View Structure-From-Motion
We initialised depth scales uniformly to 1.0 for each primi-
tive. All supplementary poses are initialised at identity. We
solve SfM in a coarse-to-fine fashion to ensure the segments
would not stuck in a local minima.

A small penalty on depth scale was added with the
weight w = 1e�5 to constraint segments that may not have
photometric information from other views.

7.2. Depth Reinitialisation in MonoVO
Given a new keyframe Inext

kf with an estimated pose Tnext
kf ,

we scale depth for each new SuperPrimitve by using the
geometry estimates of the previous keyframe Iprev

kf .
More precisely, we transform the point cloud Gprev of the

previous keyframe into the coordinate system of the new
keyframe and then render a partial depth map. Then, the
depth scales si of the new keyframe are estimated as in the
depth completion experiments in Sec. 4.1.

8. Experimental details
8.1. VOID Dataset
For depth completion evaluation on the VOID dataset, we
follow the protocol of [55]. The ground truth depth is con-
sidered to be valid between 0.2 and 5.0 meters. The test
set consists of 800 images. The dataset also provides sparse
depth measurements obtained by an external visual-inertial



Metric Units Definition
MAE mm 1
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�

1
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Table 5. Error metrics. The definition of the error metrics used in
depth quality valuation. Here, ẑ and zgt are predicted and ground
truth depth values respectively.
odometry. We choose the setting with least sparse depth
measurements available, “150 points” — where the SLAM
system was configured to estimate depth of around 150 fea-
ture points (which constitutes 0.05% of the full image size).

8.2. TUM RGB-D Dataset
For evaluation of the estimated trajectory we used ATE
RMSE metric [46].

9. Hardware Details
All of our experiments were conducted in the follow-
ing hardware setup: Intel Core i7 3.60GHz processor,
32 GB RAM, and NVIDIA GeForce RTX 4090 with 24GB
VRAM. Our method is implemented in PyTorch [35] and
CuPy [33] libraries.
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